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Abstract 
Nano- and microscale flow phenomena turn out to be highly non-trivial for simulation and require the 
use of heterogeneous modeling approaches. While the continuum Navier-Stokes equations and related 
boundary conditions quickly break down at those scales, various direct simulation methods and hybrid 
models have been applied, such as Molecular Dynamics and Dissipative Particle Dynamics. 
Nonetheless, a continuum model for nanoscale flow is still an unsolved problem. We present a model 
taking into account nonlocal momentum transfer. Instead of a bulk viscosity an improved system of 
parameters of liquid properties, represented by a spatial scalar function for momentum transfer rate 
between neighboring volumes, is used. Our model does not require boundary conditions on the 
channel walls. Common nanoflow models relying on a bulk viscosity in combination with a slip 
boundary condition can be obtained from the model. The required model parameters can be calculated 
from momentum density fluctuations obtained by Molecular Dynamics simulations. Thus, our model 
is multiscale, however, the continuum model is applied in the whole region of the simulation. We 
demonstrate good agreed with nanoflow in a tube as obtained by complete Molecular Dynamics.  
 
Keywords: Multiscale simulation, fluid dynamics, transfer processes, Green–Kubo relations, molecular dynamics, 
nanoscale flow 

1 Introduction 
Methods such as Molecular Dynamics (MD), Dissipative Particle Dynamics (DPD), and Direct 

simulation of Monte Carlo (DSMC) have played an important role in the field of nanomechanics. 
Their most considerable advantage is their applicability for study of materials and systems where the 
relation between macroscopic properties and atomistic processes is difficult to understand. The present 
paper specifically focuses on micro- and nano-scale fluid dynamics, which is a classic case of such 
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systems. Navier-Stokes Equation (NSE) with Green-Kubo relations for viscosity provide an example 
of a model of relations for atomistic processes and macroscopic mechanical properties of the bulk 
liquid. Unfortunately, in a nanoflow, the continuum NSE and related boundary conditions break down, 
as was demonstrated in experimental studies (Li, et al., 2007) and by MD simulation  (Joseph, et al., 
2008). MD reproduces fluid behavior at atomistic scales and so is the most accurate model of any 
mechanical properties of a liquid. Since in principal a flow problem could be entirely described by 
MD, it is commonly used for validation of approximate models of nanoflows with examples of small 
systems and simulating over short time-scales, such as water permeation through a carbon nanotube. 
At the same time applied nano- and micro-engineering problems become computationally intractable 
for MD. To develop methods that resolve the nanoscale flow phenomena accurately and efficiently 
some attempts to modify NSE and related boundary conditions were undertaken  (Hansen, et al., 
2011),  (Reese, et al., 2007). The most well-known method is the introduction of a slip boundary 
condition with corresponding coefficient of slip length. A priori estimation of the slip length is the 
main complication of this approach  (To, et al., 2013). Generally a dependence of slip length on the 
Knudsen number is assumed  (Shokouhmand., et al., 2010),  (Reese, et al., 2007). Other semi-
empirical parameters such as the tangential momentum accommodation coefficient were considered  
(Prabha, et al., 2012). However, all Knudsen-based approaches are physical well resolved only for the 
case of a gas flow. For a liquid the slip length and corresponding quantities are usually applied only 
for comparative description of flows or as empirical parameters estimated by experimental or MD 
simulation studies. 

More radical attempts to construct continuum nanoflow model were also undertaken. They include 
modifications of NSE with by account of rotational degrees of freedom of molecules  (Hansen, et al., 
2011), quantum effects (Popov, 2011) and even structural features of water  (Chivilikhin, et al., 2008). 
However, we are not aware of real applications of these methods. 

We observe a decline of interest in continuum nanoflow models in favor of multiscale simulation 
methods, containing coupled atomistic (MD) and continuum models (Asproulis, et al., 2012). We 
however present a novel continuum nanoscale model of a liquid with a multiscale bridging method. 
The structure of our multiscale approach is noticeable different from the usual atomistic-continuum 
coupling. We will introduce our model, discuss the main distinctions with standard methods, and 
discuss where and how our model could be more effective.  

The most common approach to hybrid methods for dense fluids is domain-decomposition (DD). As 
the name implies, the computational domain is divided into macro and micro parts with some overlap. 
Micro parts are usually a boundary region or other heterogeneous regions in the fluid. They are 
considered small relative to bulk domains. Such combination saves computational resources in 
comparison with full MD models and the question about a correct continuum nanoscale model is less 
complicated. Because of this the emphasis of multiscale nanoflow simulation studies is on a detailed 
consideration of multiscale bridging algorithms (Fedosov, et al., 2009). Unfortunately, DD still 
contains a considerable computational inefficiency. For the simplest continuum model, such as the 
usually applied NSE, the size of the microscopic domains is too big and the computational efforts for 
the MD part quickly become quite expensive. This may seem like a reasonable trade-off between 
accuracy of a full continuum model and computational cost of a hybrid model. Yet some models 
containing more complex (so-called mesoscopic) models, like Dissipative Particle Dynamics (DPD) 
and Lattice-Boltzman Methods (LBM), were developed (Fedosov, et al., 2009),  (Dupuis, et al., 2007). 
However, the systems of parameters for both models were chosen as for a viscous liquid. The values 
of the parameters were not calculated with a multiscale simulation. They were in fact chosen as 
constants corresponding to a viscosity of the studied liquid. To conclude, we do not see why the 
mesoscopic solutions should be considerable different relative to NSE solutions. 

More flexible multiscale techniques are the Heterogeneous Multiscale Method (HMM). In this 
type of multiscaling the domain is entirely described by the macro model, with small isolated micro 
models spatially distributed in the domain (E, et al., 2007). Like DD methods, micro resolution is 
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required in regions close to bounding surfaces and constrained from the continuum strain-rate field, 
and in turn provide an accurate local velocity slip and stress at the wall. In other words microscale 
regions provide information about liquid properties through the system of prameters, which are 
present in the governing equations of the continuum model and indirectly influence the solution. This 
may be for instance an additional non-viscous tensor of shear stresses and a slip rate as in (Borg, et al., 
2013) or a pressure correction in (Borg, et al., 2013). One way or another, HMM in nanoflows 
supposes a modification of the continuum NSE model. So, the quality of the final hybrid model 
depends on such modification, which, however, usually is proposed by in phenomenological way 
without fundmental explanation. It should be noted, that the issue of NSE correction and multiscale 
bridging is related since for the new set of parameters the corresponding calculation method has to be 
proposed too. While for classical viscous or elastic models of media ways to compute parameters 
(such as viscosity, Young’s modulus, and so on) are known, this may be less clear for applications of 
new and more complex models  (Hansen, et al., 2011). We have seen that some powerful simulation 
methods such as DPD and LBM cannot be easily used in a multiscale approach due to this reason. For 
example, an interacted process of momentum transfer can be described by LBM, that is demonstrated 
in (Lorenz, et al., 2011). The proposed multiscale model gives a good approximation of non-
Newtonian behavior of suspension due to account of dependences of viscosity on volume fraction and 
share-rate (i.e. nonlinear behavior) however, the standard viscous collision operator was used, which 
describes only local, isotropic and instant response. We will show below that such artificial restriction 
may lead to considerable inaccuracy, which is unavoidable by account of nonlinearity or by space-
dependent viscosity. Even in the case of simulation of nanoscale liquid properties, where deviations 
from the momentum transfer from classical approaches is considerable, the standard viscous collision 
term is used too (Mackay, et al., 2013). We are not aware of studies where more complex 
parameterization of the collision term were used. 

The purpose of this study is construction of a hybrid nanoscale liquid model “from bottom to top”. 
To do so, a continuum model of momentum transport has to be derived systematically from 
microscopic relations that simultaneously gives estimations for the limits of applicability of our 
continuum model and clear calculation method for the system of parameters of it. 

Note, that in the field of multiscale nanocomposite simulation similar HMM approaches are used 
and close problems with ways of calculating continuum model parameters exist (Yang, et al., 2013). 
Therefore, we believe that our multiscale coupling method may be useful in a more general sense. 

2 Continuum model of nanoflow 
Many researchers believe NSE is exact, but it contains some hidden assumptions, which are 

incompatible with conditions of nanoflow.  

2.1 Broken NSE and a condition of translational invariance 
Consider a scalar conserved quantity a=a(r), such as a concentration. Vector r is a real-space 

position in the region of interest. We also introduce the flux of a, denoted by ja=ja(r). They are related 
by the exact  microscopic equation: 

)(ˆ
d

)(ˆd rjr
t

a ,  (2.1) 

where the hat denotes microscopic values (i.e. obtained by MD simulation, for example). We also can 
write something for average of ja and a. As diffusive transport is driven by the gradient of a quantity, 
the expression 

aj  (2.2) 
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is often used. With (2.1) it gives a common diffusion equation with  as diffusion coefficient. In 
particular, it describes the viscous momentum transfer in NSE for an uncompressible liquid. However, 
(2.2) isn’t exact and the general case may be more complex: 

0

'd),'(),',(),(
V

dtaGt rrrrrj  (2.3) 

The core function G is characterized by a correlation length rc and memory time c,– the distance 
'rr and delay t-  where G vanishes. We will consider zero memory time assumption in the 

following that eliminates the time integration. The simplest way to deal with the space integration is to 
assume rc 0, or a  changes little in this neighborhood. We can expect that in the case of nanoflows 
this approach is incorrect. Eq. (2.2) however remains a good approximation if the space symmetry of 
G holds true, so if ),'()',( rrrr GG . Indeed, in this case (2.3) and (2.1) results in (in zero memory 
time assumption): 

VVV

SGaGaGS 'd)'()',('d)'()',('d)'()',()( 1 rrrrrrrrrrrrr  (2.4) 

where source: )'()'( rr aS . We have used a space-locality approach for the last equality, and we 
wonder how accurate this equality is? If G is translation invariant the last equality in (2.4) has a 
second order of accuracy on rc because: 

V
oSSGS 'd)|'(|)')((')()('()( 21 rrrrrrrrrr  (2.5) 

is a second-order approximation if the translation invariant G is even. In this case the integral with an 
odd first-order term gives zero. So, in the case of translational invariance of the core function G the 
last equality in (2.4) has a second order of accuracy on rc. Therefore, the impact of geometry as 
expressed in G is more relevant compared to variations of a(r). This is not surprising, but interesting 
because this feature is implicitly used in domain decomposition multiscale approaches. We can see 
why the structure of the microscopic and macroscopic domains in hybrid models depends only on 
geometry of the channel and we do not have to adjust them dynamically with the evolution of the 
solution a(r). The consequences for boundary conditions are also implied as will be shown in detail 
below. 

2.2 Continuum nanoscale model for a fluid 
According to the theory of linear response to a disturbance F, the time of evolution of the quantity 

of interest A(r,t) is given by: 

'dd),'(),'(ˆ),(ˆ1ˆ),(
0

0
rrrrr

V

tFtBtA
kT

AtA , (2.6) 

where 
0

Â  gives undisturbed value of A, B is defined by ),(),(ˆ),(ˆ trFtrBtrh . Here h is an 

energy density at point r and time t. The correlation term is the so called response function BA (the 
dot above B denote time derivative just as in (2.3) ). The hat above a symbol denotes its microscopic 
analogue. For the general viscoplastic problem momentum flow j =v p + P+  (  is a stress 
tensor, P is the pressure, and p , v  are the -component of momentum and velocity respectively). 
Greek indices enumerate Cartesian coordinates {x,y,z}. The disturbance of the full energy density due 
to third term is uxh /   (summation over dummy indices is assumed). So, from (2.6) 
follows:  

'dd),'(),'(),(1),(
0

rrrrr
V

tut
x

t
kT

t  (2.7) 
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Note that the response function (the correlation term) is considered as function of  only (not of t) 
since property of medium usually is constant or slow variable. By space integration by parts, we can 
carry out the space derivative from the response function, wherein the nonitegral term becomes zero. 
Next, by temporal integration by parts we obtain: 

'dd),'(
'

),',('d)'(
'

)',(),(
0

rrrrrrrrr
VV

tv
r

Gu
r

Kt  (2.8) 

where by K  and G  we have denoted the instantaneous part of the response function, which 
corresponds to elastic response, and the non-instantaneous part corresponding to viscous response. We 
will not consider elastic response in this paper, because of the hydrodynamic assumption (weak and 
slow impact). The second term is equivalent to (2.3). 

The thermodynamic theory of linear response contains some assumption, which should be noted. 
The first is a quasi-equilibrium state of the disturbed system. This means that the state of the system is 
still fully determined by average values of quantities of interest (the full set being density, energy 
density, momentum density). This is the main limitation of our model, but we are not aware of any 
reports on such flow regimes. Another obvious limitation is the linear response of the molecular 
system. An additional assumption, is isotropy of the response ( GG ). It is valid only far 
from boundaries and for strongly confined fluids consideration of the response tensor G  is preferred 
(Hartkamp, 2012). The final governing equation for the momentum density is Eq. (2.9), which results 
from the combination of the continuity condition (2.1) and (2.8): 

'dd
'

),'(),',(
0

rrrr
V r

vG
rr

P
r
pv

t
p ,  (2.9) 

where all values implicitly correspond to time t and space point r. Note that (2.9) turns into NSE with 
the assumption of temporal and space locality (and transitional invariance) of the response function. 
The resulting expression for the viscosity will be equal to the well-known Green-Kubo expression. 
More interesting, however, is an intermediate approach, leading to the slip boundary condition, which 
is relevant for the description of flow in nanochannel (Joseph, et al., 2008). As this transition is not 
immediately obvious the next sections quickly reviews this step. 

2.3 Boundary conditions 
Our continuum model of fluid flow does not require any special conditions at the wall of the 

channel. The only requirement is a zero mass velocity v at infinity. Indeed, expression (2.9) is suitable 
for description of viscous momentum transfer both in the liquid and in the solid walls. No 
“boundaries” of the channel exist as they are implicitely expressed by G (r,r’, ), and so no “boundary 
condition” is required. The necessity of a wall boundary conditions (BC) is the consequence of the 
assumption of translational invariance of rheological response in the bulk, which of course is broken 
near the wall.  

In our simulation we will assume zero velocity of the channel walls and describe momentum 
transfer with the full expression (2.9), but only in the inside region of the channel. However, in some 
cases a near wall model formulated as a BC may be useful. For the classical case the standard zero 
velocity BC means that all momentum received by the boundary layer of liquid is immediately 
scattered at the wall. For nanochannels however, the interaction between liquid and wall is considered 
weak, leading to the well-known slip BC: 

0
0

z

t
zt z

vlv  (2.10) 

where vt is a tangential component of velocity, and the wall is at the z=0 plane. To derive (2.10) from 
(2.9) we assume velocity depends on the z-coordinate only and G(r,r’, )= G(z,r’, ) too. Here only 
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tangential component of momentum and its transfer only in normal direction are considered, therefore 
scalar response G instead G  is used.  

By integration over the plane (x,y) we obtain: 

'd
'

)'(
)',( z

z
zv

zzS
rdr

dPf
z

x

zx
x

,  (2.11) 

where we also assume v={vx,0,0}; f is a specific force acting upon a wall-liquid surface junction 
(Pa/m); This situation is depicted in Figure 1 as the “exact” case. For the “approximation” case the 
region of dependence of S on z is considered thin and located at z=0. Wherein the dependence on z’ 
comes discontinuous: S(z’)=Sw(z’) (1- (z’))+ Sl(z’) (z’) ( (z’) is the unit step function). Then by 
integration by part we carry out the space derivative in Eq. (2.11) and obtain a Dirac delta function 
from S(z’) (singularity at z’=0). Additionally we assume that the gradient pressure force is small in 
comparison with tensions produced by the G(r,r’) gap. The final relation is: 

x
x

x v
z
vlf ~ , (2.12) 

where l is some constant related to the size of the gap of S(z’) at z’=0. Expression (2.10) is written 
relative to velocity and we can propose only a phenomenological proportionality for tangential surface 
tension and slip velocity (the last relation). Therefore our model (2.9) implies both the slip boundary 
condition and classical NSE approach and thus includes another less acurate model of liquid flow. 

 
Figure 1 Slip approximation for boundary region. Blue area 
corresponds to liquid, white to the channel wall. Consideration 
of  layer as thin leads to slip phenomenon 

 

 
Figure 2 Schematic diagram of suggested 
multiscale approach structure  

3 Multiscale bridging 
The multiscale bridging method consists of a computational procedure to obtain parameters of our 

continuum model, relying on atomistic MD simulations of a liquid. The core function G (r,r’) 
determines momentum transport properties of media, see Eq. (2.9). Therefore it forms the required 
parameter system. It can be represented as a finite set of numbers by discretization upon a space mesh.  

Our approach of multiscale bridging is inspired by (Oden, et al., 2006). A two-level multiscale 
model combines surrogate and base models. The first is given by (2.9) and is an approximate model 
and the second is a finest microscopic model of a real system represented by MD simulation. Let Q 
denote a vector of quantities of interest, which could be calculated with either the base model by some 
averaging or by the surrogate model. We would like to minimize the difference between Q computed 
with the surrogate and base model: min))((ˆ)( tt uQQ , where u(t) is a full phase space vector of 
the state of the molecular system. Let L be the surrogate evolution operator such that QQ L/ t . 
We call the appearance of L and corresponding set of parameters the parameterization of a base 
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system or the system of parameters of the surrogate model. Our full surrogate model is described by 
Eq. (2.9). We will however use the expression: 

pPtvt
V

verrrrGrj
0

d'd),'(),',(),(  (3.1) 

which is more convenient for multiscale bridging, because it contains only one spatial derivative. So, 
the formulation of L̂  is given by expression (2.9), G (r,r’) is a parameterisation and Q represents the 
momentum density flux tensor for each point of the simulation region.  

A schematic diagram of the multiscale computational algorithm is shown in Figure 2. The black 
arrow denotes the fact that the parameter values are calculated for the dynamics of the quantities of 
interest. Our multiscale bridging procedure consists of using fluctuation dynamics of momentum 
density and mass velocity obtained by MD simulations as a source for the optimization problem.  

At the “base model” stage all values of p, v, j  in (3.1) is calculated for discretisation volumes. For 
momentum flow we have used the following microscopic expression: 

i
f

r
rr

ni m
pp

n
j ij

ij

ijijii

2
11 , (3.2) 

where i enumerates all n atoms belonging to a given discretization volume; j does not belong to given 
discretization volume; rij – is the length of rij= rj - ri, fij  the length of the force vector. (The expression 
is intended for a simple fluid MD model.) The pressure term in (3.1) is assumed to be zero. 

Substitution of the time series of microscopic dynamics in a discrete form of (3.1) results in a 
system of linear equations (SLE): 

,

,

j
ij

t
j

t
i Ggj    (3.3) 

where ),'( tv r  is denoted by gj
t,  and Greek indices are omitted for brevity, G•j  is desired vector. 

The Greek indices for tensor G  are omitted too and that each component should be considered 
separately is implied. Subscript indices enumerate vertices of a space mesh and the superscript index 
enumerates time intervals. I.e. each row of G (i-indexed) is calculated independently.  

The number of equations depends on the length of the time series (number of measurements of -
component momentum flow). Note, that the solution of such overdetermined system of equations by a 
least-squares method is a solution of a minimization of the difference between )(ˆ rj  observed with 
MD simulation and those from the surrogate model. 

Consider matrix g of system (3.3). Its columns are history of momentum density at the space point 
rj with time t- . The method of least squares leads to the matrix of scalar products of (gj

0,gk ). Due to 
locality of momentum fluctuations we have to measure the momentum density with small time step for 
a diagonally dominant matrix. Otherwise, for the time intervals  larger than the correlation time c 
diagonal elements like (gj

0,gj ) will not be close to 0, as well as non-diagonal. Hence the reason why 
we cannot carry out the time integration in (2.9) beforehand is, despite the stationary character of the 
flow problem. 

4 Results and discussion 
As a case study we will consider elementary problem of liquid flow in a nanotube (Borg, et al., 

2013), Figure 3. The dependence of velocity on radial coordinate r is considered. Using the symmetry 
of the problem we can simplify (2.9), and after time integration we get: 

S
zxyxy pKconst

z
P 'd)'()',(

d
d ssss ,  (4.1) 

where S is a cross section of the tube.  
The calculation of K were based on MD simulation. We have used a model of a simple fluid like 
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liquid argon at 86K, equilibrium pressure 1 bar. A 10 nm diameter carbon nanotube with a length of 
30 nm was chosen as a channel. We used the Lennard-Jones (LJ) potential in Amber form with length 
parameters 3.734Å for Ar and 3.985Å for C, energy -0.238kcal/mol for Ar and -0.07kcal/mol for C. 
Carbon atoms were fixed. The measurements of density, momentum density and momentum density 
flow were performed (for the last Eq. (3.2) was used) with averaging over the cell, depicted in figure 
4, (square, step 3.734Å). The space derivative was calculated with a symmetry pattern. Then the time-
dependent volume core function was found by SLE (3.3) (time-dependent), and by integration in time 
and along the z-coordinate the plane core function K was obtained. Note that only one component of 
G , which describe the transfer of z-momentum in radial direction is considerable due to symmetry 
and therefore the K function is a scalar. All measurements were performed at the central 10nm tube 
fragment. 

 
Figure 3 Poiseuille problem formulation: D is the tube (nanotube) diameter, L the tube length 

Because the discretization step was chosen equal to Ar-Ar LJ interaction length, the core function 
occupies ~10 discretization elements only. This is shown in the right picture in Figure 4 by a color 
map of K(s,s’) for a near-wall position s. The time step was equal to 1fs and corr was taken 2ps.  

 
Figure 4 Cross section of the MD simulation and averaging cells with colour map of core function K (blue 

is high, red is low). 

In Figure 5 K(s,s’) is shown for some different space points. The asymmetry of the core function is 
minimal for R=2nm (R=|s|) and maximum for the near-wall region (R=4.5nm). This means weak 
correlations between atoms of the nanotube and atoms of the liquid (because of much stronger bonds 
between the first) and leads to a near-wall slip. The central region of the tube where the core function 
asymmetry is weak was marked as a NSE-region. We have obtained fluctuations at two conditions: 
equilibrium (without flow) and nonequilibrium, driven by a gravity-like constant force f=0.1 
cal/mol/Å flow. In Figure 5 the nonequilibrium system of parameters K(s,s’) for some different space 
points are depicted too (lower half). 

After calculation of the system parameters for both the equilibrium and non-equilibrium cases, 
equation (4.1) was solved. It was considered as SLE by discretization at the same mesh that was used 
for averaging of MD data. 

The solutions, which have been found for the equilibrium and nonequilibrium cases are shown in 
Figure 6. There are two axial velocity profiles. The third velocity profile were obtained by direct MD 
simulation of the flow (the same gravity-like constant force f=0.1cal/mol/Å was applied) and is the 
reference solution. The surrogate velocity profile obtained with the nonequilibrium set of parameters 
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(blue solid line) is very close to the result of the MD simulation.  
All MD simulations were performed with the NAMD molecular dynamics package. During 

observation of momentum density fluctuations no thermostat algorithms were used. 
 

 
Figure 5 Colormaps for the core function K for the different 
radii, s’=0 corresponds to the center of each core function, 
plane of picture is a XY plane, dashed line is a diameter, the 
top-half and bottom-half are for the equilibrium and flow 
conditions respectively 

 

 

 
Figure 6 Velocity and density axial profiles: 
blue crosses is the results of direct MD 
simulation, red dashed line is a velocity 
profile for K measured in equilibrium, solid 
blue line is a velocity profile for K measured 
during the flow, and the black line is the 
density. 

5 Conclusion 
We propose a multiscale model of nanoscale fluid flow. The main feature of our approach consists 

of a systematic derivation of the continuum surrogate model that leads to noticeable changes in the 
whole structure of the hybrid model.  

A continuum model of liquid was considered without assuming a local character of momentum 
transfer. An important result is the disappearance of unnatural boundary condition for the velocity. 
The slip boundary condition may be obtained as some intermediate assumption of (2.9).  

The main point in our approach is the method of multiscale bridging, i.e. the method of computing 
the complex system of parameters. As the calculation of the core integral function from (2.9) by direct 
averaging may turn out to be difficult, a method based on direct comparison of dynamics of quantities 
of interest obtained by MD and the surrogate simulation was proposed. The one important feature of 
this multiscale coupling method is a completely different character of the microscopic and 
macroscopic dynamics of the momentum density. It is a “boiling pot” of fluctuations for the first and a 
diffusion process for the last, which is the result of averaging over many trajectories. Nonetheless, we 
did not have to introduce any additional averaging procedures. All averaging assumed by the surrogate 
model is implemented implicitly. 

However, the results of the multiscale simulation turned out not as good as we expected. Despite 
our theoretical analysis from subsections 2.1 and 2.2 there is a feedback influence of resulting velocity 
profile on the values of parameters of the surrogate model. We surmise this is result of influence of 
nonzero average velocity to thermodynamic state of liquid. Since parameter values were calculated for 
the equilibrium state of the liquid inaccuracy occurred, thus for a better result the fluctuation 
dynamics, which determines momentum transfer processes, should be obtained in condition of flow. 
However, an important issue arises here: how one represents nonequilibrium macroscopic conditions 
at the atomistic base model (red arrow at the Figure 2). This problem is outside the scope of this study, 
but it was already analyzed in detail in many studies about hybrid multiscale nanoflow models. 
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