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We reformulate the topological symmetry-breaking scheme for phase transitions in systems with anyons in a
graphical manner. A set of quantities called vertex lifiting coefficients (VLCs) is introduced and used to specify
the full operator content of the broken phase. First, it is shown how the assumption that a set of charges behaves
like the vacuum of a new theory naturally leads to diagrammatic consistency conditions for a condensate. This
recovers the notion of a condensate used in earlier approaches and uncovers the connection to pure mathematics.
The VLCs are needed to solve the consistency conditions and establish the mapping of the fusion and splitting
spaces of the broken theory into the parent phase. This enables one to calculate the full set of topological data
(S, T , R, and F matrices) for the condensed phase and closed-form expressions in terms of the VLCs are
provided. We furthermore furnish a concrete recipe to lift arbitrary diagrams directly from the condensed phase
to the original phase using only a limited number of VLCs and we describe a method for the explicit calculation
of VLCs for a large class of bosonic condensates. This allows for the explicit calculation of condensed-phase
diagrams in many physically relevant cases and representative examples are worked out in detail.
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I. INTRODUCTION

The classification of possible phases of matter is at the
heart of condensed-matter physics. Conventionally this is
linked to the notion of symmetry breaking characterized by
a nonvanishing vacuum expectation value of certain local
order parameters. Examples include the superconducting gap
function or the magnetization vector.

In the past decade it has become evident that this is not
the whole story. Different integer quantum Hall phases for
example exhibit different macroscopic physics (in particular,
their Hall conductivity) while all of them appear like a
structureless electron liquid on the microscopic level [1]. In a
seminal paper [2], Thouless et al. argued that the distinction
between these phases cannot be made with a local order
parameter, but can be captured by a nonlocal quantity—a
topological invariant that is obtained by integrating Berry flux
over the Brillouin zone. Hence the names “topological orders”
or “topological phases of matter” which are now commonly
used to describe such phases that cannot be captured by local
order parameters.

A lot of progress has been made identifying such topo-
logical order parameters for different systems. For free
fermion systems this has led to an elegant “periodic-table-like”
classification [3,4], containing phases of matter such as the
quantum spin Hall state [5,6], the integer quantum Hall state,
and the p + ip superconductor. More generally the quest
for observables that identify the type of topological order
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has spawned among others such quantities as topological
entanglement entropies and spectra, whereas we have in
previous work [7] proposed the topological S matrix.

One particular class of interacting topological phases has
received an extraordinary amount of attention: those with
anyonic excitations in (2+1) dimensions, not the least because
they have been proposed as a way to realize fault-tolerant
quantum computing [8]. From a field theory point of view
two families of models have been identified: Chern-Simons
theories, which are closely related to the mathematics of
knot theory and the Jones polynomial [9], and discrete
gauge theories [10], of which Kitaev’s toric code [8] is
a close relative. Different lattice realizations of (nonchiral
varieties of) these theories have been constructed, for ex-
ample Levin-Wen models [11,12] or discrete lattice gauge
theories [7].

The study of the phase structure of an anyon model can
be pursued along two complementary directions. First, one
could start from a lattice model and add perturbing terms to
its Hamiltonian. These terms can drive a phase transition in
the system which can be studied using Monte Carlo methods
[7,13], perturbative expansions [14], or mappings to exactly
solvable models [15].

Some of these phase transitions can be attributed to the
formation of a Bose condensate in the original theory. Much of
the physics of these transitions is independent of the underlying
lattice realization and this opens up a second approach taking
the knowledge of the topological quantum field theory (TQFT)
as a starting point. It turns out that from that topological data
one can indeed determine the low-energy effective TQFT in the
presence of the bosonic condensate—and this is the program
we pursue further in this paper.
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For discrete gauge theories (DGTs), where the particle sec-
tors can be understood as irreducible representations (irreps)
of an underlying quantum group [10] [the quantum double
D(H ) of a finite group H ], it amounts to a Higgs-type effect
and as such is really a case of symmetry breaking: the quantum
group gets reduced and the low-energy TQFT is given by the
irreps of this smaller quantum group [16]. For CS theories
the situation is more complex: these too can be understood
in terms of quantum groups [17]—quantum deformations of
SU(N )—but identifying the TQFT after Bose condensation
is more involved. In Ref. [18] this problem was tackled, not
by looking at the group explicitly, but rather by studying the
breaking on the level of the fusion algebra of the excitations. It
was shown that by demanding that the Bose condensate acts as
a vacuum sector and requiring commutativity and associativity
of the fusion algebra, an effective theory in the condensed
phase can often be identified. However, what was found was
a consistent fusion algebra—but not the full set of all TQFT
data for the condensed phase. In particular, the F matrices
that implement an associator on the level of the fusion spaces
were not derived in this framework. Also there were some
cases where the identification of the broken phase remained
ambiguous.

The present work aims to fill in that gap. We show how the
fusion spaces in the condensed theory and its parent theory
are related. For this purpose, we introduce a set of numbers
called vertex lifting coefficients (VLCs) and we show how the
full set of topological data in the Bose condensed phase can be
expressed in terms of the topological data of the original phase
and these VLCs. We also provide a scheme to calculate these
numbers explicitly for a number of examples. As a byproduct
all ambiguities are in principle removed.

From a physics point of view, this work is relevant for a
number of reasons. First, it is theoretically pleasing to extend
the method of Ref. [18] to include all topological data and
allow for the expression of all operators using only data of the
unbroken theory. This provides a much deeper understanding
of Bose condensation in the context of topological phases.
It turns out that fixing a more precise set of consistency
conditions has subtle consequences. For example, not all
condensates that one would naively consider are actually
allowed and we show in an example how this follows from
an easy consistency check. At the same time many links to
other topics become clear, in pure math as discussed below,
but more importantly also to other important notions in the
study of topological phases, such as Levin-Wen models [11]
and patterns of long-range entanglement [19], where the same
structures as here appear.

A particular benefit of the current approach is that all
operators are lifted to the Hilbert space of the parent phase
making the connection to lattice studies much simpler. In
earlier work [7]—a numerical study of discrete gauge the-
ories on a lattice—we found that the correct identification
of observables in the broken phase needs coefficients we
now identify as the VLCs. This was solved in an ad hoc
manner at the time, but the VLCs clearly provide the correct
quantities for the general case and should show up in similar
studies.

Determining the F and R matrices of a theory from scratch,
starting from the fusion algebra is a daunting task: it involves

solving the pentagon and hexagon equations and has only
been done for theories with a handful of different particles
(see Ref. [20]). At the same time the F symbols serve as
the input for Levin-Wen lattice models [11] which play an
important role in the study of topological phases. These
models of effective string-net degrees of freedom provide
fixed-point Hamiltonians and wave functions for a large class
of topological orders. The present work presents a route for
obtaining a whole family of consistent fusion data starting
from a parent theory by condensing the bosons in the theory.
This forms an alternative route to quantum group methods
[21,22] and can give access to more exotic theories.

An important open question is to what extent the universal
properties of the critical points separating topological phases
are determined by the topological order on either side.
Microscopic studies indicate interesting universality classes
[14,15,23,24], but the inherent nonlocality of the order param-
eters obstructs the adaptation of conventional field-theoretical
methods to study, e.g., critical exponents. It remains to be seen
if the algebraic structure of TQFT can be exploited to build
a theory for the critical behavior, but we envision the present
work to play an important role in future progress.

In a similar category fall questions concerning universal
topological quantum computation (UTQC) in the condensed
phase. This clearly needs knowledge of the operators of the
broken theory and not just the particle content. More model
independent considerations also fall in the general scope of the
present work.

The formalism presented in this work is easily adapted to
other contexts. As an example we point out the extensive use
of a preprint of the present work in a recent formulation of a
unified framework for topological phases with symmetry [25].

A rigorous mathematical analysis of some of what we
present here goes back to the work of Kirillov and Ostrik
[26]. The consistency conditions on the condensate which
we formulate turn out to be equivalent to the definition of
a commutative separable Frobenius algebra in the context of
unitary braided tensor categories. In Ref. [27] Kong identifies
this as the relevant mathematical structure for anyon conden-
sation by performing a bootstrap analysis based on physically
justifiable assumptions, and as such forms an interesting
bridge between the physical and mathematical literature. In
the mathematics or mathematical physics literature, the study
of (commutative) Frobenius algebras in the context of tensor
categories has received considerable attention, both abstractly
[28,29] and in relation to boundaries and defects in CFTs and
TQFTs [30–32]. In the work presented here we develop a
diagrammatic formalism based on the clear physical picture of
condensation, reducing the heavy language of the underlying
mathematics to a minimum. This exceeds earlier approaches in
being both simple and intuitive and at the same time completely
general and computationally powerful. Indeed, this is much
facilitated by the introduction of the VLCs.

The remainder of this paper is organized as follows. In
Sec. II we give a more extensive introduction to anyons in
the presence of a Bose condensate. We outline the general
properties of the condensation transition and the topologi-
cal symmetry-breaking scheme for condensation. We then
discuss the graphical formalism for anyon models and the
relation of anyon condensation to other topics in physics and
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mathematics. In Sec. III we go into the details of topological
symmetry breaking. First we recap how the topological
order of the broken phase can be obtained on the level
of the particle sectors. Then we reformulate the scheme in
a graphical language leading to the full diagrammatics for
Bose condensation in anyon theories. It is shown that the
fusion properties of the condensate play an important role
and we formulate the precise conditions on the condensate
in order to obtain a consistent theory. It is discussed how
the characteristic features of topological symmetry-breaking
phase transitions—identification, splitting, and confinement—
appear in this language. Furthermore, we introduce the vertex
lifting coefficients (VLCs) as the crucial ingredient to lift the
vertices of the theory. These are the data needed to completely
characterize the topological properties of the phase transition
including the mapping between the operator spaces of the
theory. It is explained how they allow one to calculate the
full set of topological data of the broken phase, including
F and R matrices. Section IV discusses precisely how to
lift arbitrary diagrams from the broken phase to the original
phase such that general observables from the broken phase
can be computed. Important is the explicit occurrence of
vacuum exchange lines (VELs) to incorporate the interaction
with the condensate. The quantum dimension diagram and the
topological S matrix are discussed as simple applications of
this protocol. The actual calculation of the VLCs is presented
in Sec. V. Two classes of condensates are worked out in full:
one-component condensates with and without a triple-boson
vertex. An example of each case is worked out in detail. We
also show from the consistency conditions that an expected
condensate in five layers of Fibonacci anyons actually will
not occur. After that, we conclude and present some ideas
for future research. In the Appendices a short but complete
introduction into anyon models, as well as the topological data
for SU(2)k theories and a full list of consistency conditions for
the VLCs, is presented.

II. ANYONS AND BOSE CONDENSATION

In this paper we study Bose condensates in a system
with anyonic particlelike excitations. In other words, by some
mechanism that is beyond the scope of the present work one
or more bosonic sectors in phase A have gained a vacuum
expectation value and we want to determine the effective
physics in the presence of the condensate. This determination
is done in two steps:

I. We first achieve consistent fusion resulting in an algebra
called T .

II. Then we project out sectors that are confined due to
nontrivial braiding with the condensate resulting in a braided
theory for the bulk in the broken phase called U .

This scheme, known as topological symmetry breaking
(TSB), can thus be abbreviated as

A −→ T −→ U . (1)

A detailed account can be found in Ref. [18], with many
worked out examples of the resulting mapping on the level
of the particle sectors of the theory. An important question
left unanswered in this previous work is how the TSB scheme

extends to the topological Hilbert space and operators of the
theory. Our current aim is to revisit the TSB scheme, explicitly
including the topological Hilbert space and operators in the
discussion.

The above scenario has a certain common ground with
spontaneous symmetry breaking in gauge theories and the
Landau paradigm of second-order phase transitions. In stark
contrast, however, there is no local field that features as an order
parameter for the broken phase. This should not be surprising
as it is precisely the absence of local order parameters and the
defiance of the Landau paradigm that has spurred the interest
in topological phases in the first place.

Due to the inherent nonlocality of topological phases,
conventional field-theoretical methods fail to study topological
phase transitions but the algebraic structures present in TQFT
allow one to make progress.

Quantum groups play an important role this respect. They
can account for the exotic fusion and braiding properties of
anyons through their representation theory and it is tempting
view the anyons as representation modules of a quantum group,
even if there are no apparent internal degrees of freedom.
This suggests the mechanism of quantum group symmetry
breaking for phase transitions. Indeed, this is precisely the
idea underlying the formalism in Ref. [18] and the present
work. It turns out, however, that in practice one can forget
about the underlying symmetry algebra and work directly on
the level of the excitations. Formally, this means that will work
with braided tensor categories and modular tensor categories
(MTCs) in particular, which encode the algebraic structure
present in TQFTs and rational CFTs [33].

The heavy mathematical language customarily used in the
study of MTCs is not very appealing for applications in
physics. In the spirit of Kitaev’s paper [34] we will therefore
get rid of many of the formalities but use a graphical formalism
containing all the important structure (also called anyon
models [35]).

A. Graphical formalism for anyon theories

Let us outline the main aspects of the graphical formalism
at this point. A concise but complete introduction can be
found in Appendix A. For more details we refer the reader to
Refs. [20,34–36].

The idea is to use diagrams to represent the operators that
implement the fusion and braiding of anyons, together with
rules for evaluation. Each anyonic charge a ∈ A (we generally
use indices a,b,c, . . . for anyon types ofA) can label a directed
line segment which can be thought of as the world line of
an anyon with charge a. Three lines can meet in trivalent
vertices representing the fusion or splitting of the anyons.
Furthermore, lines can be crossing over or underneath each
other representing the braiding of anyons. The elementary
building blocks of any diagram are therefore

a
,

a b

c

,
a b

c

,
a b

,
a b

(2)
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Vertices are only nonzero when the combination (a,b,c) is
allowed by the fusion rules

a × b =
∑

c

Nc
abc (3)

(i.e., Nc
ab �= 0). The fusion coefficients Nc

ab are non-negative
integers in general, but we consider only Nc

ab = 0,1 (otherwise
an extra label on the vertex should distinguish the different
fusion states).

The topological Hilbert space spanned by a collection of
anyons has a dimension equal to the number of inequivalent
ways one can fuse all the anyons back to the vacuum (assuming
overall charge neutrality). For the case of a large number of
anyons of type a, the dimension per anyon asymptotically
approaches the largest eigenvalue da of the fusion matrix Na

[with coefficients (Na)bc = Nc
ab], and da is called the quantum

dimension of a. It also has the diagrammatic expression

da = ada = a (4)

Every anyonic charge in the theory has a unique conjugate
charge with which it may annihilate a × ā = 0 + · · · where 0
is the unique vacuum charge.

Vacuum lines in diagrams are generally left invisible, or
when made explicit we draw them dotted. The reason is of
course that vacuum lines can be added and removed at will
since the vacuum has trivial fusion and braiding. The precise
graphical conditions defining the triviality of the vacuum will
play an important role in this work.

Since we want to study condensates of bosons within anyon
theories, we will be particularly interested in anyons that have
trivial spin. The topological spin factor θa = exp(i2πha) can
be used in diagrams to remove twists corresponding to a 2π

rotation of the anyon (in that sense the world lines should be
thought of as ribbons rather than lines).

The original TSB scheme [18] was developed such that only
knowledge of the fusion coefficients Nc

ab, quantum dimensions
da , and spin ha is required. Accordingly, one is only able to
reconstruct the analogous data for the broken phase.

The full topological data of an anyon model is captured by
the so-called F symbols and R symbols, encoding the fusion
and braid properties respectively. There are two equivalent
ways of defining F -symbols diagrammatically:

a b c

d

e =
f

[F abc
d ]ef

a b c

d

f
,

a b

c d

e
=

f

[F ab
cd ]ef

a b

c d

f .

(5)

which relate to one another via

[
Fab

cd

]
ef

=
√

dedf

dadd

[
Fceb

f

]∗
ad

. (6)

An asterisk generally denotes complex conjugation (theories
are assumed to be unitary1 throughout this paper).

The R symbols implement the following diagrammatic
equality:

b a

c

= Rab
c

b a

c

,
(7)

All other topological quantities can be expressed in terms of
the F and R symbols, for example

da = ∣∣[Faāa
a

]
00

∣∣−1
,

Nc
ab =

√
dadb

dc

[
Fab

ab

]
0c

, (8)

θa = [F 0a
a0

]
āa

Rāa
0

∗
.

Anyon models can to a great extent be understood as conven-
tional quantum mechanics on the topological Hilbert space.
The states of a collection of anyons with labels a1, . . . ,aN can
be represented graphically as (for N = 4)

|ψ =
c

ψa1a2a3a4
c

(da1da2da3da4dc)1/4
.

a1 a2 a3 a4

c ,

(9)

We denote the vector space (topological Hilbert space) spanned
by these states as V

a1...aN

0 . Note that the F symbols implement
a change of basis in this space. More generally, the spaces of
operators of the theory can be denoted V b1...bM

a1...aN
and are spanned

by the diagrams with N charge lines labeled (a1, . . . ,aN )
sticking out on the bottom and M charge lines with labels
(b1, . . . ,bM ) sticking out on top. Diagrams denote the same
operator when they differ by a sequence of F moves (5),
R moves (7), and removing bubbles (4). The elementary
fusion and splitting spaces V c

ab and V ab
c are special cases with

dimension Nc
ab. When Nc

ab = 0 one has V c
ab = V ab

c = 0 so any
diagram with the corresponding vertex is necessarily zero.

Let us conclude this subsection with a remark on the
Frobenius-Schur indicator of a charge a. This quantity, denoted
�a , satisfies the diagrammatic relation

a

a

ā
= κa a

. (10)

and so can be defined as �a = [F 0a
a0 ]āa . It is a phase which can

generally be put to 1 by picking a “gauge” (a phase freedom in
the definition of the vertices), but for self-dual charges it is a
“gauge invariant” sign �a = ±1. We will assume conventions
where the �a = 1 for non-self-dual a.

The Frobenius-Schur indicator has received much less
attention in the literature than, say, the topological spin.
Remarkably, we find in the present context that it has to be

1Unitarity means that one can take the adjoint of a diagram
by mirroring it in the horizontal plane, reversing orientation of
the arrows, and taking the complex conjugate of all coefficients.
See Appendix A.
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trivial for bosons in the condensate in order to fulfill our fusion
consistency conditions and seems as (or even more) important
than the topological spin for condensation.

B. TSB beyond Bose condensation

The physics of Bose condensation in anyon theories has
many ties to topics in mathematics and physics of current
interest. We give a brief overview of these connections here.

In Ref. [18] a detailed discussion can be found relating
topological (quantum group) symmetry breaking to construc-
tions in conformal field theory such as conformal embeddings,
the coset construction, and orbifolds. It is argued that breaking
down the quantum group by condensation of a bosonic sector
is dual to enlarging the (local) chiral algebra. As many
aspects of the aforementioned CFT constructions can be
understood in terms of chiral algebra extensions, this provides
a physical reinterpretation of these constructions in terms of
Bose condensation.

The mathematics underlying this paper has been introduced
in Ref. [26] where a connection was made to the McKay
correspondence [37]. This is important to the classification
problem for CFTs [38,39], and possibly even monstrous
moonshine [40] or generalizations thereof [41,42], but we will
not dwell on such abstract topics here.

The same structures have also been used in the description
of boundary conditions and topological defects in CFT [30–
32,43]. On the other hand there have been studies on the effects
of nontrivial boundaries in lattice realizations of topological
order based on Kitaev’s quantum double model [44,45] and
Levin-Wen models [46]. The latter works consistently find that
nontrivial boundary conditions can be a source of condensation
with consequences very similar to the TSB scheme. That
the two topics are intimately related also shows from the
connection between condensation and the protection of gapless
edge modes [47,48] which is linked to the absence of a
Lagrangian subgroup in the fusion algebra, the definition of
which clearly is a special case of our definition for a condensate
(see also [27]).

It is an intriguing fact that lattice formulation of topological
order like Levin-Wen models always realize nonchiral theo-
ries. In the simplest case where one starts with the F symbols
of a fully braided MTC/anyon model A as input for the model,
the topological order is described by the double A × A. If one
however starts with a theory that admits consistent fusion but
no consistent braiding such asT , one ends up with the so-called
quantum double or Drinfeld center Z(T ). Apparently the
model knows if a certain set of F symbols admits a consistent
set of R symbols or not. The properties of the quasiparticles and
how the resulting topological order emerges are less obvious
in this case. This question has received additional attention
recently [49]. In this context explicit examples of F symbols
that do not allow a compatible braiding structure are quite
interesting, for example for computational studies. The TSB
scheme produces naturally a nonbraided theory, namely T ,
and the present work provides the necessary tools to calculate
these F symbols explicitly.

There is a list of topics in the context of topological phases
in condensed matter for which the precise connection with
TSB is worth exploring further. For example the interplay with

conventional symmetries and symmetry breaking, in particular
for symmetry protected and symmetry enriched topological
phases [25,50–58].

Recently, the formalism of condensate induced transitions
has been used in a completely different context, namely to
find solvable one-dimensional spin Hamiltonians of which
the CFTs for the critical behavior follow the topological
symmetry-breaking scheme [59,60].

III. DIAGRAMMATICS FOR BOSE CONDENSATES

In this section we construct the diagrammatic theory for
Bose condensates in a system of anyons, but first we review
the original TSB scheme.

A. Topological symmetry breaking revisited

The aim of the TSB protocol is to find the effective theory
T with particle labels t,r,s, . . . together with the branching
or restriction coefficients nt

a under the assumption that one
or more bosonic sectors γ of the unbroken phase A form
a condensate. The branching coefficients implement a map
characterizing the phase transition which we call restriction:

a →
∑

t

nt
at (restriction). (11)

The name restriction originates from thinking about a as a
representation of some algebra A that branches into smaller
representations if the algebra that acts on the representation is
restricted to some subalgebra T ⊂ A. The same coefficients
provide the adjoint of the restriction map, which we call the
lift,

t →
∑

a

nt
aa (lift). (12)

The question of which particles can actually condense is highly
nontrivial in the context of nontrivial braid statistics. Even if
a particle has trivial spin θγ = 1, a macroscopic state may
not be invariant under interchange of the particles as the spin
statistics theorem does not hold in this context. In Ref. [18]
the following conditions were proposed:

(i) a boson γ ∈ A has trivial spin θγ = 1;
(ii) γ has partial or completely trivial self monodromy.
The latter condition is understood as the existence of a

fusion channel f ∈ γ × γ which has trivial spin itself, θf = 1.
These conditions are meant to ensure that for every number
N of the condensed boson γ there should be a state in
the topological Hilbert space V γ ×N

that is invariant under
monodromy of the particles. In the present work we refine
these requirements.

The boson that condenses should have γ → ϕ + · · · under
the restriction map, where ϕ is the vacuum of the new theory.
It is postulated that fusion commutes with the restriction map,

a×b =
∑

c

Nc
abc ⇒

(∑
r

nr
ar

)
×
(∑

s

ns
bs

)
=
∑
c,t

Nc
abn

t
ct.

(13)
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From this simple assumption and properties such as the
uniqueness of the vacuum one can deduce that

0 → ϕ,

ā →
∑

t

nt
a t̄ , (14)

da =
∑

t

nt
adt .

The game of the TSB protocol is now figuring out the particle
content {t,r,s, . . .} and fusion rules of T and the restriction
coefficients nt

a by making smart use of these properties.
At this stage we denote the theory with T since it may still

include sectors that braid nontrivially with the condensate.
These will actually not appear in the bulk as free particles as
they will pull strings (domain walls) in the condensate. They
can still appear on the boundary as massive excitations [48].
We will call these charges confined.

The next step is to project confined sectors out of the theory
resulting in the theory U which provides the actual description
of the bulk phase and has well defined braiding. A simple
criterion to see which particles are confined and which ones
are not is given by the lift: If all the sectors a in the lift t have
the same spin θa the sector t will be unconfined and survives
in U ,

u ∈ U ⊂ T (unconfined)

⇔ (15)

θa = θa′ ≡ θu for all a,a′ with nu
a �= 0 �= nu

a′

(we use u,v,w, . . . for the particle labels if we want to
emphasize that the sectors belong to U).

The setup outlined above can identify the fusion coeffi-
cients, quantum dimensions, and topological spins of the U
theory together with the restriction coefficients nt

a in many
cases. However it is hard to make further progress. In order to
put the TSB scheme on firmer ground and discuss the faith of
the operators of the theory, we have to take a step back and
reformulate the whole scheme diagrammatically.

B. Diagrammatics: Conditions on the condensate

In reformulating the TSB scheme diagrammatically our
strategy will be to work exclusively in the A theory for which
we assume we know the F and R symbols and hence how to
compute diagrams. It is very convenient to identify t with its
lift,

t =
∑

a

nt
aa, (16)

as a superposition of charges in A.
Assume that a number of boson γ1, . . . ,γn condenses. In

particular, the superposition of all the bosons γj and the
original vacuum 0 is nothing other than the lift of the new
vacuum ϕ. We will also call ϕ the condensate,

ϕ = 0 + γ1 + · · · + γn (condensate) (17)

(we use γ0 = 0 in some formulas).
The whole construction described in this paper follows from

the requirement that the condensate satisfies all the properties

of the vacuum within a certain subclass of diagrams in A. This
provides the lift of the full T theory—including diagrams—
into the A theory, which is the essential extension with respect
to to the TSB protocol from Ref. [18].

We associate a dashed charge line to the condensate,

= ϕ =
0

+
n

i=1
γi

, (18)

Since the vacuum is self-conjugate we require ϕ̄ = ϕ, i.e.,
γ ∈ ϕ ↔ γ̄ ∈ ϕ, so there is no need to give the condensate
line a direction. We note here that the quantum dimension
of the condensate q = dϕ =∑j dγj

, also called the quantum
embedding index, will turn out to be an important number
associated to the condensation. In particular it often shows
up in the proper normalization. For example removing a
disconnected condensate bubble from a diagram should lead
to a factor of 1 while we find a factor of q. One may think that
we should normalize the condensate charge line by a factor of
1/q. Instead, we will put the correct normalization in place in
the condensate vertex

=
1
√

q
ijk

φij
k

γi γj

γk

(19)

and interpret a condensate bubble as a condensate “splitting”
and a condensate “fusion” vertex stacked on top of each other
and the top and bottom line projected to the original vacuum
0. We will come back to the normalization issues in Sec. IV.

Note the appearance of the coefficients φ
ij

k in Eq. (19). This
is the first appearance of vertex lifting coefficients (VLCs),
which play an essential role in our construction and will be
discussed extensively when we properly define vertices in the
condensed phase.

Now which conditions should the condensate satisfy? A
straightforward requirement would be that θγi

= 1 for all the
γi , in other words that the condensate consists of bosons.
However, as discussed before, the braiding properties of
charges with trivial spin may still be very nontrivial especially
for non-Abelian anyons. The following diagram equality holds
for vacuum vertices:

= . (20)

This is the braiding condition on the condensate that we will
require. Although deceptively simple looking, one should keep
in mind that both the left- and right-hand sides expand as a
possibly large superposition which should agree term by term.
That leads to the condition

R
γiγj

γk
φ

ij

k = φ
ji

k . (21)

By choosing k = 0 we find R
γγ

0 = �γ θ∗
γ = 1. Here we did

assume that φ
ij

0 = δγj γ̄i
which will be justified later. This

immediately shows that indeed the condensed sectors γ ∈ ϕ

have to be bosonic θγ = 1 at least when they are not self-dual.
At this point, it seems that the consistency condition allows
for fermionic self-dual particles in the condensate. However,
we did not yet discuss the fusion properties of the condensate.
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To reproduce all properties of a vacuum, we should be able
to reconnect condensate lines freely,

= . (22)

This fusion condition is equivalent to the definition of a
Frobenius algebra in the context of tensor categories. Relation
(20) is known as the commutativity of the algebra.

The fusion condition (22) is in some respects more
fundamental than the braid condition (20)—one may define
a Frobenius algebra that is not commutative. A “condensate”
that does not satisfy (20) still makes sense mathematically and
is relevant for one-dimensional topological phases [27,46].
We refer the reader who is interested in the mathematics of
algebras in tensor categories to Ref. [27] and references therein
for further details.

A consequence of Eq. (22) is that condensed bosons have
a trivial Frobenius-Schur indicator. Taking the upper left and
lower right charge line to be labeled by the original vacuum,
we find

γ

= γ (23)

for all γ ∈ ϕ, so �γ = 1. Hence we see that actually the braid
condition and the fusion conditions together only allow for a
condensate with θγ = 1,�γ = 1 also for self-dual charges so
we find that indeed all condensed charges are bosonic.

The braid condition (20) is the strictest condition we can put
on the braiding properties on the condensate vertex. Condition
(ii) in Sec. III A only requires a form of trivial monodromy, as
opposed to a single braid exchange. One can also propose the
following condition:

= .
(24)

This equation is a consequence of Eq. (20). On its own it yields
a condition on the spin factors of the condensed charges,

θγk

θγi
θγj

= 1. (25)

Again, by choosing k = 0 we find θγi
θγ̄i

= θ2
γi

= 1 ⇒ θγi
=

±1. This actually seems to allow for fermionic condensates
with θγ = −1. We will however stick to condition (20) in the
present paper.

It is interesting to see what happens if we stack several
condensate vertices together. In particular, the diagram

(26)

denotes a superposition of states with mixed particle number
in the topological Hilbert space of the theory which will not
notice any “stirring.” It is tempting to view (26) as something

like the ground state of the condensed phase. It would be
interesting to see if the coefficients φ

ij

k have a role to play in
microscopic realizations of TSB phase transitions and ground-
state wave functions.

C. Particle spectrum in condensed phase

In the presence of a condensate, the charges a in A can
no longer be viewed as the elementary excitations in the
system, as they may fuse freely with the new vacuum ϕ and
this fusion product in general contains multiple charges. This
observation hints on how to proceed with the next step of the
TSB protocol, namely determining the particle content of the
unbraided theory T .

From the fusion properties of the condensate we find

ϕ × a =
∑

b

Nc
ban

ϕ

b c =
∑
t ;c

nt
an

t
cc =

∑
t

nt
at (27)

so we see that taking the fusion product with the lift of the
new vacuum generates a superposition precisely containing
all the lifts of the restriction of a. This, in fact, constitutes
a major simplification in finding the branching coefficients
nt

a as compared to the strategy in Ref. [18]. The problem of
finding the branching coefficients reduces to writing out the
table ϕ × a for the conjectured ϕ and grouping the right-hand
side in “irreducible blocks.” This turns out to be a very simple
exercise in many concrete examples.

When charges of A can no longer be distinguished in the
condensed phase we say that they get identified. This now
corresponds to the following condition for identification:

a ∼ b ⇔ a,b ∈ t (identification). (28)

It will not always be the case that t is simply equal to a fusion
product of a with the condensate. It may happen that ϕ × a =
t1 + · · · + tn. In that case we say that a splits

ϕ × a = t1 + t2 (splitting). (29)

We will see that in this case the ti are precisely all the T
charges in which a appears. The full structure of splittings and
identifications, i.e., the branching coefficients nt

a , can at the
end of the day thus be read from the table

ϕ × a =∑t n
t
at (30)

In Sec. V we provide two examples of Bose condensation
[SU(2)4 → SU(3)1 and SU(2)10 → SO(5)1] where we use
the above procedure to determine the spectrum in the Bose
condensed phase.

D. Fusion spaces from T to A: Vertex lifting coefficients (VLCs)

Let us now study the effect of the Bose condensate on the
level of the fusion spaces of the theory.

Our main result is that lifting the vertices in T to a
superposition of vertices in A,

r s

t

=
a,b,c

r s t
a b c

a b

c

, (31)

gives a complete embedding of all diagrams of T into the
theory A. As such it completes the lift of the particle sectors
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which is discussed in Ref. [18] to include the full content of
the theory. Here the [

r s t

a b c

]
are a set of complex coefficients that we call vertex lifting
coefficients (VLCs). Together with the branching coefficients
nt

a they completely specify the topological content of the
transition A → T → U . In Sec. V we go into the details of
how to actually calculate these numbers, which is a nontrivial
task that amounts to solving and checking a large number of
consistency conditions.

Note that once these numbers are known, it is a straight-
forward matter to express the topological data of the broken
phase in terms of the topological data of the unbroken phase.
At the end of this section we will give explicit formulas for the
F - and R-matrices (see Eq. (51) and (54)). However, first we
will study two important special cases of VLCs, that involve
the condensate as three respectively one of the T -fields.

1. Condensate vertex

For a given condensate ϕ = 0 + γ1 + · · · + γn the problem
starts with checking if the consistency conditions Eqs. (20)
and (22) can be satisfied. This amounts to finding VLCs for
the condensate,

φ
ij

k ≡ √
q

[
ϕ ϕ ϕ

γi γj γk

]
. (32)

From the fundamental fusion condition,

= , (33)

by transforming the left-hand side using the F symbols, one
obtains the equality∑

m

φkm
i

∗
φ

mj

l

[
F

γiγj

γkγl

]
γmγm′ = φ

ij

m′φ
kl
m′

∗
. (34)

We can now infer properties of the VLCs for the condensate by
specializing the above equation to certain choices of i, j, k, l,
and m′ (written this way the m has to be summed over,
although only m that are allowed by fusion contribute). The
φ00

0 , φi0
i , φ0i

i , φiı̄
0 (with the notation γı̄ = γ̄i) are not con-

strained by this equation. We require the obvious normalization

= , (35)

which imposes |φ00
0 | = |φiı̄

0 | = 1 [note the normalization
factor

√
q in Eq. (32) for the φ

ij

k as compared to the bare
VLCs]. One can in fact freely put φ00

0 ,φi0
i ,φ0i

i ,φiı̄
0 = 1 by the

gauge freedom of the VLCs discussed later [see Eq. (83)].

2. T particle propagators

The charge lines involving T anyons straightforwardly
lift to the original phase, but we should always think of
the interaction with the condensate. We can compute the
associated VLCs using the relations

t

t

=
t

t

t ,

t

t

=
t

t

t . (36)

We will refer to these diagrams as propagators as they can be
read as the propagation of a t particle in the condensed phase.

Using relations (36) we obtain

t
γ a

b ≡ √
q

[
ϕ t t

γ a b

]
, t

aγ

b ≡ √
q

[
t ϕ t

a γ b

]
. (37)

(Again we pull out the normalization factor
√

q; with this def-
inition we also have t0a

b = δab when a,b ∈ t and 0 otherwise.)
In fact, the equation on the right in (36) is trivially satisfied if
we define

t
aγ

b ≡ R
γa

b t
γ a

b (38)

or diagrammatically

t

≡

t

.
(39)

Of course this constitutes a choice: we could as well have taken
the inverse braid relation.

Let us also define

tab̄
γ ≡ √

q

[
t t̄ ϕ

a b̄ γ

]
. (40)

There are numerous relations between VLCs. Using

t

=
t

,

t

=
t

, (41)

and unitarity we find

tab̄
γ = [Fab̄

γ 0

]
bγ

tγ b
a

∗
, (42)

t
aγ

b = [F 0γ

āb

]∗
aγ

[
F āb

γ 0

]∗
b̄γ

t̄
γ b̄
ā . (43)

After determination of the complete set of t
γ a

b in fact all the t
aγ

b

and tab̄
γ follow immediately. In Appendix C, we present a full

list of diagrammatic relations and their symbolic equivalents,
like (41) and special cases thereof.

A particularly useful relation is the orthogonality condition

∑
a,b

(
dadbdt

drdsdc

)1/2 [
r s t

a b c

][
r s t ′
a b c

]∗
= δtt ′ ∀ c.

(44)
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This is derived by working out the diagrammatic inner product
in terms of VLCs:

t

r s

t

=
a,b,c

r s t
a b c

r s t
a b c

∗ c

a b

c

=
a,b,c

dadb

dc

1
2 r s t

a b c
r s t
a b c

∗

c

(45)

but also

t

r s

t

= δtt
drds

dt

1
2

t
= δtt

drds

dt

1
2

c∈t
c
.

(46)

Comparing the coefficients in front of the c-charge lines we
obtain (44).

Writing down a diagrammatic equality in T and checking
its content in A is a powerful means to reveal information. By
inspecting

t

= κt

t

(47)

for example, we find that �t = �a for all a ∈ t , so the restriction
respects the Frobenius-Schur indicators.

Finally, let us note that the condensate slides freely past
vertices, expressed, e.g., by

r s

t

=
r s

t

, (48)

such that it indeed behaves as a proper vacuum in the new
theory.

3. Topological data of the condensed phase

Using the VLCs it is straightforward to obtain the full
topological data of the T and U phases. We start from the
defining relations of the F symbols, namely

r s t

u

v =
w

[F rst
u ]vw

r s t

u

w
. (49)

In principle these F symbols in turn determine the F symbols
with two legs up and two legs down, but we can also directly
obtain those starting from

r s

t u

v
=

w

[F rs
tu ]vw

r s

t u

w . (50)

Expanding both sides using VLCs we obtain a relation
featuring both the F symbols of the A and of the T theory.
Finally we use the orthogonality relation (44) to derive the
closed expressions

[
F rst

u

]
vw

=
∑
abcef

[
r s v

a b e

][
v t u

e c d

][
s t w

b c f

]∗[
r w u

a f d

]∗
√

dadbdcdu

drdsdtdd

[
Fabc

d

]
ef

, (51)

[
F rs

tu

]
vw

=
∑
abcef

[
v s u

e b d

][
t u w

c d f

][
r s w

a b f

]∗[
t v r

c e a

]∗
√

dadbdcdd

drdsdtdu

(
dw

df

) [
Fab

cd

]
ef

. (52)

These expressions are valid for arbitrary T charges and
provide consistent fusion data. The fusion coefficients are

straightforwardly obtained as Nt
rs =

√
drds

dt
[F rs

rs ]ϕt .

E. Braiding and confinement in the condensed phase

In this section we discuss braiding and confinement in the
broken phase, which amounts to the difference between the
algebras T and U .

Diagrammatically, we take the condition for unconfined
sectors to be

u

u

=
u

u

for u in U . (53)

From the usual monodromy equation [Eq. (A32) in
Appendix A] we see that this is equivalent to θa = θb for

a,b ∈ u and yields no condition on the VLCs. The charges for
which (53) holds form a subset of the charges of T that are
closed under fusion, and the labels u,v,w, . . . usually refer to
this subalgebra U . There is no difference in this confinement
condition and that of Ref. [18].

The U theory has consistent braiding with R symbols,

Ruv
w =

([
u v w

a b c

]/[
v u w

b a c

])
Rab

c . (54)

It is now clear how the present work provides an alternative
route to obtaining the topological data for theories that are
produced by TSB, at least when the F and R symbols of the
original theory are known, such as is the case for SU(2)k .

For diagrams that involve nontrivial braiding, one would
expect that it is not allowed to do the evaluation on confined
charges. Nicely enough, these are automatically projected to
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zero. The following projection property holds [26,27]:

t

= δt∈U t (55)

(where δt∈U = 1 when t ∈ U and 0 otherwise). For unconfined
charges, this is a trivial consequence of the defining relation
(53). Expression (55) is equivalent to the equation

∑
a

n∑
i=0

∣∣tγia

b

∣∣2θa

√
dadγi

db

= θbδt∈U . (56)

The left-hand side turns out to be b independent, which is only
consistent with it not being zero when the θb are identical for
all b ∈ t . This is precisely the confinement condition.

As we can always attach a condensate bubble at a point in
the diagram, in diagrams with braiding we can usually slide
the condensate around until a configuration like (55) is reached
locally. This means, e.g., that

t = t = 0 for t confined.

(57)

The diagram on the left leads to the rather nice equation

∑
a∈t

daθa =
{

qdtθt for t unconfined

0 for t confined
. (58)

IV. EVALUATION OF DIAGRAMS
IN THE CONDENSED PHASE

Equations (51) and (54) give access to the full topological
data of the condensed phase (bulk and boundary) through the
VLCs, and using these, arbitrary diagrams can in principle be
evaluated. However, in practice it is often much more natural
to lift the diagrams directly and evaluate them using the data
of the A theory. This has the advantage that generally only a
small subset of the VLCs has to be known and, moreover,
it emphasizes the physical picture and reveals interesting
relations that remain hidden in the more indirect route.

In order to lift diagrams that contain more than one com-
ponent one has to draw vacuum exchange lines (VELs), that
describe the interaction of the particles with the condensate.
The full topological symmetry-breaking scheme may now be
understood in terms of the following commutative diagram:

Spectrum of A calculate−−−−−−−−→
F, R symbols

Operators in A

TSB

⏐⏐� VEL

⏐⏐�VLC

Spectrum of U calculate−−−−−−−−→
F, R symbols

Operators in U
(59)

We will now fill in the final gaps in the description of the
vertical arrow on the right, providing the details of how general
operators from U (and T ) are expressed in A.

A. A recipe for lifting diagrams

We first give the general recipe to lift diagrams and then
comment on each of its steps. Thereafter we discuss the
ingredient that had been missing up to now: when lifting
diagrams the appearance of the condensate has to be made
explicit.

(1) Draw a diagram in the U theory.
(2) Normalize the full diagram by a factor 1/q.
(3) Dress the diagram with vacuum exchange lines (VELs).
(4) Lift diagram: replace charge lines labeled by u,v, . . . by

the superposition charges
∑

a∈u a in A, and put in the VLCs
as weights for all the vertices in the expansion.

(5) Evaluate using the data of A.

1. Draw a diagram in U
This step is self-explanatory. We will assume in this section

that the diagram that needs evaluation is labeled by U charges
as we focus on the bulk properties of the anyon model. But, as
the theory projects diagrams that are not allowed for confined
charges automatically to zero, general T charges are in fact
allowed. Diagrams for physical observables are usually given
by a link, corresponding to a vacuum-to-vacuum expectation
value. These diagrams can be read as the creation of a (set of)
anyons, followed by some braiding pattern and the subsequent
annihilation of the anyons.

2. Normalize

The proper normalization turns out to be an overall factor
of 1/q for vacuum-to-vacuum diagrams, where q = dϕ is the
quantum embedding index. An easy way to establish this is
by considering the diagram for the quantum dimensions of the
condensate. Clearly, this should evaluate to 1 while a naive
evaluation leads to q. One can also say that there should
always be an additional condensate line connected to the top
and bottom since this is a vacuum-to-vacuum diagram in U .
Projecting these to the original vacuum 0 also gives the correct
factor 1/q.

3. Dressing of diagram with VELs

In this step we make sure that the diagram is connected by
attaching VELs (lines labeled by the condensate) between the
otherwise disconnected components.

Necessity of VELs. To see why this is necessary, remember
that the conditions on the condensate all basically boil down to
one thing: the new vacuum line should act as a proper vacuum
sector, i.e., one should be able to freely attach vacuum lines
to any diagram representing an operator expectation value.
Condensate lines starting on and ending on the same single
connected component of the diagram can always be removed
by applying the vacuum consistency conditions for the broken
phase, for example one has the sequence:

u

=
u

=
u
. (60)

For vacuum lines connecting two different components the
situation is slightly more subtle. If there are two condensate
lines connecting the components, then the endpoints of one of
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the condensate lines can only be shifted from one component
to the other using the second vacuum line:

u v

=

u v

=

u v

(61)

implying that it suffices to only draw single vacuum lines until
all components are directly or indirectly connected.

Consequently the necessity of the connecting condensate
lines can be viewed in two ways. One way is that, once the
connecting VELs are in place, we can freely connect other
condensate lines as is appropriate for the vacuum. They can
be annihilated by sliding them around until the endpoints meet
and we remove the bubble using (60). The evaluation of the
diagram remains the same. Here we assume that the lines in the
diagram are labeled by unconfined charges so that all braidings
with the condensate can be undone. Recall that the theory
takes care of confined charges in a natural way by projecting
diagrams that are not allowed to zero, so there is no loss of
generality here. The other way to think about the necessity
of the VELs is imagining that we must somehow take into
account all imaginable vacuum lines in the diagram. Then,
by the same logic, we can always effectively remove them
as long the resulting diagram stays connected. The physical
reason for the appearance of the VELs is clearly the fact that in
the condensed phase, the excitations will unavoidably interact
with the condensate.

We call a diagram where all components are connected by
condensate lines a dressed diagram. In previous work [7], we
had already identified such nontrivial contributions to the S

matrix in a lattice model and dubbed them vacuum exchange
diagrams.

VELs and linking. Charge conservation implies that when
a diagram can be separated in two unlinked components, the
connection by a VEL between the parts is in fact spurious,
if we agree to normalize the components by 1/q separately.
To see this, first imagine two processes X and Y separated
in time, each consisting of a set of creation, braiding, and
annihilation processes. These are represented by two separate
link diagrams drawn one above the other. The vertical VEL
that should be drawn according to the recipe can be removed
without changing the evaluation of the diagram,

X

Y

=
1
q

⎛
⎝

X

Y
⎞
⎠ . (62)

This fact is derived from the simple statement that tadpole
diagrams evaluate to zero for nontrivial charges,

a

γ

= δγ,0

a

. (63)

The same reasoning holds for diagrams separated in space,

X Y =
1
q

X Y . (64)

This type of diagram generally portrays operations on spatially
separated groups of anyons that do not lead to entanglement
between the groups. Hence, we see that the presence of the
condensate does not induce entanglement by itself.

For confined charges, the only nonzero diagrams are planar
and so here we do not need the VELs if we just put in a
normalization 1/q for all separate components.

4. Lift diagram

This is the step where the present work provides the
essential ingredients, such that diagrams can actually be
computed. The diagram in U is expanded in the A theory
by putting in the corresponding superpositions for the labels
u,v,w, . . . at the charge lines,

u
→

a∈u
a
, (65)

and, importantly, by putting in the VLCs as coefficients at all
the appearing vertices,

u v

w

→
a,b,c

u v w
a b c

a b

c

. (66)

The vertices can either appear because the original U diagram
contained vertices or because disconnected components are
now connected by VELs and thus have a vertex with the
condensate.

5. Evaluate using A data

Finally, we can evaluate the terms in the superposition by
making use of the F symbols and R symbols of A. This
way, the protocol expresses any vacuum-to-vacuum diagram
of the U theory in terms of VLCs and the F and R symbols
of the A theory. Generally, operators going from a set of U
anyons u1, . . . ,un to anyons u′

1, . . . ,u
′
m result in a complicated

superposition of operators on all the mixed combinations of
the aj ∈ uj to combinations of the a′

i ∈ u′
i .

B. General observables and splitting

Interesting observables are generally represented by dia-
grams of knotted and linked loops, representing creation of
anyon particle antiparticle pairs, some braiding pattern, and
annihilations of all the anyons. One example of such a diagram
is the topological S matrix. Charge conservations implies that
the VELs only give nonzero vertices with a boson γ and only
one charge a. The nontrivial contributions thus involve the
t
γia
a and t

aγi
a which are only nonzero for a that split when

γ �= 0. Hence only charges that split provide nontrivial VEL
contributions. The splitting of charges in the condensation is
thus tightly linked to interaction with the condensate and the
correct outcome for observables in the condensed phase.

Two basic examples

Condensed phase quantum dimension. As the quantum
dimensions of the theory are fundamental quantities, these
are the first objects that should be reproduced by our scheme.
They correspond to the evaluation of a loop. To lift such a
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diagram to A, all we need to do is take the superposition as no
vertices appear and a loop has only one component. This way
we obtain

dt = t =
1
q

a∈t

a =
1
q

a∈t

da. (67)

This can be shown independently [61]. From ϕ × a = t1 +
· · · + tn it is then also evident that da =∑i dti when a →
t1 + · · · + tn in the condensation. In other words, the quantum
dimension is conserved.

Condensed phase topological S matrix. It is convenient to
forget about the normalization by the total quantum dimension
of the topological S matrix for the moment, and simply take

Sab =
a b

. (68)

Following the general recipe, the S matrix of the T theory is
given by the diagram

Sst =
1
q

s t

. (69)

For convenience, we will specialize to the case ϕ = 0 +
γ . Identifying the contribution from the nontrivial vacuum
exchange lines yields the diagram

S̃ab ≡
a b

γ

=
c

[F ab
ab ]γc

θc

θaθb
dadbdc . (70)

This means that we may write

Sst = 1

q2

∑
a∈s

∑
b∈t

(
Sab + saγ

a
∗
t
γ b

b S̃ab

)
. (71)

V. CALCULATION OF VLCs

In the previous sections we defined the VLCs and gave
some relations between them. Here we will go into the details
of actually computing them by making use of diagrammatic
equalities listed in Appendix C.

We focus on the study of one-component condensates of
the form ϕ = 0 + γ , that either have or have not got a triple-
boson vertex. For these condensates the problem is completely
solved and we derive the general formulas. These cases already
contain all of the interesting physics (splitting, identification,
confinement) and show how intricately the VLCs are linked to
these properties. We work out a representative example of both
cases: the breaking of SU(2)4 to SU(3)1 and the breaking of
SU(2)10 to SO(5)1. We also show that an expected condensate
in a system with five layers of Fibonacci anyons does in fact
not satisfy the consistency condition.

A. General scheme

For simplicity we will assume a condensate of the form
ϕ = 0 + γ . The VLCs can be calculated in that case according
to the following scheme. We believe that the steps can be
extended to general condensates, but the technical details will
become more demanding.

First, one needs to calculate the φ
ij

k symbols that appear in
the lift of the triple-boson vertex. To do this, one needs to find
solutions to the diagrammatic equation (22), repeated here for
clarity:

= . (72)

Then, one has to solve the T propagators. It basically involves
finding solutions to equations of the form

t

t

=
t

t

t ,

t

t

=
t

t

t , . . . ,

(73)

where two of the four legs are the vacuum. A full list of these
consistency conditions is presented in Appendix C. For VLCs
involving the condensate on one of the legs, relations (42)
show that we only need to solve for the[

ϕ s t

γ a b

]
≡ t

γ a

b /
√

q.

When the VLCs for the condensate and for the condensate
hitting another charge are calculated the others can be obtained.
We exploit the following equations to calculate the others:

r s

t

=
r s

t

,
(74)

r s

t

=
r s

t

,
(75)

t

r s =
r s

t

. (76)

Expanding both sides of these equation using the VLCs yields
the eigenvalue equations∑

b′,c′
Ab′ c′

b c

[
r s t

a b′ c′

]
=
[
r s t

a b c

]
, (77)

∑
a′,c′

Ba′ c′
a c

[
r s t

a′ b c′

]
=
[
r s t

a b c

]
, (78)

∑
a′,b′

Ca′ b′
a b

[
r s t

a′ b′ c

]
=
[
r s t

a b c

]
, (79)
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with

Ab′ c′
b c = 1

q

∑
γ∈ϕ

s
b′γ
b

∗
t c

′γ
c

[
F

c′γ
ab

]∗
b′c

√
dc′dγ

dc

, (80)

Ba′ c′
a c = 1

q

∑
γ∈ϕ

rγ a′
a

∗
tγ c′
c

[
Fab

γ c′
]
a′c

√
dc′dγ

dc

, (81)

Ca′ b′
a b = 1

q

∑
γ∈ϕ

ra′γ
a

∗
s
γ b

b′
[
Fab

a′b′
]
γ c

√
da′db′

dc

. (82)

The eigenvectors of these matrices with eigenvalue 1 are
therefore proportional to the VLCs. To properly normalize
them, we use the three orthogonality relations (C4), (C5), and
(C6) in Appendix C. Note that one needs to simultaneously
solve (77), (78), and (79) to obtain a complete solution
including relative phases, which is not an easy task.

In fact, the VLCs are not completely fixed but retain a
residual gauge freedom. This is not to be confused with the
gauge freedom present in the F symbols related to a unitary
transformation in the elementary splitting spaces of the theory:
the F symbols ofA are gauge fixed in all of our considerations.
But still, we may redefine the VLCs according to[

r s t

a b c

]
→ ζ r

a ζ s
b

ζ t
c

[
r s t

a b c

]
, (83)

where ζ r
a are arbitrary phases but with the condition ζ r̄

ā = ζ r
a

∗.
In practice, we use this freedom to gauge fix the t

γ a

b .
A final overall phase freedom for the VLCs with r,s,t �= ϕ

remains, corresponding to the freedom in the T theory to
redefine elementary vertices by a phase.

B. Single boson without triple-boson vertex

The simplest class of condensates is clearly

ϕ = 0 + γ,

γ × γ = 0,
(84)

in other words, a simple current of order 2. The absence of a
triple-boson vertex means that the condensate vertex expands
as

= +
γ

γ

+
γ

γ

+
γ γ

.

(85)

By viewing (22) in the V
γγ
γ γ subspace, we find

γ γ
=

γ γ

γ γ

.

(86)

This implies that γ × γ = 0, dγ = 1 so that the absence of
a triple-boson vertex allows no other fusion rules than (84)
for γ .

1. T propagators

Our first objective is to obtain the t
γ a

b . The trick is to start
with the

tγ a
a = √

q

[
ϕ t t

γ a a

]
. (87)

Note that these are gauge invariant quantities, only nonzero
when a splits. The diagrammatic equations (73) lead, e.g., to

t
γ a

b

[
F 0a

γ b

]
γ a

= t γ̄ b
a

∗
,
∣∣tγ a

b

∣∣2 = [Fγa
γ a

]
0b

. (88)

For γ = γ̄ this leads to two solutions for t
γ a
a ,

t
γ a
±a = ±[F 0a

γ a

]∗1/2
γ a

, (89)

and since there is no gauge freedom left, these correspond to
the different particles in the restriction of a. We will write
these as t+,t−, so a → t+ + t− or ϕ × a = t+ + t−. Note
that splittings into more than two sectors do not occur for a
single boson condensate when we assume there are no fusion
multiplicities Nc

ab > 1. In general the maximum number of
charges a restricts to is limited to the number of bosons in the
condensate times the maximum fusion coefficient.

The modulus of the t
γ a

b follows straight from the right-hand
side of (88), while the left-hand side relates t

γ a

b with t
γ b
a as

γ is self-conjugate. Often, we can now use the VLC gauge
freedom to fix the phase of t

γ a

b to unity and the phase of t
γ b
a to

[F 0a
γ b ]γ a . A complication arises when t and a,b are self-dual,

because the gauge freedom (83) requires ζ t̄
ā = ζ t

a
∗. For this

case, the general equation

t
γ a

b

t̄
γ̄ ā

b̄

∗ = R
γ b̄
ā

[
F 0ā

γ b̄

]∗
γ̄ ā

[
F

0γ

bā

]
b̄γ

[
Fbā

γ 0

]
aγ

(90)

comes to help, which can be derived from the diagrammatic
equality

t
=

t
.

(91)

This equality is a result of the choice made in Eq. (38).
Choosing the inverse braid would have led to the condensate
line passing under the cap.

2. General VLCs

Finally, general VLCs are found using the eigenvalue
equations (74)–(76) and normalized using (44). Equation (76),
for example, simplifies in this case to

1

q

∑
a′∈r

b′∈s

([
Fab

a′b′
]

0c
+ ra′γ

a

∗
s
γ b

b′
[
Fab

a′b′
]
γ c

)[ r s t

a′ b′ c

]

=
[
r s t

a b c

]
. (92)

It may happen that the eigenvector we find is not unique, and
also the phase is not fixed by the normalization condition.
It appears that by cross checking with the other eigenvalue
equations (74) and (75) all information can be obtained.
Currently, we are busy implementing this scheme for the
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TABLE I. Data for SU(2)4. Top: quantum dimensions, topologi-
cal spins, and Frobenius-Schur indicator. Bottom: fusion rules.

SU(2)4

0 d0 = 1 h0 = 0 �0 = 1
1 d1 = √

3 h1 = 1
8 �1 = −1

2 d2 = 2 h2 = 1
3 �2 = 1

3 d3 = √
3 h3 = 5

8 �3 = −1
4 d4 = 1 h4 = 1 �4 = 1
1 × 1 = 0 + 2

1 × 2 = 1 + 3 2 × 2 = 0 + 2 + 4
1 × 3 = 2 + 4 2 × 3 = 1 + 3 3 × 3 = 0 + 2
1 × 4 = 3 2 × 4 = 2 4 × 3 = 1 4 × 4 = 0

family of SU(2)k theories for general condensates with a single
nontrivial boson.

Example: SU(2)4. Let us take SU(2)4, with charges
0,1,2,3,4 as an example. The fusion rules and other topological
data are gathered in Table I. There is one boson γ = 4 in the
spectrum, and it turns out that ϕ = 0 + 4 indeed satisfies all
the consistency conditions for a condensate. We have quantum
embedding index q = 2 in this case. The table ϕ × a reveals
the spectrum of the T theory,

ϕ × 1 = (1 + 3),

ϕ × 2 = 2+ + 2−,
(93)

ϕ × 3 = (1 + 3),

ϕ × 4 = (0 + 4),

i.e., we find four charges ϕ = (0 + 4), (1 + 3), 2+, and 2−
(parentheses emphasize that we mean elementary charges in
the T theory). The notation 2± signifies that the charge 2 splits
in the condensation into two distinguishable charges of T .
These both lift to 2, but differ in a sign in the VLCs involving
γ , clarifying the mechanism of the splitting of charges. Since
1 and 3 have different topological twists, the charge (1 + 3)
gets confined. The charges ϕ, 2+, 2− correspond to 0, 3, 3̄ of
SU(3)1 as has been noted in Ref. [18].

The procedure outlined above can be carried out by hand
or implemented algorithmically. To illustrate the outcome, let
us list the vertices for SU(2)4:

√
q

(1+3)

(1+3)

=
1
+

3
+ ei 5π

4
4 1

3

+ ei 7π
4

4 3

1

(94)

√
q

2+

2+

=
2
+

4 2

2 (95)

√
q

2−

2−

=
2
−

4 3

1 (96)

with q = 2. Note that the charge (1 + 3) is confined, but the
expansion of the vertex is perfectly well defined.

S matrix. The S matrix of SU(2)4 is

Sab =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
√

3 2
√

3 1√
3

√
3 0 −√

3 −√
3

2 0 −2 0 2√
3 −√

3 0
√

3 −√
3

1 −√
3 2 −√

3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (97)

while S̃ab is easily obtained,

S̃ab =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 2
√

3i 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠. (98)

Note that indeed the nonzero contribution comes from the
charge 2, which is the only charge that splits in the condensa-
tion SU(2)4 → SU(3)1. It is now straightforward to obtain Sst

from (71). We get

Sst =

s,t (0 + 4) (1 + 3) 2+ 2−
(0 + 4) 1 0 1 1
(1 + 3) 0 0 0 0

2+ 1 0 e2πi/3 e−2πi/3

2− 1 0 e−2πi/3 e2πi/3

,

(99)
and recognize (1 + 3) as the confined charge of T —its row
and column are identically zero. The residual matrix

Suv =

⎛⎜⎝1 1 1

1 e2πi/3 e−2πi/3

1 e−2πi/3 e2πi/3

⎞⎟⎠ (100)

is indeed the not yet normalized S matrix of SU(3)1. To obtain
the normalized unitary S matrix we divide by DU = √

3.

C. Single boson with triple-boson vertex

For the more interesting case when γ is not a simple current
we have

ϕ = 0 + γ,

γ × γ = 0 + γ + · · · .
(101)

The condensate vertex expands as

=
1
√

q

⎧⎨
⎩ +

γ

γ

+

γ

γ

+
γ γ

+ φ
γ γ

γ

⎫⎬
⎭ .

(102)
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The consistency condition (22) implies

φ

0

γ γ

γ
= φ∗

γ γ

γ

,

(103)

which gives the phase of φ as

φ

|φ| = ±[F 0γ
γ γ

]1/2∗
γ γ

. (104)

The choice of sign corresponds precisely to the gauge freedom
for the VLCs discussed above. We will choose the positive
sign by convention. The modulus can easily be induced by the
following instance of the consistency condition:

γ γ
+ |φ|2

γ γ

γ γ

γ
=

γ γ

γ γ

+ |φ|2
γ γ

γ γ

γ .

(105)

Rewriting the left-hand side using F symbols and solving for
|φ| yields

|φ| =
(

δ0c − [Fγγ
γ γ

]
0c[

F
γγ
γ γ

]
γ c

− δγ c

)1/2

. (106)

Equation (106) has to hold for any charge c from the theory A,
showing that it is a rather stringent condition on the condensate.
This way, we obtain

φ ≡ [F 0γ
γ γ

]∗1/2
γ γ

( [
F

γγ
γ γ

]
0γ

1 − [Fγγ
γ γ

]
γ γ

)1/2

. (107)

Note that this returns φ = 0 if N
γ
γγ = 0, in which case we

recover the situation discussed earlier.
The condition for the propagator (73) applied to t

γ a
a leads

to the general solution

t
γ a
±a = ±1

2

[
F 0a

γ a

]∗1/2
γ a

(
±[F 0a

γ a

]∗1/2
γ a

φ∗[Fγa
γ a

]
γ a

+
√[

F 0a
γ a

]∗
γ a

φ∗2
[
F

γa
γ a

]2
γ a

+ 4
[
F

γa
γ a

]
0a

)
. (108)

The choice of sign again leads to two distinguishable T
particles t±.

The t
γ a

b for a �= b can be solved subsequently. The t
γ a
a

appear in the solution for the general |tγ a

b |,2∣∣tγ a

b

∣∣ = √φ∗tγ a
a

[
F

γa
γ a

]
γ b

+ [Fγa
γ a

]
0b

. (109)

The phase is harder to compute. The consistency condition
implies (in fact for arbitrary condensates)

tγ b
a = [F 0a

γ b

]∗
γ̄ a

t γ̄ b
a

∗
. (110)

Due to the gauge freedom, one can often choose some of the
phases for t

γ a

b freely. The phase of t
γ b
a then follows from (110).

For self-dual particles Eq. (90) provides the phase up to a sign,
which is the residual gauge freedom in that case.

2One might worry choosing the wrong sign in t
γ a
±a when calculating

the t
γ a

±b . Choosing noncorresponding signs, however, just produces
t
γ a

b = 0.

TABLE II. The quantum dimensions, topological spins, and
Frobenius-Schur indicators for SU(2)10.

SU(2)10

0 d0 = 1 h0 = 0 κ0 = 1

1 d1 = 2 +
√

3 h1 = 1
16 κ1 = −1

2 d2 = 1 +
√

3 h2 = 1
6 κ2 = 1

3 d3 =
√

2 + 2 +
√

3 h3 = 5
16 κ3 = −1

4 d4 = 2 +
√

3 h4 = 1
2 κ4 = 1

5 d5 = 2 2 +
√

3 h5 = 35
48 κ5 = −1

6 d6 = 2 +
√

3 h6 = 1 κ6 = 1

7 d7 =
√

2 + 2 +
√

3 h7 = 21
16 κ7 = −1

8 d8 = 1 +
√

3 h8 = 5
3 κ8 = 1

9 d9 = 2 +
√

3 h9 = 33
16 κ9 = −1

10 d10 = 1 h10 = 5
2 κ10 = 1

(111)

Example: SU(2)10. An example of this more intricate case
is the SU(2)10 theory with charges labeled by integers from 0
to 10. The quantum dimensions, spins, and Frobenius-Schur
indicators are listed in Table II.

We will consider ϕ = 0 + 6. This time 6 ∈ 6 × 6 = 0 +
2 + 4 + 6 + 8 leading to nonzero φ. One can check, using
the general topological data for SU(2)k in Appendix B that
Eqs. (104) and (106) give the result φ = 21/4i. The condensate
vertex is therefore

√
q =

0 0

0

+
0 6

6

+
6 0

6

+
6 6

0

+ 21/4i
6 6

6 (112)

The table ϕ × a again reveals the spectrum of T (we use
brackets to group the charges accordingly):

ϕ × 1 = (1 + 5 + 7),

ϕ × 2 = (2 + 4 + 6 + 8),

ϕ × 3 = (3 + 7) + (3 + 5 + 9),

ϕ × 4 = (4 + 10) + (2 + 4 + 6 + 8),

ϕ × 5 = (1 + 5 + 7) + (3 + 5 + 9),
(113)

ϕ × 6 = (0 + 4) + (2 + 4 + 6 + 8),

ϕ × 7 = (1 + 5 + 7) + (3 + 7),

ϕ × 8 = (2 + 4 + 6 + 8),

ϕ × 9 = (3 + 5 + 9),

ϕ × 10 = (4 + 10).
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The U theory corresponds to SO(5)1 in this case [18], with
unconfined charges (0 + 6),(3 + 7),(4 + 10). The embedding
index is q = 3 + √

3.
The SU(2)10 vertices look messier, but the procedure to

obtain the coefficients is the same. We present the t
γ a
a parts of

the expansion, as these are most important in the calculation
of observables. The vertices for the unconfined charges are

√
q

(3+7)

(3+7)

=
i

21/4

6 3

3

− i

21/4

6 7

7

+ . . .

√
q

(4+10)

(4+10)

= − i21/4
6 4

4

+ . . .

(114)

while the vertices for the confined charges are

√
q

(1+5+7)

(1+5+7)

= i(2 −
√

3)1/4
6 5

5

+ i(14 − 8
√

3)1/4
6 5

5

+ . . .

√
q

(2+4+6+8)

(2+4+6+8)

=
i(−1 +

√
3)

23/4

6 4

4

+
i(−1 +

√
3)

23/4

6 6

6

+ . . .

√
q

(3+5+9)

(3+5+9)

= −i(14 − 8
√

3)1/4
6 3

3

− i(2 −
√

3)
6 5

5

+ . . .

(115)

The off-diagonal VLCs obey t
γ b
a

∗ = [F 0a
γ b ]γ at

γ a

b , but we will
not print them explicitly here.

Using these, we obtain the S matrix

Suv =

⎛⎜⎝ 1
√

2 1√
2 0 −√

2

1 −√
2 1

⎞⎟⎠. (116)

This is the same S matrix as the Ising anyon model. The
difference between the Ising model and SO(5)1 resides in the
spin of the nonsimple current (3 + 7) which is 5/16 for SO(5)1

and 1/16 in the Ising anyon model. (There is a whole family
of anyon models with the fusion rules of Ising [34].)

D. Noncondensable bosons

To appreciate the fact that the fusion condition on the
condensate yields nontrivial constraints, consider a system
with five layers of Fibonacci anyons all with the same chirality.
This is described by the product of five Fibonacci theories.

A single Fibonacci theory has a single nontrivial anyonic
charge τ with nontrivial fusion rule

τ × τ = 0 + τ. (117)

This fusion rule leads to the Fibonacci sequence when counting
the possible ways to fuse an increasing number of τ anyons

back to the vacuum. It implies that the quantum dimension of
τ equals the golden ratio

dτ = 1 + √
5

2
. (118)

It is possible to compute the F and R symbols by hand in this
case by using the constraints set by the pentagon and hexagon
relations [36]. The result is

F =
(

d−1
τ d

−1/2
τ

d
−1/2
τ −d−1

τ

)
Rττ

0 = e−i4π/5, Rττ
τ = ei3π/5

(119)

(where Fef = [F τττ
τ ]ef ). It follows that θτ = ei4π/4 and

�τ = 1.
Now take five copies of the Fibonacci theory. Charges are

now labeled (a1,a2,a3,a4,a5) with ai = 0,τ and all symbols
are multiplicative. The charge γ = (τ,τ,τ,τ,τ ) has θγ = 1. It
fuses to the vacuum, so any fusion product of γ ’s contains a
charge with trivial spin such that the conditions of the original
TSB scheme from Ref. [18] and as written in Sec. III A are
satisfied.

The trouble arises when we try to satisfy our diagrammatic
conditions. We have

γ γ

γ

= ei3π
γ γ

γ

,

(120)

which means we can never satisfy Eq. (20). We could try
to relax the condition on braiding but it turns out that the
condition on fusion also leads to problems. In particular, for
c0 = (0,0,0,0,0) and c1 = (0,0,0,0,1) we find

(
δ0c0 − [Fγγ

γ γ

]
0c0[

F
γγ
γ γ

]
γ c0

− δγ c0

)
=
√

1 + √
5

2
, (121)

(
δ0c1 − [Fγγ

γ γ

]
0c1[

F
γγ
γ γ

]
γ c1

− δγ c1

)
=
√

−2 +
√

5 (122)

such that Eq. (106) cannot be satisfied.
One must conclude that, although γ is a boson, it cannot

condense. It is in fact a mathematical theorem [62] that any
number of copies of Fibonacci theories with the same chirality
does not admit algebra objects, or in our language, stable
condensates.

VI. CONCLUSION AND OUTLOOK

In this work we studied Bose condensation in anyon models
in a graphical language. Based on the assumption that the
condensate acts as the vacuum for a new theory—constructed
as a subset of the diagrams of the parent phase—we find
consistency conditions on the condensate (equating it to a
Frobenius algebra in the context of MTCs). The diagrams
of the broken phase correspond to superpositions following
the identification of charges due to the condensate, but in
order to solve the consistency requirements on the condensate
and obtain the correct expansion of the diagrams one has
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to introduce vertex lifting coefficients (VLCs) governing the
expansion of the elementary fusion and splitting vertices. The
VLCs are the main interest of the present paper. They allow
for the explicit calculation of diagrams in the broken phase
and give access to the full topological data straight from the
formalism. We showed how one can obtain the VLCs in many
physically relevant cases and worked out illustrative examples.
In particular we did give the calculation in some detail for the
breaking from SU(2)4 → SU(3)1, and for SU(2)10 → SO(5)1

showing how the S matrix could be obtained.
Let us conclude with some comments on a number of topics

where we expect our findings to be useful.
Topological data. As mentioned before, the presented

results form an alternative route to the calculation of topo-
logical data (i.e., F symbols and R symbols) which is in
general a difficult task. It complements the route of explicitly
solving the hexagon and pentagon equations (which becomes
computationally demanding from typically five or six particle
types [35]) or using quantum group representation theory
which give access to SU(2)k and similar series. The results we
obtained in principle allows one to obtain all theories that can
be constructed from, say, some SU(2)k theory by condensing
the bosons (at least for condensates of the form ϕ = 0 + γ ).

We should also mention the computer program KAC [63] at
this point, which generates the fusion coefficients, conformal
weights, the S matrix, and some more data for rational
CFTs based on affine Lie algebras and their simple current
extensions. In Ref. [64] it is shown how KAC computes
the S matrix for simple current extensions. It is known that
conformal extensions can be reinterpreted as Bose condensates
[18] opening up a possibility to extend the functionality of
KAC. Further development of the technology presented in this
paper could in principle allow one to include the F symbols and
S matrix for general condensates by computing the VLCs, as
long as the F symbols for the parent theory are known. A fully
functional algorithm to compute the VLCs, however, needs
considerable additional work especially when ϕ �= 0 + γ .

Bulk-boundary correspondence. Until recently it was not
quite clear what the precise role of the T theory, which
appears “halfway” in the symmetry breaking formalism, was.
In particular the question which of the sectors in T are gapless
and which ones describe massive degrees of freedom has
been the subject of discussion [65,66]. Moreover, recently
[47] it was found that the existence of protected edge modes
that live between a topological phase and a vacuum depends
on the absence of a so-called “Lagrangian subgroup” in the
fusion algebra of the theory. The definition of this Lagrangian
subgroup coincides with our definition of a Bose condensate
for which the U theory becomes trivial (i.e., only the new
vacuum is unconfined), at least for the Abelian examples
discussed in Ref. [47]. We later argued [48] that the confined
charges (those in T but not U) appear on the boundary as
massive solitons while the unconfined charges correspond to
massless edge modes. The connection between gapless vs
gapped modes and the findings in Refs. [46–48] deserves more
attention with a possible role for the VLCs.

A related issue is the possibility of one-dimensional
condensates, as considered by Kong in Ref. [46]. These
are condensates that satisfy the fusion condition but not the
braiding condition, which can also occur in T -like theories that

have consistent fusion but no consistent braiding and therefore
only planar diagrams. Extending the formalism developed
in this paper one should be able to compute VLCs for this
type of condensates as well, leading to fully computational
diagrammatics.

Explicit models. In earlier work [7] we found that the
modular S matrix is a good quantity to characterize the
topological order of a phase of matter. For the models studied
in that work, discrete lattice gauge theories, it was possible
to measure the expectation value of the S matrix by inserting
a pair of quasiparticle world-line loops that formed a Hopf
link. One may wonder how general an order parameter the S

matrix is, since for many systems such an insertion might not
be possible. However, recently [67,68] it was pointed out that
one can also extract the S matrix from the overlap between
different ground states on the torus—an approach which can
in principle be applied to any quantum many-body system.
Since the present work enables the calculation of S matrices
in the different phases of a topologically ordered system one
may predict the value of this order parameter in phases that
are related to one another by Bose condensation.

The relevance of the present work to Levin-Wen (or
string-net) models [11] can be twofold. First of all, explicit
wave functions for the ground state of these models in terms
of tensor product states are known [69,70]. They are expressed
in terms of the F symbols of the underlying anyon model.
The phase diagram in these models contains states that are
related to one another by Bose condensation. Since the present
work allows one to relate the F symbols of two different
theories using VLCs, it may lead to explicit expressions for
the ground-state wave function in the presence of a Bose
condensate. Second, in this work we find expressions for
the F matrices of the T theory, in other words, F matrices
that satisfy the pentagon relations but not necessarily the
hexagon relations—the mathematical name for such a structure
is a spherical fusion category. The Hamiltonian of string-net
models does not necessarily require consistent braiding and
the F matrices we obtain for the T theory could therefore
serve as input. It is generally believed [12,46] that the TQFT
describing the topological order of such models is given by the
center of the spherical fusion category. In the mathematical
literature it is known that the center of our T theory equals
A × U [71]. Mainly the microscopic origins of the resulting
topological phase and the relation to Bose condensation are
very interesting from a physical point of view (see also
Ref. [49]).

Finally, a Lagrangian formulation of topological symmetry
breaking would be interesting. This would most naturally use
Chern-Simons theory or CFT as a starting point. The use of
more traditional field-theoretical language would give a lot
of physical insight concerning the connection to conventional
symmetry breaking. A difficulty is however the nonlocality
of the order parameters for topological order and at present
it is not quite clear how, say, a perturbing term driving the
transition can be included consistently. Partial progress was
made in [48] where the vertex operator expectation value on
the boundary was identified as an order parameter.

Despite the tremendous progress of the past few years,
the level of understanding of condensate-induced transitions
in topological phases is still far off from the level of
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understanding of ordinary symmetry-breaking phase transi-
tions, and the field is wide open for future research.
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APPENDIX A: ANYON MODELS

1. Particle spectrum

Fusion algebra. An anyon model A has a finite collection
of topological charges {a,b,c, . . . } (or anyons), which obey
fusion rules,

a × b = b × a =
∑
c∈A

Nc
abc. (A1)

We assume no fusion multiplicities: Nc
ab only to take the

values 0 and 1. In general they are non-negative integers which
introduces additional indices on the vertices to keep track of
fusion/splitting channel.

There is a unique trivial particle, the vacuum, which we
denote with 0 ∈ A. It has the property that 0 × a = a × 0 =
a for all a. Fusion is associative such that (a × b) × c =
a × (b × c) ≡ a × b × c. Each charge a ∈ A has a unique
conjugate charge ā ∈ A such that a and ā can annihilate:
a × ā = 0 + . . . . If some superposition of charges reads s =
a + · · · we use the notation a ∈ s (for example 0 ∈ a × ā).

An important number is the quantum dimension da of the
charge a, which is the largest eigenvalue of the fusion matrix
Na with components (Na)bc = Nc

ab. It is the asymptotic growth
of the dimension of the topological Hilbert space spanned by
anyons of charge a: take a fusion product of N anyons of charge
a then the dimension of the topological Hilbert for these anyons
approaches dN

a in the large N limit. The quantum dimensions
form a one-dimensional representation of the fusion algebra

dadb =
∑

c

Nc
abdc. (A2)

The total quantum dimension of the theory is defined as DA =√∑
a d2

a .
Propagator. To construct diagrams we associate a directed

line to each charge label a, representing the anyon propagating
in time (which we take flowing upward). Reversing the
orientation of a line segment is equivalent to conjugating the
charge, so

a
=

ā
. (A3)

The vacuum line is usually left out of the diagrams. When
made explicit, it is mostly drawn dotted.

Topological spin. The topological spin θa , also called twist
factor, is associated with a 2π rotation of an anyon of charge

a and is diagrammatically defined by the twisted lines

a

= θa

a

=
a

, (A4)

and

a

= θ∗a
a

=

a

. (A5)

When applicable, θa is related to the (ordinary angular
momentum) spin or CFT conformal scaling dimension ha of
a, by

θa = ei2πha . (A6)

In any case, it is often convenient to give ha instead of θa .

2. Fusion spaces

Operators on anyons are constructed from elementary
splitting spaces V ab

c , which are complex vector spaces of
dimension Nc

ab. We pick an element |a,b; c〉 for all V ab
c and

associate to it a vertex,

|a, b; c =
dc

dadb

1/4 a b

c

. (A7)

Note that |a,b; c〉 as well as the corresponding diagram are
necessarily zero when Nc

ab = 0 (and nonzero otherwise). The
normalization factor (dc/dadb)1/4 ensures that bending lines up
and down will at worst give a phase, so the evaluation of dia-
grams is maximally invariant under topological manipulations
[see Eq. (A25)]. We refer to the diagram on the right-hand side
of Eq. (A7) as a splitting vertex.

Dual to the splitting space we have the fusion space V c
ab =

(V ab
c )∗, with dual states 〈c; a,b| and fusion vertex

c; a, b| =
dc

dadb

1/4

a b

c

. (A8)

The splitting and fusion vertices are the elementary building
blocks for more complicated operators, that can be formed by
stacking them such that the charge lines connect. For example,
we can now write down the inner product 〈c; a,b | a,b; c′〉 as
an operator c → c as

c

a b

c

= δcc
dadb

dc
c

, (A9)

which encodes diagrammatically that anyonic charge is con-
served.

The identity operator on a pair of anyons with charges a

and b is

Iab =
∑

c

|a,b; c〉〈c; a,b|, (A10)
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which can now be written as

a b
=

c

dc

dadb

a b

a b

c . (A11)

All equations of diagrams can be applied locally in bigger,
more complicated diagrams to do calculations. The notation

V
a′

1...a
′
m

a1...an
is generally used for operators taking anyons a1, . . . ,an

to anyons a′
1, . . . ,a

′
m.

Unitarity. We will consider unitary theories only. The
conjugate of a diagrammatically given operator is obtained
by mirroring the diagram in the horizontal plane and then
reversing all arrows. Coefficients are complex conjugated, e.g.,

⎡
⎣A

a b

c

⎤
⎦
†

= A∗
a b

c

. (A12)

F symbols. Let us take the splitting space V abc
d . We can

represent the states in this space as superpositions of diagrams
of the form

a b c

d

e , (A13)

however we might as well have represented them using
diagrams of the form

a b c

d

e
. (A14)

These are merely two representations in terms of different
basis states. For consistency, the two representations have to
be related by a unitary transformation. This is an essential
piece of data for the anyon model captured in a set of so-
called F symbols.3 These are complex numbers [Fabc

d ]ef , that
implement the F move

a b c

d

e =
f

[F abc
d ]ef

a b c

d

f (A15)

(when the diagram on the right evaluates to zero, we take the
corresponding F symbol as zero as well). Unitarity amounts
to [(

Fabc
d

)†]
f e

= [Fabc
d

]∗
ef

= [(Fabc
d

)−1]
f e

. (A16)

The quantum dimension is related to the F symbols via

da = ∣∣[Faāa
a

]
00

∣∣−1
. (A17)

3These are analogs to the 6j symbols from the theory of angular
momentum and are sometimes called q6j symbols in the quantum
group context.

There is an important gauge freedom in the F symbols
corresponding to a choice of phase uab

c for all elementary
splitting vertices,

[
Fabc

d

]
ef

→ u
af

d ubc
f

uab
e uec

d

[
Fabc

d

]
ef

. (A18)

In order for the theory to be consistent, the set of F symbols
should satisfy the so-called pentagon equations,[

Ff cd
e

]
gl

[
Fabl

e

]
f k

=
∑

h

[
Fabc

g

]
f h

[
Fahd

e

]
gk

[
Fbcd

k

]
hl

(A19)

(see Refs. [34,35] for details).
It is extremely convenient to define F symbols for diagrams

with two-anyons coming in and two-anyons coming out,

a b

c d

e
=

f

[F ab
cd ]ef

a b

c d

f .

(A20)

With the use of (A11) and (A9) one may deduce

[
Fab

ab

]
0c

=
√

dc

dadb

Nc
ab, (A21)

[
Fab

cd

]
ef

=
√

dedf

dadd

[
Fceb

f

]∗
ad

. (A22)

These alternative F moves can be used to change a splitting
vertex with one leg bent down into a fusion vertex, etc. This
gives equalities like

0 c

a b

ā
= [F 0c

ab ]āc
a b

c

,

(A23)

and

a b

c 0

b̄ = [F ab
c0 ]b̄c

a b

c

,

(A24)

and so on. The symbols [F 0c
ab ]āc and [Fab

c0 ]b̄c are in fact phases.
An important case is when above manipulations are used to
straighten a charge line. This gives a factor �a ≡ [F 0a

a0 ]āa =
da[Faāa

a ]00:

a

a

ā
= κa a

.

(A25)

For most a these can be set to 1 by a gauge transformation
of the F symbols, but for self-conjugate charges it is a gauge
invariant quantity known as the Frobenius-Schur indicator. For
a = ā, one has �a = ±1.

For the expert reader we note that we do not use additional
flags in the cup and cap diagrams, but choose to make explicit
use of the Frobenius-Schur indicator to straighten charge lines.

Topological Hilbert space. Anyon models may be under-
stood as conventional quantum mechanics on the topological
Hilbert space. For a system with overall neutral anyonic charge
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containing anyons a1, . . . ,an this is the space V
a1...an

0 . General
states are of the form

|ψ =
a1,a2,a3,a4,c

ψa1a2a3a4c

(da1da2da3da4dc)1/4

a1 a2 a3 a4

c ,

(A26)
which may be thought of as the operator creating the state from
the vacuum.

3. Braiding

R matrix. A characteristic property of anyons is their
nontrivial exchange statistics. The effect of two anyons
switching places in the system is taken into account by the
braiding operators or R matrices, which are written as

Rab =
a b

, R†
ab = R−1

ab =
a b

.
(A27)

They are defined by their action on basis states of the
elementary spaces V ab

c captured in a set of R symbols Rab
c .

These lead to the diagrammatic R moves

b a

c

= Rab
c

b a

c

,

(A28)

and

b a

c

= (Rab
c )∗

b a

c

.
(A29)

The full braiding operator is then

a b
=

c

dc

dadb
Rab

c

b a

a b

c .

(A30)

A similar equation holds for the inverse operation. Note that
unitarity implies that (Rab

c )−1 = (Rab
c )∗. Also the following

relation has to hold:

θa = �a

(
Rāa

0

)∗
. (A31)

The effect of a double braiding—or monodromy—of two
anyons is governed by the monodromy equation

c

a b

=
θc

θaθb

a b

c

,

(A32)

which gives the operator identity

a b

=
c

θc

θaθb

dc

dadb

a b

a b

c .

(A33)

FIG. 1. Suspenders diagram: pictorial representation of the mon-
odromy equation (A32) (taken from Ref. [18]).

When thinking of the charge lines as ribbons, it is a matter of
topological manipulation to see that the monodromy equation
holds; see the so-called “suspenders diagram” in Fig. 1.

4. Evaluation of diagrams

Tensor product and entanglement. The tensor product of
two operators X and Y is given by the diagram

X⊗Y

...

...

...

...

= X

...

...

Y

...

...

.

(A34)

The notion of entanglement therefore has an appealing
graphical visualization: states or operators can be written as a
tensor product when they are equivalent to disjoint diagrams
without nontrivial charge lines connecting the parts. The
quantum trace of an operator X, denoted T̂r X, is constructed
diagrammatically by closing the diagram with loops that match
the outgoing lines on top with the incoming lines on the bottom
at the same position,

Tr

⎡
⎢⎢⎢⎢⎢⎣

X

a1 an

a1 an

...

...

⎤
⎥⎥⎥⎥⎥⎦

= δa1a1
. . . δanan

X

a1 an
...

...

...

...

.

(A35)
Topological S matrix. The topological S matrix is defined

as

Sab =
1
DA

a b

.

(A36)

It encodes a wealth of information about the theory A. By
applying the monodromy equation, we find

Sab = 1

DA

∑
c

Nc
ab

θc

θaθb

dc. (A37)

The theory is called modular when Sab is nondegenerate (and in
that case unitary). Together with the T matrix with coefficients

Tab = e2πic/24θaδab (A38)
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it forms a representation of the modular group SL(2,Z)
with defining relations (ST )3 = S2 = C and S4 = 1, where
Cab = δab̄ is the charge-conjugation matrix. Here c is the
topological central charge, which is equal to the central charge
of the corresponding CFT mod 24 when applicable. It can
be determined mod 8 from the twist factors and quantum
dimensions by the relation

exp

(
2πi c

8

)
= 1

DA

∑
a

d2
a θa. (A39)

The S matrix gives direct access to the quantum dimensions of
the charges and the total quantum dimension. The fusion rules
can be derived via the Verlinde formula

Nc
ab =

∑
x

SaxSbxSc̄x

S0x

. (A40)

The S-matrix elements can in principle be measured by certain
interferometry measurements [35,72,73]. It can also be used
as an order parameter for topological order [7,67]. Recently
it was used to determine the non-Abelian order in a model of
interacting lattice bosons.

APPENDIX B: TOPOLOGICAL DATA FOR
SU(2)k THEORIES

The SU(2)k theories have a particle spectrum that can
be understood as truncated versions of the representation

theory of SU(2). These theories are realized as TQFTs by a
Chern-Simons theory [9] with gauge group SU(2) and coupling
constant k. Mathematically, the information presented below
can all be cast in the form of the representation theory of the
q deformation of SU(2) with q = ei[2π/(k+2)].

The charges are labeled by integers a = 0,1, . . . ,k. The
fusion rules are given by

a × b = |a − b| + (|a − b| + 2) + · · ·
+ min{a + b, 2k − a − b}, (B1)

i.e., Nc
ab = 1 when |a − b| � c � min{a + b,2k − a − b} and

a + b + c = 0 (mod 2), and zero otherwise.
For the F symbols, one has the general formula

[
Fabc

d

]
ef

= ia+b+c+d
√

[e + 1]q[f + 1]q

{
a b e

c d f

}
,

(B2)
where

{
a b e

c d f

}
= �(a,b,e)�(e,c,d)�(b,c,f )�(a,f,d)

×
∑

z

{
(−1)z[z + 1]q![

z − a+b+e
2

]
q
!
[
z − e+c+d

2

]
q
!
[
z − b+c+f

2

]
q
!

1[
z − a+f +d

2

]
q
!
[

a+b+c+d
2 − z

]
q
!

× 1[
a+e+c+f

2 − z
]
q
!
[

b+e+d+f

2 − z
]
q
!

}
(B3)

with

�(a,b,c) =
√√√√[−a+b+c

2

]
q
!
[

a−b+c
2

]
q
!
[

a+b−c
2

]
q
![

a+b+c
2 + 1

]
q
!

, (B4)

[n]q! =∏n
m=1[m]q, [n]q = qn/2−q−n/2

q1/2−q−1/2 . (B5)

The sum over z should run over all integers for which the q

factorials are well defined, i.e., such that none of the arguments
become less than zero. This condition depends on the level
k. The expression for � is only well defined for admissible
triples (a,b,c), by which we mean that a + b + c = 0 (mod 2)
and |a − b| � c � a + b (we will take it to be zero for other
triples, implementing consistency with the fusion rules). Note
that � is invariant under permutations of its arguments.

The R symbols are given by the general equation

Rab
c = ic−a−bq(1/8)[c(c+2)−a(a+2)−b(b+2)], (B6)

which in turn gives a simple expression for the topological
spins,

θa = e2πi[a(a+2)/4(k+2)]. (B7)

The quantum dimensions of the theory are

da = sin
( (a+1)π

k+2

)
sin
(

π
k+2

) . (B8)

The topological central charge is c = 3k/(k + 2).
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APPENDIX C: VLC PROPERTIES AND RELATIONS (TABLES III–V)

TABLE III. One-to-one consistency conditions.

Diagrammatic equation Algebraic equation

t
=

a∈t
a

(C1)

t

=

t

=
t

1

q
b∈t γ∈ϕ

|tγa
b |2 dγdb

da
= 1 (C2)

t

= δt∈U
t

1

q
b∈t γ∈ϕ

|tγa
b |2 dγdb

da

θa

θb
=

1 if t ∈ U
0 if t /∈ U (C3)

t

r s

t

= δtt
drds

dt t
a,b

dadbdt

drdsdc

1/2

1/2

1/2

r s t

a b c

r s t

a b c

∗

= δtt ∀ c (C4)

r s

s

t = δss
drdt

ds s
a,c

dadcds

drdtdb

r s t

a b c

r s t

a b c

∗

= δss ∀ c (C5)

sr

r

t = δrr
dsdt

dr r
b,c

dbdcdr

dsdtda

r s t

a b c

r s t

a b c

∗

= δrr ∀ c (C6)

TABLE IV. One-to-two consistency conditions.

Diagrammatic equation Algebraic equation

t

≡
t

taγ
b ≡ tγa

b Rγa
b ∀ a, b ∈ t (C7)

t
=

t

tγa
b

t̄γ̄ā

b̄

∗ = Rγb̄
ā [F 0ā

γb̄ ]∗γ̄ā[F 0γ
bā ]b̄γ [F bā

γ0 ]aγ (C8)

t

=
t

[F 0a
γb ]γatγa

b = tγ̄b∗
a (C9)

t

=

t

[F aγ̄
b0 ]γbt

bγ∗
a = taγ̄

b (C10)

t̄

=

t̄

[F 0γ
āb ]aγtaγ

b = t̄āb
γ

∗
(C11)

t
=

t

[F bā
γ0 ]aγtγa∗

b = tbā
γ (C12)

s

r̄ t

r
= [F ϕs

r̄t ]rs
r̄ t

s

[F 0b
āc ]ab

r s t

a b c
= [F ϕs

r̄t ]rs
r̄ t s

ā c b

∗

(C13)

r s

t

s̄
= [F rs

tϕ ]s̄t

r s

t

[F ab
c0 ]b̄c

t s r

c b̄ a

∗

= [F rs
tϕ ]s̄t

r s t

a b c
(C14)
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TABLE V. Two-to-two consistency conditions.

Diagrammatic equation Algebraic equation

t

t

=

t

t

t [F γa
γb ]0c + φ∗tγa

b [F γa
γb ]γc = tγa

c tbγ∗
c (for a, b ∈ t and ϕ = 0 + γ) (C15)

t

t

=

t

t

t [F aγ
bγ ]0c + φtbγ∗

a [F aγ
bγ ]γc = taγ

c tbγ∗
c (for a, b ∈ t and ϕ = 0 + γ) (C16)

t

=

t
c

tγc∗
a tcγ

b [F aγ
γb ]cd = taγ

d tγb∗
d (C17)

t

= κt

t
c

tbā
γ t̄c̄a

γ [F γa
bγ ]c̄d = κtt

γa
d tbγ∗

d (⇒ κt =κa ∀ a ∈ t) (C18)

t

=

t
c̄

tac̄∗
γ t̄c̄γ

b̄
[F γγ

ab̄
]c̄d = δd0 + δdγφtab̄

γ

∗
(for ϕ = 0 + γ) (C19)

t

=

t

c

tγc
a

∗tcb̄
γ [F ab̄

γγ ]cd = δd0 + δdγφ∗tab̄
γ (for ϕ = 0 + γ) (C20)

r s

t

=

r s

t a

tγa
a

∗ r s t

a b c
=

c

tγc∗
c

r s t

a b c
(C21)

t

r s

=

t

r s b

sb γ
b

r s t

a b c

∗

=
c

tcγ
c

r s t

a b c

∗

(C22)

r s

= [F rs
rs ]ϕt

r s

r s

t [F rs
rs ]φt

r s t

a b c

r s t

a b c

∗

=
1

q
γ∈ϕ

ra γ
a

∗
sγb

b [F ab
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