
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Quantization of Whitney functions and reduction

Pflaum, M.J.; Posthuma, H.; Tang, X.
DOI
10.5427/jsing.2015.13l
Publication date
2015
Document Version
Final published version
Published in
Journal of Singularities

Link to publication

Citation for published version (APA):
Pflaum, M. J., Posthuma, H., & Tang, X. (2015). Quantization of Whitney functions and
reduction. Journal of Singularities, 13, 217-228. https://doi.org/10.5427/jsing.2015.13l

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:15 Apr 2023

https://doi.org/10.5427/jsing.2015.13l
https://dare.uva.nl/personal/pure/en/publications/quantization-of-whitney-functions-and-reduction(31e8eb8a-e911-457e-b513-594268aaef34).html
https://doi.org/10.5427/jsing.2015.13l


Journal of Singularities
Volume 13 (2015), 217-228

Proc. of Geometry and Topology
of Singular Spaces, CIRM, 2012

DOI: 10.5427/jsing.2015.13l

QUANTIZATION OF WHITNEY FUNCTIONS AND REDUCTION

M.J. PFLAUM, H. POSTHUMA, AND X. TANG

The paper is dedicated to David Trotman on the occasion of his 60th birthday.

Abstract. For a possibly singular subset of a regular Poisson manifold we construct a defor-
mation quantization of its algebra of Whitney functions. We then extend the construction of a

deformation quantization to the case where the underlying set is a subset of a not necessarily

regular Poisson manifold which can be written as the quotient of a regular Poisson manifold
on which a compact Lie group acts freely by Poisson maps. Finally, if the quotient Poisson

manifold is regular as well, we show a “quantization commutes with reduction” type result.

For the proofs, we use methods stemming from both singularity theory and Poisson geometry.

Introduction

In this paper we consider the synthesis of two, seemingly different, branches of mathematics,
namely that of singularity theory and Poisson geometry and deformation quantization. There
are motivations from both sides to consider such a blend: from the point of view of Poisson
geometry and mathematical physics, singularities naturally appear when one considers Poisson
manifolds with symmetries of which one wants to take the quotient. From the point of view of
singularity theory, the general idea that a quantization can act as a kind of “noncommutative
desingularization” has had quite a few striking applications. To make proper sense of this idea
one needs to combine this with techniques coming from noncommutative geometry.

In this paper we use the notion of Whitney functions to describe the deformation quantization
of a (singular) set inside a Poisson manifold. More specifically, we describe how the Fedosov
method applies to construct such deformation quantizations inside a regular Poisson manifold,
and prove a “quantization commutes with reduction” type of result for the quantized Whit-
ney functions invariant under a free action of a compact Lie group that preserves the Poisson
structure.

1. Formal deformation quantizations of Whitney functions

Recall that for a closed subset X ⊂ M of a smooth manifold M the algebra of Whitney
functions on X is defined as the quotient E∞(X;M) := C∞(M)/J∞(X,M), where

J∞(X,M) :=
{
f ∈ C∞(M) | (Df)|X = 0 for every differential operator D on M

}
denotes the ideal of smooth functions on M which are flat on X. If no confusion about the
ambient space can arise, we briefly write E∞(X) instead of E∞(X;M). Moreover, we denote
the canonical quotient map from C∞(M) to E∞(X;M), sometimes called the jet map, by JX;M

or JX , if no confusion can ariese. Finally observe that if Φ : M → N is a smooth map between
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manifolds M and N which maps the closed subset X ⊂ M into a closed subset Y ⊂ N , then
there is a canonical pull-back map for Whitney functions

Φ∗ : E∞(Y ;N)→ E∞(X;M),

which maps the Whitney function F = JY ;N (f) represented by f ∈ C∞(N) to the Whitney
function JX;M

(
f ◦ Φ

)
. The reader will easily check that the pull-back is well-defined.

Recall further that by a Whitney–Poisson structure on X one understands a bilinear map
{−,−} on E∞(X) which satisfies for all F,G,H ∈ E∞(X) the following relations

(WP1) {F,G} = −{G,F},
(WP2) {F,GH} = {F,G}H +G{F,H}, and
(WP3) {{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0.

In other words, (WP1) tells that {−,−} is an antisymmetric bilinear form, (WP2) says that
{−,−} is a derivation in each of its arguments, and (WP3) is the Jacobi identity. Hence there
exists a smooth antisymmetric bivector field Λ : X → TM ⊗ TM such that

{F,G} = Λ y (dF ⊗ dG) for all F,G ∈ E∞(X).

Note that we have used here the fact that J∞(X,M)Ω•(M) is a graded ideal in Ω•(M) preserved
by the exterior derivative d which gives rise to the differential graded quotient algebra

Ω•E∞(X) := Ω•(M)/J∞(X;M)Ω•(M).

Its differential will be denoted again by d. We call Ω•E∞(X) the complex of Whitney–de Rham
forms on X. According to [BrPf], the cohomology of Ω•E∞(X) coincides with the singular
cohomology (with values in R), if M is an analytic manifold, and X ⊂M a subanalytic subset.
Now we have the means to define what one understands by a formal deformation quantization
of the algebra of Whitney functions.

Definition 1.1. Assume that X ⊂ M is a closed subset of the smooth manifold M , and
that E∞(X) carries a Whitney–Poisson structure. By a formal deformation quantization of
the algebra E∞(X) or in other words by a star product on E∞(X) one then understands an
associative product

? : E∞(X)[[~]]× E∞(X)[[~]]→ E∞(X)[[~]]

on the space E∞(X)[[~]] of formal power series in the variable ~ with coefficients in E∞(X) such
that the following is satisfied:

(DQ0) The product ? is R[[~]]-linear and ~-adically continuous in each argument.
(DQ1) There exist R-bilinear operators ck : E∞(X)× E∞(X) → E∞(X), k ∈ N such that c0 is

the standard commutative product on E∞(X) and such that for all F,G ∈ E∞(X) there
is an expansion of the product F ? G of the form

F ? G =
∑
k∈N

ck(F,G)~k. (1.1)

(DQ2) The constant function 1 ∈ E∞ satisfies 1 ? F = F ? 1 = F for all F ∈ E∞(X).
(DQ3) The star commutator [F,G]? := F ? G−G ? F of two Whitney functions F,G ∈ E∞(X)

satisfies the commutation relation

[F,G]? = −i~{F,G}+ o(~2).

If in addition the condition

(DQ4) supp(F ? G) ⊂ supp(F ) ∩ supp(G) for all F,G ∈ E∞(X),

is satisfied, then the star product is called local.
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Remark 1.2. If Π is a Poisson bivector on the smooth manifold M , then the ideal J∞(X;M)
is even a Poisson ideal in C∞(M). This implies that the Poisson bracket on C∞(M) factors to
the quotient E∞(X). We denote the inherited Poisson bracket on E∞(X) also by {−,−}, and
call it a global Whitney–Poisson structure.

Now let us describe a method for constructing a formal deformation quantization of the algebra
E∞(X) in case (M,Π) is a regular Poisson manifold and E∞(X) carries the corresponding global
Whitney–Poisson structure. This method generalizes the original construction by Fedosov [Fed]
to the Whitney function case, and has been explained in detail by the authors in [PPT12] for
the particular case where the Poisson bivector comes from a symplectic structure. Recall that
(M,Π) being a regular Poisson manifold means that the Poisson tensor field Π : M → TM⊗TM
has constant rank; see [Fed, Vai] for more details on regular Poisson manifolds. Moreover,
regularity of Π implies that M is foliated in a natural way by symplectic manifolds. Denote by
S the foliation of M by symplectic leaves which is induced by the regular Poisson tensor Π, and
by TS →M the subbundle of TM of all tangent vectors tangent to the symplectic leaves of the
foliation. The following result then holds true. For its original proof we refer to Fedosov [Fed];
here we present a proof which also covers the later needed case of a regular Poisson manifold
with a compatible G-action.

Proposition 1.3 (cf. [Fed, Sec. 5.7]). For every regular Poisson manifold (M,Π), there exists
a Poisson connection which means a connection

∇ : Γ∞(TS)→ Γ∞(TS ⊗ T ∗S)

which leaves the Poisson bivector Π invariant in the sense that

∇Π = 0.

Moreover, if a compact Lie group G acts on M by Poisson maps, the Poisson connection ∇ can
be chosen to be invariant.

Proof. Choose a riemannian metric η on M which is required to be G-invariant, if M carries a
G-action compatible with the Poisson structure. Denote by

∇LC : Γ∞(TS)× Γ∞(TS)→ Γ∞(TS)

the leafwise Levi–Civita connection of the riemannian metric restricted to S. Moreover, let
ω : TS ⊗ TS → R be the leafwise symplectic structure induced by the Poisson bivector. Now
we define a tensor field ∆′ ∈ Γ∞(T ∗S ⊗ T ∗S ⊗ T ∗S) by

∆′(X,Y, Z) = ∇LC
Z ω(X,Y )−∇LC

Y ω(X,Z) for all X,Y, Z ∈ Γ∞(TS).

We then let ∆ ∈ Γ∞(T ∗S ⊗ T ∗S ⊗ TS) be the tensor field such that

ω
(
X,∆(Y,Z)

)
= ∆′(X,Y, Z) for all X,Y, Z ∈ Γ∞(TS).

By construction it is clear that ∆′ and ∆ are both G-invariant, if Π and η (and hence ω) are.
Now we put

∇XY := ∇LC
X Y + ∆(X,Y ) for X,Y ∈ Γ∞(TS).

One readily checks that ∇ is a Poisson connection, and G-invariant, if Π and η are. �

Next, we consider the Weyl algebra bundle WSM →M over M along the symplectic foliation
S. Its typical fiber over p ∈M is given by

WS,pM := W(TpS) := Ŝym(T ∗p S)[[~]],
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the space of formal power series in ~ with coefficients in the space of Taylor expansions at the

origin of smooth functions on the fiber Sp of S over p. In other words, Ŝym(T ∗p S) coincides with
the m-adic completion of the space Sym(T ∗p S) of polynomial functions on TpS, where m denotes
the maximal ideal in Sym(T ∗p S). Hence, every element a of W(TpS) can be uniquely expressed
in the form

a =
∑

s∈N, k∈N
as,k~k, (1.2)

where each as,k is an element of Syms(T ∗p S), which can be naturally identified with the space
of s-homogeneous polynomial functions on TpS. A section a ∈ WS(M) := Γ∞(WSM) can
be uniquely written in the form (1.2), where the as,k with s, k ∈ N now are smooth sections
of the symmetric powers Syms(T ∗S). This representation allows us to define the symbol map
σ :WS → C∞(M)[[~]] by

σ(a) =
∑
k∈N

a0,k~k for a ∈ W. (1.3)

The space W(TpS) is filtered by the Fedosov-degree

degF(a) := min{s+ 2k | as,k 6= 0}, a ∈W(TpS).

The Fedosov-degree induces a filtration of the space of sections WS(M) of the Weyl algebra
bundle along S by putting

FkWS(M) := {a ∈ W(M) | degF(a(p)) ≥ k for all p ∈M}.
Now consider Ω•WS , the sheaf of leafwise smooth differential forms with values in the bundle
WSM , or in other words the sheaf of smooth sections of the (profinite dimensional) vector bundle
WSM ⊗ Λ•T ∗S. Like WS(M), the space Ω•WS(M) is also filtered by the Fedosov-degree.

Next, we define a non-commutative algebra structure onWS(M) and Ω•WS(M). To this end
observe first that the Poisson bivector Π(p) on TpM is linear and can be written in the form

Π(p) =

dimSp
2∑
i=1

Πi1(p)⊗Πi2(p), (1.4)

where Πi1(p),Πi2(p) ∈ TpS for i = 1, · · · , rk(Π). Since each of the tangent vectors Πi1(p),Πi2(p)
acts as a derivation on Sym(T ∗p S), this gives rise to the operator

Π̂(p) : Sym(T ∗p S)⊗ Sym(T ∗p S)→ Sym(T ∗p S)⊗ Sym(T ∗p S),

a⊗ b 7→

rk(Π)
2∑
i=1

Πi1(p) · a⊗Πi2(p) · b.
(1.5)

Th operator Π̂(p) does not depend on the particular representation (1.4). Note that by C[[~]]-

linearity and m-adic continuity, Π̂ uniquely extends to an operator

Π̂(p) : Ŝym(T ∗p S)[[~]]⊗ Ŝym(T ∗p S)[[~]]→ Ŝym(T ∗p S)[[~]]⊗ Ŝym(T ∗p S)[[~]].

The so-called Moyal–Weyl product (see [BFFLS]) of two elements a, b ∈W(Sp) is given by

a ◦p b :=
∑ (−i~)k

k!
µ
(
Π̂(p)(a⊗ b)

)
. (1.6)

One checks easily that ◦p is a star product on W(Sp). Moreover, this fiberwise star product
extends naturally to a noncommutative product ? on WS(M), called the Moyal–Weyl product
on the Weyl algebra bundle. For a, b ∈ WS(M) it is given by

a ◦ b(p) := a(p) ◦p b(p) for p ∈M. (1.7)
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Note that the Moyal–Weyl product on WS(M) satisfies by construction

[a, b]◦ := a ◦ b− b ◦ a = −i~{a, b}+ o(~2) . (1.8)

This indicates that WS(M) is already a kind of “formal deformation quantization”, but just too
big. It was Fedosov’s fundamental idea to construct an appropriate flat connection D onWS(M)
such that the subalgebra of flat sections, i.e., of sections a such that Da = 0, is isomorphically
mapped by the symbol map onto C∞(M)[[~]] and thus induces a star product on C∞(M)[[~]].
Let us explain Fedosov’s construction of D.

We chooses a Poisson connection ∇ according to Prop. 1.3, which canonically lifts to a con-
nection

∇ : Ω•WS(M)→ Ω•+1WS(M).

Fedosov [Fed, Sec. 5.2] proved that there exists a section A ∈ Ω1WS(M) such that the connec-
tion

D := ∇+
i

~
[A,−]◦ (1.9)

is abelian, i.e., satisfies D ◦D = 0. Such an abelian connection D defined by a 1-form A will be
called a Fedosov connection.

We briefly explain the uniqueness of the star product. Let {x1, · · · , xrk(Π)} be leafwise coor-
dinates along S, and {y1, · · · , yrk(Π)} be the dual elements in T ∗S. Define

δ : Ω•WS(M)→ Ω•+1WS(M) and δ∗ : Ω•WS(M)→ Ω•−1WS(M)

by

δa =

rk(Π)∑
k=1

dxk ∧ ∂a

∂yk
, δ∗a =

rk(Π)∑
k=1

yk ι ∂

∂xk
a.

Given an abelian connection D of the form (1.9), direct computation shows that there is a
canonical element ΩD ∈ WS(M), called the curvature of D, associated to the Poisson connection
∇ (cf. Prop. 1.3) and A such that

D2 =
i

~
[ΩD,−]◦.

Let Ω•S(M,R[[~]]) be the space of leafwise differential forms along S with coefficients in R[[~]].
As D2 = 0, ΩD is in the center of WS(M), and therefore an element in Ω2

S(M,R[[~]]) closed
under the de Rham differential. Fedosov [Fed, Thm. 5.2.2] proved that under the requirements

(1) degF(A) ≥ 2,
(2) δ∗A = 0,

there is a unique Fedosov connection D associated to a given Poisson connection ∇ which has
the given curvature form Ω. In what follows, we will always assume to work with Fedosov
connections with the above assumptions.

Let us fix a Fedosov connection D and consider the space

WD(M) := {a ∈ WS(M) | Da = 0}

of flat sections of the Weyl algebra bundle. WD(M) is a subalgebra of W|SM , as D is a
derivation. Fedosov [Fed] observed that the restriction of the symbol map (1.3)

σ|WD(M) :WD(M)→ C∞(M)[[~]]

is a linear isomorphism. Let

q : C∞(M)[[~]]→WD(M)
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be its inverse, the so-called quantization map. Then there exist uniquely determined differential
operators qk : C∞(M)→ C∞(M) such that

q(f) =
∑
k∈N

qk(f)~k for all f ∈ C∞(M), (1.10)

and
? : C∞(M)[[~]]× C∞(M)[[~]], (f, g) 7→ σ

(
q(f) ◦ q(g)

)
is a star product on C∞(M).

Now observe that the Fedosov connection D leaves the module J∞(X;M) · Ω•(M ;WSM)
invariant. This implies that D factors to the quotient

Ω•E∞(X;WSM) := Ω•(M ;WSM)/J∞(X;M) · Ω•(M ;WSM),

and acts on E∞(X;WSM) :=WS(M)/J∞(X;M) ·WS(M). Moreover, the symbol map σ maps
J∞(X;M)·W(M) to J∞(X;M)[[~]], and q

(
J∞(X;M)[[~]]

)
is contained in J∞(X;M)·W(M),

since in the expansion (1.10) the operators qk are all differential operators. Hence σ and q factor
to E∞(X;WM) respectively E∞(X)[[~]]. This entails the following result, which generalizes
[PPT12, Thm. 1.5] to the regular Poisson case.

Theorem 1.4. Let (M,Π) be a regular Poisson manifold, and ∇ a Poisson connection. Let
D = ∇ + A be the corresponding Fedosov connection on Ω•WS , and X ⊂ M a closed subset.
Then the space of flat sections

WD(X) := {a ∈ E∞(X;WSM) | Da = 0}
is a subalgebra of E∞(X;WSM), and the symbol map induces an isomorphism of linear spaces
σX : WD(X) → E∞(X)[[~]]. Moreover, the unique product ?X on E∞(X)[[~]] with respect to
which σX becomes an isomorphism of algebras is a formal deformation quantization of E∞(X).

By the uniqueness property of the Fedosov connection with respect to the curvature form ΩD,
we have the following functoriality property of the star products constructed in Thm. 1.4.

Proposition 1.5. The Fedosov quantization of Whitney functions on closed subspaces of regular
Poisson manifolds is functorial in the following sense. Let Φ : (N,Λ) → (M,Π) be a Poisson
map between regular Poisson manifolds which maps the closed subset Y ⊂ N to the closed
subset X ⊂ M . Assume that the restriction of Φ to each symplectic leaf of Λ is a (local)
diffeomorphism, and further that ∇N and ∇M are Poisson connections on N respectively M
such that ∇N = Φ∗

(
∇M

)
. Denote by S the symplectic foliation on M , by R the symplectic

foliation on N . Let DN resp. DM be the corresponding Fedosov connection with the curvature
form ΩDN resp. ΩDM and the induced star product ?Y resp. ?X . Assume that ΩDN = Φ∗

(
ΩDM

)
.

Then the pullback Φ∗ : WS(M)→WR(N) is an algebra morphism

Φ∗ :
(
E∞(X;M), ?X

)
→
(
E∞(Y ;N), ?Y

)
which is functorial and contravariant in Φ with the above mentioned properties.

Proof. Since Φ restricts to a (local) symplectic diffeomorphism between symplectic leaves, it is
straightforward to check that the pullback map Φ∗ : T ∗M → T ∗N lifts to a morphism of the
corresponding Weyl algebra bundles,

Φ∗ : WS(M)→WR(N).

As Φ is assumed to be compatible with the Poisson connections, i.e., ∇N = Φ∗
(
∇M

)
, and

also with the curvature forms, i.e., ΩDN = Φ∗
(
ΩDM

)
, the uniqueness property of the Fedosov

connection with respect to the curvature form and Poisson connection implies that

DN ◦ Φ∗ = Φ∗ ◦DM .
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Hence, Φ∗ restricts to an algebra morphism

Φ∗ :WDM (M)→WDN (N),

and therefore a morphism

Φ∗ :
(
E∞(X;M), ?X

)
→
(
E∞(Y ;N), ?Y

)
.

�

2. Whitney functions on an orbit space and their quantization

Assume that G is a compact Lie group acting freely on the smooth manifold M , and denote
by π : M → N the canonical projection onto the orbit space N := M/G which under our
assumption is a smooth manifold as well. Let X ⊂ M be a closed G-invariant subset, and
Y := X/G. Then Y is a closed subset of N . Under these assumptions, the following result holds
true.

Proposition 2.1. The canonical projection induces a natural identification

π∗ : E∞(Y ;N) ∼= E∞(X;M)G.

Here, E∞(X;M)G denotes the set of Whitney functions represented by G-invariant smooth func-

tions, i.e., the image of the space
(
C∞(M)

)G
of G-invariant smooth functions on M under the

jet map JX;M .

Proof. Observe first that the image of π∗ lies in E∞(X;M)G indeed by definition of the pull-back
of Whitney functions and since f ◦π is G-invariant for every f ∈ C∞(N). Since π is a surjective,

the pull-back C∞(N)→
(
C∞(M)

)G
, f 7→ f ◦π is injective. Hence π∗ : E∞(Y ;N)→ E∞(X;M)G

is injective as well, if we can yet show that f ◦ π ∈ J∞(X,M) for f ∈ J∞(Y,N). But this
follows from the multidimensional Faà di Bruno formula, cf. [Mic, Thm. 3.6]. More precisely,
this formula says that for x ∈ X, a coordinate system (x1, . . . , xn) around x, a coordinate system
(y1, . . . , xm) around π(x), and a multiindex γ ∈ Nn the following equality holds true:

∂γ(f ◦ π) =
∑

λ=(λi,α)∈Nm×Nn\{0}∑
λi,αα=γ

γ!

λ!

∏
α∈Nn
|α|>0

(
1

α!

)∑
i λi,α (

∂
∑
α(λ1,α,...,λm,α)f

)
◦ π

∏
i,α

(∂απi)
λi,α ,

where πi denotes the i-th component function of π (in a neighborhood x) with respect to the
coordinate system y around π(x). This implies that if all ∂

∑
α(λ1,α,...,λm,α)f vanish on Y then

∂γ(f ◦ π) vanishes on X. Hence f ∈ J∞(Y,N) implies f ◦ π ∈ J∞(X,M), and π∗ is injec-
tive. Surjectivity of π∗ follows from the Theorem by Schwarz–Mather [Schwa, Mat] which in
particularly says that the map

C∞(N)→
(
C∞(M)

)G
, f 7→ f ◦ π

is split-surjective. �

Remark 2.2. This result has been proven in the general case without the restriction of the
G-action to be free in [HerPfl].

Next we choose a G-invariant Poisson connection ∇ on M according to Thm. 1.3. Let us also
fix the G-invariant curvature form Ω = −ω, where ω denotes the fiberwise symplectic form on
TS. Then, by the preceeding section, there exists a uniquely determined Fedosov connection D
having the given curvature form Ω. By construction, the connection D is G-invariant as well. Let
? denote the corresponding star product on C∞(M)[[~]]. By invariance of D, the star product
? is invariant as well, which means that for two G-invariant functions f, g ∈ C∞(M)G their star
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product f ?g is also G-invariant. This observation together with the previous proposition entails
the first two claims of the following result.

Theorem 2.3. The Fedosov star product ? associated to a G-invariant Poisson connection ∇
on M (and to the G-invariant curvature form Ω = −ω) is G-invariant, hence((

E∞(X)[[~]]
)G
, ?
)

(2.1)

is a subalgebra of
(
E∞(X)[[~]], ?

)
. Moreover, under the isomorphism

π∗ : E∞(Y ;N) ∼= E∞(X;M)G

one obtains a star product algebra (
E∞(Y )[[~]], ?

)
,

where F ?G for F,G ∈ E∞(Y ) is defined by (π∗)−1
(
π∗(F )?π∗(G)

)
. Finally, if (N,λ) is a regular

Poisson manifold, then
(
E∞(Y )[[~]], ?

)
is isomorphic to the Fedosov deformation quantization

(E∞(Y )[[~]], ?∇N ) corresponding to a Poisson connection ∇N on N and to the curvature form
−ωR, where ωR denotes the leafwise symplectic form on the symplectic foliation R of N .

Remark 2.4. The last statement of the theorem is a “quantization commutes with reduction”
result for quantized Whitney functions.

Note that in general, the Poisson manifold N needs not be regular, hence the above theorem
provides a quantization method for Whitney functions on subsets of not necessarily regular
Poisson manifolds which can be written as the quotient of a regular Poisson manifold by a
compact Lie group action.

Before proving the theorem, let us state some results needed in the proof.

Proposition 2.5. Let (V, ω) be a presymplectic vector space and W ⊂ V a linear subspace.
Then the following equality holds true:

dimW + dimWω = dimV + dim(W ∩ V ω).

Furthermore, if ω is non-degenerate and W is symplectic, then Wω is symplectic as well.

Proof. This is a straightforward argument in linear symplectic geometry. �

Lemma 2.6. Any element g ∈ G maps symplectic leaves of M to symplectic leaves.

Proof. Let L ⊂ M be a symplectic leaf with symplectic form ω. Consider the connected sub-
manifold gL ⊂ M , and two points x, y ∈ gL. Since Π is g-invariant, the restriction Π|gL is a
Poisson bivector on gL of maximal rank, and its corresponding symplectic form coincides with
g∗ω. It remains to show that x and y can be connected by a piecewise smooth curve whose
smooth parts are integral curves of Hamiltonian vector fields. But this is clear, since g−1x and
g−1y are both elements of the symplectic leaf S, hence can be connected within L by a piecewise
smooth curve γ whose smooth parts are integral curves of Hamiltonian vector fields. The curve
gγ then connects x and y and has the desired properties by G-invariance of Π. �

Proposition 2.7. For every symplectic leaf L ⊂M there exists a closed subgroup HL ⊂ G called
the isotropy group of L which leaves L invariant and which has the property that for each point
x ∈ L the fiber π−1

(
π(x)

)
coincides with the orbit HLx. In other words, one has the natural

isomorphism π(L) ∼= L/H.
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Proof. By the preceeding lemma, the group G acts on the space Z of symplectic leaves of M .
Let HL be the isotropy group of the point L ∈ Z. Clearly, HL then is a closed subgroup of G
and has the desired properties. �

Proof of Thm. 2.3. It only remains to prove the last claim which says that the star product
algebras

(
E∞(Y )[[~]], ?∇N

)
and

(
E∞(Y )[[~]], ?

)
are isomorphic when N is regular Poisson. For

this we use the well-known result [Del, Fed, Neu, BuDoWa] that on the regular Poisson
manifold N , two deformation quantizations ? and ?′ are isomorphic if and only if they have the
same characteristic class in the formal cohomology ω/~ + H2

S(N,C[[~]]), where S denotes the
symplectic foliation. Precisely, this means that there exists a formal power seriesG = 1+~D1+. . .
of differential operators tangent to the leaves of S such that

G−1 (G(f1) ? G(f2)) = f1 ?
′ f2.

Obviously, G preserves the ideal J∞(Y ;N)[[~]], so it induces an isomorphism between (E∞(Y ), ?)
and (E∞(Y ), ?′). Therefore, the claim follows from the fact that both

(
E∞(Y )[[~]], ?∇N

)
and(

E∞(Y )[[~]], ?
)

have the same characteristic class, namely ωR/~.

So finally it remains to prove that the characteristic class of ? is ωR/~, indeed (for every
initially chosen G-invariant Poisson connection ∇M and every Poisson connection ∇N ). To
this end, it suffices to prove this claim for a particular choice of ∇M and ∇N . Fix a Poisson
connection ∇M . We first want to construct a “compatible” Poisson connection ∇N .

Since M is foliated into symplectic leaves and the connections act leafwise, it suffices to prove
the claim for each leaf separately. Due to Prop. 2.7 we can therefore assume without loss of
generality, that M is symplectic, and G acts by symplectomorphisms on M . To prove the claim,
we will decompose the tangent bundle TM in appropriate G-invariant subbundles which then
will allow a unique lift of vector fields on N tangent to the symplectic foliation R of N to
invariant vector fields on M having values in a certain subbundle.

To this end let G′ be the standard polar pseudogroup associated to G as defined in [OrtRat,
Sec. 5.5.1]. In other words, G′ is the pseudogroup of local diffeomorphisms of M generated by

the flows of Hamiltonian vector fields of the form Xf := Πydf : U → TM , where f ∈
(
C∞(U)

)G
and U is a G-invariant open subset of M . According to [OrtRat, Sec. 5.5.1 & Thm. 11.4.4], the
actions by G and G′ commute, and the symplectic leaves of M/G are given by the (piecewise)
orbits of the inducedG′-action onM/G. Let E be the vector bundle generated by such (invariant)
Hamiltonian vector fields Xf . Then E together with the restriction of the symplectic form ω to
E is a pre-symplectic bundle over M . By construction, the bundle E is mapped under Tπ onto
the tangent bundle TR of the symplectic foliation of N . Moreover,

E ⊂ TOω, (2.2)

since one has for every w ∈ Ep, p ∈ M and every fundamental Xξ of an element ξ ∈ g the
relation

ω
(
w,Xξ(p)

)
= ω

(
Xf (p), Xξ(p)

)
= (Xξf)(p) = 0,

where the G-invariant smooth function f on M has been chosen such that w = Xf (p). Now
choose a G-invariant riemannian metric η on M , and let W be the orthogonal complement of
TO∩E in E, whereO denotes the foliation ofM by theG-orbits. By the regularity assumption on
the induced Poisson structure on N it is clear that W is a vector bundle indeed. By construction,
W is a G-invariant subbundle of E complementary to E ∩TO. Since TO is the kernel bundle of
the tangent map of the projection, Tπ, it follows that Tπ maps W onto the tangent bundle TR
of the symplectic foliation in such a way that fiberwise, Tπ|W : W → TR is a linear symplectic
isomorphism. This observation allows us to construct for every vector field X on N which is
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tangent to R a unique lift X∗ : M →W such that

TπX∗(p) = X(π(p)) for all p ∈M.

Now we can define a connection ∇N on TR by putting, for any two vector fields X,Y on N
tangent to the symplectic foliation R,

∇NXY := Tπ∇MX∗Y ∗ .
Clearly, ∇N is torsion-free, so we only need to check that ∇N is a Poisson connection. For X,Y
as before let AX,Y : M → TM be the vector field

AX,Y :=
(
Tπ∇MX∗Y ∗

)∗ −∇MX∗Y ∗ .
By construction, AX,Y (p) ∈ TpO for all p ∈ M . This gives for the leafwise symplectic form ωR

on TR and smooth vector fields X,Y, Z on N tangent to R:

Z
(
ωR(X,Y )

)
(π(p))

=Z∗
(
ω(X∗, Y ∗)

)
(p) = ω

(
∇MZ∗X∗, Y ∗

)
(p) + ω

(
X∗,∇MZ∗Y ∗

)
(p) =

=ω
(
(∇NZX)∗, Y ∗

)
(p) + ω

(
X∗, (∇NZ∗Y )∗

)
(p)+

+ ω
(
AZ,X , Y

∗)(p) + ω
(
X∗, AZ,Y

)
(p) =

=ωR
(
∇NZX,Y

)
(π(p)) + ωR

(
X,∇NZ∗Y

)
(π(p)),

where the last equality follows from the fact that the vector fields AZ,X and AZ,Y are tangent to
the orbit direction, and that the lifted vector fields Y ∗ and X∗ lie in the symplectic orthogonal
complement of the orbit direction by Eq. 2.2. Hence, ∇N is a Poisson connection.

Finally, observe that the leafwise symplectic form ωR on N and the symplectic form ω on M
are related by

ω(X∗, Y ∗)(p) = ωR(X,Y )(π(p)),

which implies that the induced Fedosov connections on N and M are related in an analogous
fashion. This implies in particular that the characteristic classes of the star products ? and ?∇N
coincide in both cases with ωR/~. The proof is finished. �

Remark 2.8. The proof of the theorem shows even more, namely that for the Poisson connection
∇N constructed in the proof, the star products ?∇N and ? on (E∞(Y )[[~]] even coincide.

Example 2.9. Let (M,ω,G, J) be a Hamiltonian system with free G-action, and consider the
stratification of g∗ with the coadjoint action by orbit types. Let S◦ ⊂ g∗ be the open dense
stratum, and put U := J−1(S◦). Then the quotient V := U/G is a regular Poisson manifold,
and the above “quantization commutes with reduction” result applies to any G-invariant closed
X ⊂ U .

3. outlook

The results from the previous section indicate that methods of real algebraic geometry and
singularity theory might be helpful in solving problems in Poisson geometry. In the following
list we describe some of the problems, where we expect that combining methods from singularity
theory with Poisson geometry could eventually lead to the solution of the outstanding questions.

• Even though one can construct deformation quantizations of Whitney functions over
singular sets as explained above, a full (deformation) quantization theory of algebras of
smooth functions over singular symplectic spaces is still lacking. Partial results exist,
though, as the papers [BoHePf, HeIyPf] show, where deformation quantizations of a
particular class of singular symplectically reduced spaces are constructed by homological
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perturbation theory. More precisely, the algebra of smooth functions on the zero level set
of a G-hamiltonian system is resolved there by a Koszul complex defined by the moment
map (again, under certain assumptions on the G-Hamiltonian system). The symmetry
group G acts in a natural way on the Koszul complex which allows to represent the alge-
bra of smooth functions on the symplectically reduced space as the cohomology group in
degree 0 of the so-called (classical) BRST complex. Appropriately deforming the BRST
complex eventually then gives rise to a deformation quantization on the symplectically
reduced space. Generalizing this idea, one expects that the Koszul resolution appearing
in this construction needs to be replaced by a Koszul–Tate resolution having infinite
length. Sophisticated methods from commutative algebra and singularity theory then
might eventually lead to the construction of star products on any symplectically reduced
space.

• There are certain no go theorems on the existence of embeddings of a given symplectic
(or Poisson) stratified space into a Poisson manifold, see [Egi, Dav]. It appears that
methods from commutative algebra and singularity theory could share more light on this
phenomenon and possibly will lead to a more precise characterization of the obstructions
to such embeddings.

• Hochschild and cyclic homology theory of function algebras over singular spaces pro-
vide useful information on the existence of deformations of these algebras, and are
the essential ingrediants in the study of the underlying singular spaces by methods
of noncommutative geometry invented by A. Connes [Con]. Again, a synthesis of
methods from singularity theory with those from differential geometry, and possibly
even noncommutative geometry has already led to interesting results, see for example
[NePfPoTa, PPT10, PPT12, PPT13], and might lead to further new observations in
either of these areas. Work on this is in progress, see [HerPfl].
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