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The Fisher information matrix (FIM) is a widely used measure for applications including statistical inference,
information geometry, experiment design, and the study of criticality in biological systems. The FIM is defined for
a parametric family of probability distributions and its estimation from data follows one of two paths: either the
distribution is assumed to be known and the parameters are estimated from the data or the parameters are known
and the distribution is estimated from the data. We consider the latter case which is applicable, for example, to
experiments where the parameters are controlled by the experimenter and a complicated relation exists between
the input parameters and the resulting distribution of the data. Since we assume that the distribution is unknown,
we use a nonparametric density estimation on the data and then compute the FIM directly from that estimate
using a finite-difference approximation to estimate the derivatives in its definition. The accuracy of the estimate
depends on both the method of nonparametric estimation and the difference �θ between the densities used in the
finite-difference formula. We develop an approach for choosing the optimal parameter difference �θ based on
large deviations theory and compare two nonparametric density estimation methods, the Gaussian kernel density
estimator and a novel density estimation using field theory method. We also compare these two methods to a
recently published approach that circumvents the need for density estimation by estimating a nonparametric f

divergence and using it to approximate the FIM. We use the Fisher information of the normal distribution to
validate our method and as a more involved example we compute the temperature component of the FIM in the
two-dimensional Ising model and show that it obeys the expected relation to the heat capacity and therefore peaks
at the phase transition at the correct critical temperature.

DOI: 10.1103/PhysRevE.93.023301

I. INTRODUCTION

The Fisher information matrix (FIM) is a measure of the
sensitivity of a probability distribution function (PDF) to the
value of the parameters θ on which it depends. We designate
the PDF as p(x; θ ), where x is either discrete or continuous
(and possibly a vector) and θ is a vector of continuous
parameters whose members we designate with Greek letter
indices. Then the FIM is given by

gμν(θ ) = 〈(∂μ ln p)(∂ν ln p)〉. (1)

Here ∂μ ≡ ∂/∂θμ and 〈·〉 is an average with respect to p(·; θ ).
It is a positive semidefinite matrix (in the case of multiple
parameters) or a positive number if only one parameter is
taken under consideration. In the theory of statistical inference
it quantifies the difficulty of estimating the value of θ from
a set of samples {xi}i=1,...,N through the Cramér-Rao lower
bound (CRLB) [1]. It is widely used in many domains of
science ranging from optimal experimental design [2] to
its interpretation as a Riemmanian metric on the statistical
manifold [3] and its relation to theories of phase transitions
[4–13] and complex systems [14–21].
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It is often the case that the distribution of the data is assumed
to have a certain form. Then it is possible, at least in principle,
to compute the FIM analytically from Eq. (1). However, even
this might turn out to be a formidable task and one must then
resort to numerical methods, such as the Monte Carlo based
method described in Ref. [22]. When an analytic expression
of the FIM is available, we estimate the FIM by estimating
the parameters of the PDF and plugging them into the known
expression. This we term “parametric estimation” of the FIM,
since it is estimated through estimation of its parameters from
the data.

We are interested in estimating the FIM in cases where
the parameters θ can be set precisely but the response of the
system to the parameters is complicated. This is the inverse
of the parameter estimation problem, since our interest lies in
the response of the system rather than in the determination
of the parameters. In these cases the FIM can be seen as
a generalized susceptibility measure [20]. In these settings
there seem to be two main paths to compute the FIM: either
directly from Eq. (1) by first estimating the density p(x; θ )
nonparametrically (hence “nonparametric estimation”) and
using a finite-difference approximation to the derivatives in the
definition (see Sec. III) or by estimating it indirectly through
its relation to a class of information divergences called f

divergences [23,24]:

Df [p(x; θ ),p(x; θ + dθ )] = 1
2gμν(θ )dθμdθν + O(dθ3).

(2)
Here summation is implied over repeated Greek indices.
Berisha and Hero [24] have very recently shown that it is
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possible to estimate the FIM by use of a statistic called the
Friedman-Rafsky two-sample multivariate statistic [25] that
converges to a type of f divergence known as an α divergence
in the limit of large numbers of samples. Their method
requires obtaining data at various parameter values around
θ , computing a Euclidean minimal spanning tree (EMST) of
the samples, and solving Eq. (2) for the FIM.

Other approaches to nonparametric estimation of FI primar-
ily deal with PDFs with locationlike parameters, i.e., p(x; θ ) =
p(x − θ ). There Huber [26] found a unique density with
minimal FI given a set of k � 2 samples from the cumulative
distribution function. Kostal and Pokora [27] adapted the
maximized penalized likelihood method of Good and Gaskins
[28] to compute the FI. Kostal and Pokora rejected the use of a
kernel density estimation (KDE) for the direct computation of
the FI because no appropriate bandwidth parameter to control
of the p′/p term in Eq. (1) is known [27].

In this paper we focus on two aspects of the problem of
nonparametric estimation of Fisher information (FI). We first
present a theoretical argument based on Sanov’s theorem [29]
for the optimal selection of the parameter dθ that is applicable
for both the density estimation approach and the f -divergence
approach. Second we show that a new Bayesian approach to
nonparametric density estimation called “density estimation
using field theory” (DEFT) accurately estimates the FI for
low data dimensions (so far DEFT is implemented for one
and two dimensions), compared with a more standard density
estimation method called Gaussian KDE and compared with
the f -divergence method of Berisha and Hero [24] (which we
refer to here as EMST).

The paper is organized as follows. In Sec. II we describe the
general problem of density estimation and introduce DEFT. In
Sec. III we define the finite difference approximation we use.
In Sec. IV we present a theoretical argument that guides the
selection of dθ . In Sec. V we show the results of numerical
experiments performed for the estimation of the univariate
normal distribution, whose FIM is analytically known and
therefore can form a benchmark for our method. We present
the results of estimating the FIM for the two-dimensional Ising
model as a more involved example where the sensitivity of the
distribution of energies to the value of the temperature can
be used to locate the critical temperature of the Ising model.
Finally in Sec. VI we give some final remarks about our results.

II. DENSITY ESTIMATION

The general density estimation problem [30] aims to obtain
the best estimate Qest of the distribution Qtrue given N inde-
pendently drawn samples. We distinguish between parametric
and nonparametric estimation. Parametric estimates constrain
Qest to depend on a few parameters that are estimated from
the data [31]. By the Cramér-Rao inequality [1] the inverse
of the FI is a lower bound on the variance of the estimated
parameters. FI is therefore often computed in the parametric
setting. In these cases the FI is computed analytically from the
assumed function.

When we do not assume a specific form for the PDF,
we estimate the density nonparametrically. Thus, the data
determine the shape of the distribution. Areas with higher
probability density will contain more data points than areas

with lower probability density. The main problem of non-
parametric methods is how to balance the goodness of fit
to the data and the smoothness of the estimated curve [30].
For example, kernel density estimators (KDEs) are a sum
over kernel functions with width h, positioned at each data
point, i.e., Qest(x) = (hN )−1 ∑N

i=1 K[(x − xi)/h], where xi

is a data point and K is a kernel function. The bandwidth h

controls the smoothness of the estimate. In the limit h → 0 the
estimate is a sum of delta functions at each data point; in the
limit h → ∞ it is uniform. Choosing the correct bandwidth
is therefore important. Taken too large, the estimate will hide
crucial features. If it is too small it will cause spurious peaks
in the estimate, especially for long-tailed distributions [30].
Important to this study, the amount of smoothing directly
affects the value of the FI. This can be seen from the definition
of the FIM Eq. (1) which depends on the derivatives of the
PDF. If, e.g., the estimated PDF Qest is smoother than the true
PDF Qtrue, the estimate for the FI will be smaller than the
true FI.

One elegant approach that derives the smoothness from the
data itself was proposed in Ref. [32]. The authors used field
theory to formulate the notion of a smoothness scale as an
high-frequency cutoff, treating the smoothness length scale �

as a parameter in a Bayesian inference procedure. They showed
that, in the large N limit, the data select an appropriate length
scale. Recently, this method was developed into a fast and
accurate algorithm called DEFT [33]. The algorithm was only
implemented in one and two dimensions, since it suffers from
the “curse of dimensionality” [33].

III. FINITE-DIFFERENCE APPROXIMATION

Our finite difference approximation is obtained by replacing
the derivatives in Eq. (1) with a centered derivative:

gμν(θ ) ≈
∫

p(x; θ + �θμ) − p(x; θ − �θμ)

2�θμ

× p(x; θ + �θν) − p(x; θ − �θν)

2�θν

dx

p(x; θ )
(3a)

≈
∫

ln p(x; θ + �θμ) − ln p(x; θ − �θμ)

2�θμ

× ln p(x; θ + �θν) − ln p(x; θ − �θν)

2�θν
p(x; θ )dx.

(3b)

Here �θμ indicates a change in the value of only one
parameter, θμ, keeping all other parameters fixed, i.e., θ +
�θμ ≡ (θ1, . . . ,θμ + �θμ, . . . ,θd ). The error introduced by
this replacement is proportional to O(�θ2/6) (for each deriva-
tive) as can be verified by performing a Taylor expansion.
Higher-order finite-difference schemes can be used but not, in
our experience, a lower-order one-sided derivative because the
estimate does not converge to the true value (data not shown).

To obtain all entries of the FIM we proceed in the following
way: first, obtain N samples at all parameter positions required
by Eq. (3). For the diagonal elements three parameter positions
are required (at θ and at θ ± �θμ). For the off-diagonal
elements five positions are necessary. Obtain a nonparametric
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estimate for each of those positions (using DEFT) and integrate
these estimates numerically.

There are several sources for errors in the estimation
resulting from this method. First of all, the replacement
of the derivatives with centered finite-difference derivatives
introduces an error that scales as �θ2, as mentioned earlier.
The second comes from the accuracy of the estimation of p and
is related both to the method of estimation and to the number N

of samples at each point. A third source of error occurs when
the densities are too close together to be distinguishable. We
discuss the balance between this error and the finite difference
error in the next section where we show that an optimum in
the selection of �θ exists.

IV. CHOICE OF �θμ

The value of �θμ strongly influences the accuracy of the
computation. Two sources of error determine the optimal �θμ:
the aforementioned numerical derivative error and the finite
sample size N . The first error, which scales like O[(�θμ)2],
becomes smaller with smaller �θμ. The second source,
however, becomes smaller when increasing �θμ. This happens
because a density estimate from a finite number of samples
is always underdetermined. Any estimate is one curve from a
group of curves that are close, but not equal, to the true density.
The larger the number of samples is, the smaller the size of
the group is. If �θμ is too small, the groups of the densities
in the numerical derivatives will overlap and the difference
p(x; θ + �θμ) − p(x; θ − �θμ) will be ill-defined. This leads
to one of our main results: since �θμ cannot be too small or
too large, there is an optimal value with minimal error between
the two extremes.

To estimate the curve group size and avoid overlaps, we
use large deviations theory. According to Sanov’s theorem
[29] the appropriate distance measure is the Kullback-Leibler
(KL) divergence:

DKL[Q||P ] ≡
∫

x∈X
Q(x) ln

Q(x)

P (x)
dx, (4)

which is defined for two densities P (x) and Q(x) where the
support of P and Q overlap. The probability that a set of N

samples independently drawn from P appears to be drawn
from Q is proportional to

exp(−NDKL[Q||P ]). (5)

In the limit of infinite sample size this tends to zero. For finite N

the set of distributions whose KL divergence with P is small
enough, such that this probability is finite, forms the curve
group. This can be interpreted as a hypersphere in parameter
space centered at θ with an N - and θ -dependent radius. To
minimize error, the radius at θ and θ + �θμ should be small
compared to �θμ. The ideal case is drawn schematically in
Fig. 1(a) with well-separated densities and in Fig. 1(b) where
�θμ is too small.

To compute the hypersphere radius we take P = p(x; θ )
and Q = p(x; θ + ε�θμ) in Eq. (5). We thus seek the density
Q at the edge of the hypersphere and parametrize it with ε,
the hypersphere radius in units of �θμ. The KL divergence of

(a) Well separated densities.

(b) Overlapping densities.

FIG. 1. Schematic drawing in one dimension with points of
estimation θ and θ + �θ . The gray area is the hypersphere. ε is
the radius of the hypersphere in units of �θ .

two neighboring distributions is approximately [34]

DKL[P (θ )||P (θ + ε�θμ)] ≈ ε2

2
gμν(θ )�θμ�θν = O(�θ2).

(6)

Inserting Eq. (6) into Eq. (5) we get

exp

[
− Nε2

2
gμν(θ )�θμ�θν

]
. (7)

If we define the boundary of the hypersphere as the point where
the probability is equal to e−1, we obtain the radius ε:

ε2 = 2

Ngμν(θ )�θμ�θν
. (8)

The radius depends on the number of samples N , θ , and �θμ.
At a given N and θ , increasing �θμ will decrease the radius
and thus increase accuracy.

As an analytically solvable example, we take the univariate
normal distribution N (μ,σ ). Its FI is as follows:

gμμ = 1

σ 2
; gσσ = 2

σ 2
; gμσ = gσμ = 0. (9)

We focus on the FI of σ , which is not a location parameter.
Inserting this in Eq. (8) yields

�σ =
√

2

ε2Ngσσ

= σ

ε
√

N
, (10)

with �σ ≡ �θσ . This guides the choice of �σ for a given N ,
σ , and desired radius ε. We can get the same result using the
Cramér-Rao inequality. The minimal variance of an unbiased
estimator for σ is 1/gσσ . Given N samples this equals σ 2/2N .
Demand that the variance of σ is equal to 1

2 (ε�σ )2 (the
factor 1

2 ensures a consistent definition of ε). This variance
is equivalent to a hypersphere radius of ε�σ . We then have
σ 2/2N = (ε�σ )2/2. Solving for �σ yields Eq. (10).

For real data the FI is unknown and can be estimated
iteratively. First compute the FI with �θμ that ensure a good
approximation of the numerical derivatives. Then use the FI
to compute ε. If it is too large (based on our simulations, up
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FIG. 2. A comparison between Gaussian KDE, DEFT, and EMST
for FI estimation. The top figure shows median FI estimates using
the different methods. Error bars represent 5 and 95 percentiles. The
bottom figure shows the relative errors. The values were computed
with N = 104, ε = 0.05, and 100 repetitions at each σ . The same
samples were used by all three methods. The KDE and EMST
estimates were shifted by ±0.02 along the σ axis for clearer
presentation.

to about ε ≈ 0.1 seems reasonable, see Fig. 4), increase �θμ

or N .

V. RESULTS

A. Fisher information of the Gaussian distribution

We demonstrate our main results by computing gσσ

from independently drawn normally distributed samples. We
first compare DEFT (with number of grid points G = 100,
smoothness parameter α = 3, and a bounding box twice the
interval between the smallest and the largest sample [33]),
KDE (using Scott’s rule for the bandwidth), and the EMST
method of Ref. [24]. We use the same samples with all three
methods and compute the FI. In the top plot of Fig. 2 the FI
estimate is shown. The black curve is the analytic value, the
green dots, blue ×’s, and red squares are the median estimates
after 100 repetitions (error bars are 5 and 95 percentiles)
for DEFT, KDE, and EMST, respectively. We use N = 104

for each density estimate and a value of ε = 0.05 since this
yields the best results (see Fig. 3). The KDE and EMST plots
are slightly shifted along the σ axis by ±0.02 for clearer
presentation but were computed at the same value of σ as
DEFT.

All three methods follow the analytic curve; however
from the relative errors it is clear that KDE consistently
overestimates the FI by about 40% and the distance between
5 and 95 percentiles is about 100% of the original value.
DEFT has zero bias and a spread of 30%−40%. EMST does
not suffer from the same bias as KDE but has larger error
bars. We conclude that in this example DEFT provides an
improvement over KDE and EMST both in the estimated value

0.05 0.20 0.40 0.60 0.80
ε

0

1

2

3

4

F
I−

g
σ

σ

g
σ

σ

σ = 0.5

σ = 1.0

σ = 2.0

σ = 5.0

σ = 10.0

0.020.040.060.08
−0.2

−0.1

0.0

0.1

0.2

0.3

FIG. 3. The median relative error as a function of ε for different
values of σ . FI stands for the computed value and gσσ the analytic
value. The shaded areas and error bars in the inset indicate the 5 and
95 percentiles computed over 100 repetitions of the computation with
N = 2 × 104.

and in the error margins. In the above computations we used
Eq. (3a) for computation with DEFT and Eq. (3b) for KDE,
because KDE was extremely unstable when computed using
Eq. (3a) while DEFT performed slightly better with Eq. (3a).
A few notes about the implementation of the EMST method
for our example are in order. In the one-dimensional case,
the Friedman-Rafsky statistic is simply the number of times
samples from two different distributions are adjacent when
arranged along the real line. Unlike Ref. [24] we only use
one perturbation �θ in our computation and solve the FI by
inverting Eq. (2), i.e., gσσ = 2Dα/(dσ )2. This emulates the
situation where obtaining the samples is relatively expensive
and therefore a one-shot estimate of the FIM is desirable. In
the Appendix we study the behavior of the EMST method at
different values of ε. The computation, at least in this way,
appears to be less stable than the use of DEFT and might
hint that at lower dimensions DEFT outperforms the EMST
method.

In the following we use DEFT exclusively for the density
estimation. To see how the error depends on ε we varied it at a
fixed N = 2 × 104 and plotted the relative error. We computed
the FI for σ = 0.5, 1, 2, 5, and 10. Each computation was
repeated 100 times at different ε and the median and 5 and
95 percentiles of the relative error ([gσσ − FI ]/gσσ , where
FI is the estimated FI) were computed. All curves have
the same functional dependence on ε and, as we predicted,
there is an optimal value for �σ , at ε ≈ 0.05. Thus the absolute
errors depend on σ through the combination in Eq. (8), as
shown in Fig. 3. All the curves have a minimum in the range
of ε ∈ [0.04,0.1]. At small ε they grow due to errors in
the numerical derivative (�σ too large). At large ε they
grow due to overlapping densities. The spread (the 90%

023301-4



NONPARAMETRIC ESTIMATION OF FISHER . . . PHYSICAL REVIEW E 93, 023301 (2016)

0.1 0.2 0.3 0.4 0.5
Δσ

1000
5000

10000
15000
20000

30000

40000

50000

60000

70000

80000

90000

100000

N ε
=

0.1

10−1

100

|gσσ−FI|
gσσ

10−1

100

FIG. 4. Relative error in the computation of the FI for σ = 1.0
as a function of both �σ and N . Computed using DEFT with 100
repetitions per point. Dashed line represents the ε = 0.1 line and the
dash-dotted line is the �σ = 0.35 line. Unlike the previous plots,
here we compute the absolute-value relative error to avoid problems
with the logarithmic color-bar scale.

interpercentile range) is minimal at ε = 0.05 as well. The
shaded regions in the plot represent the interpercentile range
of the various σ curves.

To verify the N and ε dependence of the errors we varied
both and computed gσσ . The result is presented as a heat
map in Fig. 4. The color represents the absolute-value relative
estimation error in logarithmic scale. The dashed line indicates
the ε = 0.1 line, which represents the highest value of ε where
good results are still obtained. The dash-dotted line represents
the �σ = 0.35 line. All computations were done with σ = 1.0
and 100 repetitions. The errors due to small �σ seem to follow
the ε = 0.1 curve, showing again the dependence of this type
of error on ε. Above �σ = 0.35 we see increasing errors due
to the large value of �σ . The best area for the estimation is
between the two lines.

B. Fisher information for the two-dimensional Ising model

One of the applications of the computation of FI from
samples is in detecting phase transitions [18]. As a further
validation we took the two-dimensional Ising model, which
is the prototypical model of a continuous phase transition.
It is a model of binary spins, si , on a square lattice with
nearest-neighbors interaction. Its Hamiltonian is

H = −
∑
〈i,j〉

Jij sisj − h
∑

i

si , (11)

where 〈i,j 〉 indicates the sum is on nearest neighbors, si = ±1
is the value of a spin at site i, Jij is the interaction energy,
and h is an external applied magnetic field. In more than one
dimension there is a critical order-disorder phase transition at

a finite temperature. Onsager [35] solved the model exactly in
two dimensions in the thermodynamic limit (infinite number
of spins) and at zero applied external field. The critical
temperature in the isotropic case (Jij ≡ J ) is

Tc = 2J

ln(1 + √
2)

≈ 2.269J. (12)

For simplicity we set J ≡ 1 and Boltzmann’s constant kB ≡ 1.
Prokopenko et al. [18] computed both the T T and hh

components of the FIM (computed for the Gibbs distribution
with θ1 = h and θ2 = T ) in terms of the susceptibility χT and
the specific heat Ch and showed that

gT T = Ch

T 2
; ghh = χT

T
. (13)

We therefore expect both to diverge as the system approaches
the critical temperature. In a finite system this means that the
FI peaks at the critical temperature.

To validate this result we simulate the Ising model and
compute the FI. We use the Metropolis-Hastings Monte Carlo
algorithm to obtain samples of the configuration energy with
the Gibbs distribution (at zero external field):

p(S; T ) = 1

Z(T )
exp [−βH(S,T ,h = 0)]. (14)

Here β = 1/T is the inverse temperature, S = {si}i=1,...,L2 is a
configuration of the spins on a L × L square lattice, and Z is
the partition function. Since the Gibbs distribution in our case
is L2 dimensional we cannot use DEFT to estimate it directly.
Instead we compute the temperature component of the FI of
the distribution of energies:

p(E) = 1

Z(T )
g(E) exp[−βE], (15)

where g(E) is the density of states. Since g(E) is independent
of the temperature it drops from the calculation of the FI and
we therefore expect Eq. (13) to still hold. We then estimate the
T T component of the FI using Eq. (3) with densities estimated
from the sampled energies. We also compute the specific heat:

Ch(T ) = 1

L2T 2
(〈E2〉 − 〈E〉2), (16)

where L2 is the total number of spins, E is the energy of
the configuration, and the average is performed over different
configurations at the same temperature.

We plot the result of both the FI and the specific heat
Ch computation in Fig. 5. The simulation is run on a
25 × 25 lattice of spins with periodic boundary conditions
in the temperature range [0.5,4.0] which we divide into 200
segments, leading to a parameter difference of dT � 0.17. We
repeat the simulation five times and compute the median and
5 and 95 percentiles. We use a warm-up period of 5 × 106

time steps and take N = 15 000 samples of the configuration
energy. We use DEFT (with G = 200, α = 3, and a bounding
box of [−4,1]) for the density estimation. Because the FI
depends on T , ε is not constant. Its median is ε = 0.12+0.12

−0.07 for
the values of ε which were not infinite. To verify that Eq. (13)
holds, we plot the ratio of the two sides of the equation. This
is presented in the inset in Fig. 5.
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FIG. 5. Blue continuous curve is the T T component of the FIM
and the green dots are the heat capacity in the two-dimensional Ising
model on a 25 × 25 grid. Shaded blue and green regions indicate the
5 and 95 percentiles computed from five simulations. The inset shows
the ratio of FI to heat capacity (gT T T 2C−1

h L−2) which according to
Eq. (13) is equal to 1 (black horizontal line in the inset).

VI. DISCUSSION

There are several technical points we wish to mention about
the implementation of the method. First, we performed the
same Ising computation with a smaller grid spacing (dT =
0.007). This led to a much worse signal-to-noise ratio because
the very close densities caused large peaks to occur, especially
in the low-temperature range. Second, it is important to find
the most suitable parameters for DEFT. If the bounding box is
too small or the number of grid points too small or too large,
the estimated density will have multiple peaks which are not
apparent in the data. Thus we recommend plotting the result
of DEFT together with a histogram for several data points to
make sure the convergence is good. Third, in the computation
of Eq. (3a) the term 1/p may contribute large values at very
small p. Equivalently with Eq. (3b), when p(x|θ ± �θ ) are
small, their logarithm will again be large. This requires the
introduction of a numerical cutoff. It is common practice to
set the contribution of a term where p(x) = 0 to zero [19]. We
thus introduced a cutoff such that if any of the estimates at a
particular point are less than the cutoff, the contribution of this
point to the integral will be zero. We investigated the effect of
this cutoff for a range of values between 10−20 and 10−2. The
value of the cutoff had very little effect. In the Ising model,
the only effect was to change the size of the low-temperature
region where the FI is exactly zero (the lower the cutoff was,
the smaller the region was). In producing Fig. 5 we used a
value of 10−10. Last, we mention that the plots in Fig. 5 are
obtained by the use of Eq. (3b).

In summary, the algorithm to compute the FI from samples
is the following. First obtain a good nonparametric estimate
of the density at each parameter point. When using DEFT,
make sure to adjust G, α, and the bounding box for proper

convergence. Second, find the appropriate parameter distance
�θ . This can be aided by computing the ε parameter. Third, if
necessary, use a cutoff for very low values of the probability
density. When using DEFT to perform the density estimation,
the procedure is limited by the limitations of DEFT. It is
especially important to note that so far DEFT has been
implemented in one and two dimensions. This is because the
number of grid points necessary to evaluate the density using
DEFT increases exponentially with the number of dimensions.
It is important to note, however, that this limits only the
dimensionality of the data, not the number of parameters or the
number of samples, which scales well to higher dimensions. A
software implementation in Python of the method is available
(see Ref. [36]).

ACKNOWLEDGMENTS

O.H.S. would like to thank Joan Massó and Antoni Arbona
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APPENDIX: COMPARISON OF KDE, DEFT, AND EMST
FOR DIFFERENT VALUES OF ε

Here we add additional comparison plots between KDE,
DEFT, and EMST for values of ε which are not the “optimal”
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FIG. 6. Comparison between the three methods reviewed in the
main text for ε = 0.1. All other parameters are equal to those in Fig. 2.
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FIG. 7. Comparison between the three methods reviewed in the
main text for ε = 0.2. All other parameters are equal to those in Fig. 2.

0.05. As we can clearly see, when ε is increased from 0.05
to 0.1 (in Fig. 6) the error bars for the EMST method
increase dramatically while DEFT remains quite accurate. This
becomes even more pronounced in Fig. 7 for ε = 0.2. In Fig. 8
we plot the error of the EMST method for various values
of σ as a function of ε. The errors increase dramatically in
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FIG. 8. A plot of the accuracy of EMST as a function of ε with
the same parameters as in Fig. 3.

comparison with DEFT as can be seen by the scale on the y

axis. One also sees in the inset the convergence of the method
for low values of ε (high �σ ) to a constant (about 0.57). We
believe this to be related to the convergence of the Friedman-
Rafsky statistic for large separations of the densities but leave
the exact study of this for future research.
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