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Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold
where flow ceases both for aerial granular flows dominated by inertia and for over-damped suspensions.
Concomitantly, the length scale characterizing velocity correlations appears to diverge at jamming. Here we
introduce a theoretical framework that proposes a tentative, but potentially complete, scaling description of
stationary flows. Our analysis, which focuses on frictionless particles, applies both to suspensions and inertial
flows of hard particles. We compare our predictions with the empirical literature, as well as with novel numerical
data. Overall, we find a very good agreement between theory and observations, except for frictional inertial flows
whose scaling properties clearly differ from frictionless systems. For overdamped flows, more observations are
needed to decide if friction is a relevant perturbation. Our analysis makes several new predictions on microscopic
dynamical quantities that should be accessible experimentally.
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I. INTRODUCTION

Microscopic description of particulate materials such as
grains, emulsions, or suspensions is complicated by the
presence of disorder and by the fact that these systems are
often out of equilibrium. One of the most vexing problems
is how these materials transition between a flowing and a
solid phase. When this transition is driven by temperature, it
corresponds to the glass transition where a liquid becomes a
glass, an amorphous structure that cannot flow on experimental
time scales. Here we focus instead on athermal systems driven
by an imposed stress, such as granular flows, and consider both
the case where inertia is important (such as in aerial granular
flows) or not (such as overdamped suspensions). We focus
primarily on the case of hard particles.

Empirical constitutive relations have been proposed to
describe such dense flows in the limit of hard particles
[1–3]. Two important dimensionless quantities are the packing
fraction φ and the stress anisotropy μ ≡ σ/p (also called the
effective friction), where σ is the applied shear stress and p the
pressure carried by the particles. For inertial flow, dimensional
analysis implies that both quantities can only depend on the
strain rate ε̇, p, the particle diameter D, and the mass density
of the hard particles ρ via the inertial number I ≡ ε̇D

√
ρ/p.

One finds empirically that the constitutive relations μ(I) and
φ(I) converge to a constant as I → 0, corresponding to the
jamming transition where flow stops. We define μ(0) ≡ μc

and φ(0) ≡ φc, which are system specific and will depend on
particle shape, poly-dispersity, friction coefficient, and so on.
Near jamming, the constitutive relations are observed to be
singular with:

δμ ≡ μ(I) − μc ∝ Iαμ, (1)

δφ ≡ φc − φ(I) ∝ Iαφ . (2)

*These authors contributed equally to this work.

As jamming is approached the dynamics becomes increas-
ingly correlated in space [4,5]. By considering the dominant
decay [6] of the velocity correlation function, one can define
a length scale �c:

�c ∼ I−α� . (3)

Similar dimensional arguments have been made for dense
suspensions of non-Brownian particles [7,8]. In that case the
relevant dimensionless number is the viscous number J =
η0ε̇/p, where η0 is the viscosity of the solvent. Empirically,
one finds similar relations:

δμ ≡ μ(J ) − μc ∝ J γμ, (4)

δφ ≡ φc − φ(J ) ∝ J γφ , (5)

�c ∼ J −γ� . (6)

These relations imply that the viscosity η = σ/ε̇ of the
suspension diverges as jamming is approached. Indeed Eq. (4)
implies that σ ∼ p near jamming (in our scaling arguments
below we may thus exchange freely σ and p), so J ∝ η0/η.
Equation (5) then implies that:

η

η0
∝ (φc − φ)−1/γφ . (7)

When both viscosity and inertia are present, a transition from
viscous to inertial flow occurs as strain rate ε̇ is increased at
fixed volume fraction [9–11]. This defines a crossover strain
rate,

ε̇v→i ∝ η0

ρD2
(φc − φ)γε̇ , (8)

where the prefactors follow from a dimensional analysis.
Empirical values found for the exponents in Eqs. (1)–(7) are

reported in Table I. They seem not to depend on dimension,
which we thus did not report in our table. In the case of inertial
flow they appear to depend on the presence of friction, whereas
for suspended particles exponents appear to be similar with
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TABLE I. Predicted critical exponents versus values from experiments and numerical simulations, with and without frictional interactions.
Underlined values correspond to the simulations presented in this paper. The values extracted in Ref. [14] correspond to simulations closest
to hard spheres (the “roughness parameter” of that reference is 10−4). When available, error bars are indicated by the notation 0.38(4) =
0.38 ± 0.04, 2.77(20) = 2.77 ± 0.20, and so on.

Regime Relation Prediction Experiment Frictionless sim’n Frictional sim’n

δμ ∼ Iαμ αμ = 0.35 1 [12] 0.38(4) [13] 0.81(3) [14], 1 [15], 1 [16], 1 [10]
Inertial δφ ∼ Iαφ αφ = 0.35 1 [12] 0.39(1) [13] 0.87(2) [14], 1 [16], 1 [10]

δμ ∼ N−αN αN = 1.19 1.16(4) [17]
L ∼ I−1/2 1/2 0.7 [4], 0.7 [1] 0.48 [13] 0.5 [1]

η ∼ |δφ|−1/γφ γ −1
φ = 2.83 2 [8], 2 [18] 2.6(1) [19], 2.77(20) [20],

2.2 [21], 2.5 [14], 2.77
Viscous δμ ∼ J γμ γμ = 0.35 0.38 [22], 0.42 [22,23], 0.5 [8] 0.37 [14], 0.25 [20], 0.32 0.5 [10]

δz ∼ J γz γz = 0.30 0.30
�c ∼ |δφ|−γ�/γφ γ�/γφ = 0.43 0.6(1) [5]

dL/dγ ∼ −L3 3 3
General εv ∼ L−2 ∼ J (−2,1) εv ∼ L−2, εv ∼ J [24]

ε̇v→i ∼ δφγε̇ γε̇ = 2.83 1 [9]

and without friction. In this work we focus on frictionless
particles and discuss open questions on frictional systems in
the conclusion.

Currently there is no accepted microscopic theory de-
scribing quantitatively these singular behaviors, in particular
Eqs. (1)–(7). Various works [25–27] propose to describe dense
flows by a perturbation around the dilute limit φ → 0. In
the case of dense suspensions, this corresponds to extending
the work of Einstein and Batchelor, who computed the first
corrections to the viscosity at larger density. For dry granular
flows, this corresponds to an extension of kinetic theory (a
priori valid in the gas phase) to the dense regime. However,
observations support that as jamming is approached, particles
form an extended network of contacts and that the stress is
dominated by contact forces [2,8,13]. In this work we propose
a framework to describe flow in such situations.

We attack the problem in two steps. First, we isolate the
microscopic quantities that control flow. Then we compute
the scaling properties of these quantities by performing a
perturbation around the solid phase. The idea is to consider the
solid in the critical state, i.e., carrying the maximal anisotropy
possible μ = μc, corresponding to a packing fraction φ = φc.
Next, one adds an additional kick to the system, corresponding
to a small additional stress anisotropy δμ. As a result,
some contacts between particles will open, forces will be
unbalanced, and the system will start to flow (see Fig. 1).
Our key assumption is that flowing configurations are similar
to a solid that is thus destabilized. As we will see, this
approach enables us to propose a full scaling description of
the problem and to predict the exponents entering Eqs. (1)–
(7) in good agreement with observations in the absence of
static friction. Moreover, our approach predicts several other
properties singular near jamming: the speed of the particles,
the strain scale beyond which a particle loses memory of its
velocity, and the coordination of the contact network. The first
two quantities are accessible experimentally and provide an
additional experimental test of our views.

In Ref. [28] three of us have already proposed to perform
a perturbation around the solid. However, this argument was
limited to overdamped suspensions and did not predict the

scaling relations entering in the constitutive relations Eqs. (1)–
(7). Moreover, a key aspect of the argument turned out to
be incorrect: it was assumed that when an additional stress
anisotropy is imposed, the contacts carrying the smallest forces
open. This assumption led to a scaling description for the
viscosity and several microscopic quantities in terms of an
exponent θ�, characterizing the distribution of weak forces
in packings. Later it was realized that only a vanishingly
small fraction of weak contacts are significantly coupled to
external stresses [29]. We call them extended contacts, because
perturbing such contacts mechanically lead to a spatially
extended response in the system, as shown in Fig. 2 [29,30]. In
a packing only those contacts lead to plasticity when stress is
increased or when a shock (say a collision) occurs in the bulk
of the material [29,31]. The density of extended contacts as a
function of the rescaled force f̃ = f/p in the contact follows:

P (f̃ ) ∝ f̃ θe . (9)

Numerically, it is found that θe ≈ 0.44 in both two and
three dimensions [29,30], suggesting that this quantity may
be independent of dimension. Moreover, its value does not
depend on the preparation protocol of the isostatic state:
up to error bars, equal values are found from compression

FIG. 1. (Color online) Illustration of solid destabilization: sev-
eral weak contacts, indicated by red dashed lines, are opened. This
induces a space of extended, disordered floppy modes, one of which
is shown (arrows). Line thickness indicates force magnitude in the
original, stable solid.
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FIG. 2. (Color online) Extended vs localized contacts. When a
contact is opened from an isostatic packing, the resulting deformation
(arrows) can either be extended, as shown at left, or localized,
as shown at right. Localized contacts are more numerous, but
only extended contacts couple strongly to an imposed shear stress.
Reproduced from Ref. [29] by permission of The Royal Society of
Chemistry (RSC).

of hard spheres [29], shear-jammed hard disks [28], and
decompression of soft spheres [30,32,33]. The exponent θe can
be shown to control the stability of the solid phase [29,34,35].
Recently replica calculations in infinite dimension on the force
distribution [32,36,37] led to the prediction [30]:

θe = 0.423 . . . , (10)

within the error bar of our measurements. In our proposed
scaling description all exponents can be expressed in terms of
θe, in particular:

αμ = αφ = γμ = γφ = 3 + θe

8 + 4θe

≈ 0.35, (11)

γε̇ = 8 + 4θe

3 + θe

≈ 2.83, (12)

α� = γ� = 1 + θe

8 + 4θe

≈ 0.15. (13)

Empirically, it was noticed that γμ = γφ and that αμ = αφ ,
which our arguments rationalize.

A. General approach

We argue that several dimensionless quantities that char-
acterize the microscopic dynamics under flow critically affect
rheological properties. As jamming is approached, the assem-
bly of particles acts as a lever: Due to steric hindrance, the
typical relative velocity between adjacent particles Vr becomes
much larger than the characteristic velocity ε̇D, where ε̇ is the
strain rate and D the mean radius of the particles [21,38]. We
thus define the amplitude of this lever effect L as:

L = Vr

ε̇D
. (14)

Another fundamental quantity, particularly relevant for inertial
flow, is the strain scale εv beyond which a particle loses
memory of its direction relative to its neighbors; εv can
be extracted from the decay of the autocorrelation function
〈V α

r (0)V α
r (ε)〉, where the average is made over all pairs

of adjacent particles α. A similar quantity was extracted
numerically in Ref. [24]. As the packing fraction φ increases
toward jamming, collisions are more frequent per unit strain
(due to the increase of relative particle motion L), and each
collision affects the motion of the particles on a growing length
scale. These two effects implies that εv vanishes rapidly near
jamming.

We now argue that dissipation is entirely governed by L
in overdamped suspensions and by both L and εv in inertial
flows. In both cases the power injected into the system at the
boundaries, which is simply P = �σε̇ at constant volume,
must be dissipated in the bulk.

In a dense suspension we expect dissipation to be governed
by local mechanisms such as lubrication. Lubrication forces
are singular for the ideal case of perfectly smooth spheres
but not for rough particles where they must be cut off. Thus
the viscous force exchanged by two neighboring particles
must dimensionally follow F ∼ η0VrD

d−2, leading to a
power dissipated P/N = Cη0V

2
r Dd−2, where d is the spatial

dimension, C is a dimensionless constant that depends on the
particle shape and roughness, and N is the number of particles.
Equating the power dissipated to the power injected, one gets
that for a given choice of particles:

η

η0
∝ 1/J ∝ L2, (15)

implying that the divergence of viscosity is governed by
L. This result holds by construction in simple models of
dissipation in suspension flows [21,38,39].

Concerning inertial flows, we suppose that the restitution
coefficient characterizing a collision between two particles is
smaller than 1 and that collisions dominate dissipation. Then
each time two neighboring particles change relative direction,
a finite fraction of their relative kinetic energy Ec ∼ MV 2

r

must be dissipated, where M is the particle mass. Then
the total power dissipated must follow P ∝ Nε̇Ec/εv . Using
Eq. (14) and balancing power injected and dissipated, one
gets σ/(ε̇2D2ρ) ∼ L2/εv , where ρ is the mass density of the
particles, so the inertial number I follows:

I ∼
√

εv

L . (16)

To our knowledge, Eq. (16) has not been proposed before and
could be tested empirically.

B. Organization of the manuscript

To obtain a complete description of flow, one must therefore
express L and εv in terms of control parameters such as
δμ or δφ. To achieve this goal, we make the assumption
that the contact network of configurations in flow is similar
to that of jammed configurations at μc immediately after
increasing the stress anisotropy by δμ > 0. The coordination
z of the network of contacts is a key microscopic quantity
that distinguishes flowing from jammed configurations. At
jamming the coordination is just sufficient to forbid motion,
corresponding to zc = 2d for frictionless spheres [40–42]. As
illustrated in Fig. 1, the kick of amplitude δμ opens a fraction
δz ≡ zc − z of the contacts, allowing collective motions of the
particles for which particles do not overlap but simply stay in
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contact, the so-called floppy modes. In Sec. II, we argue based
on simple geometrical considerations that the lever amplitude
is directly related to the density of floppy modes δz and obtain:

L ∼ δz−(2+θe)/(1+θe). (17)

In Sec. III we consider the evolution of contact forces with
stress anisotropy in a jammed packing and argue that the
number of contacts that open follows:

δz ∼ δμ(2+2θe)/(3+θe). (18)

Jointly, Eqs. (17) and (18) predict a relationship between level
amplitude and stress anisotropy:

L ∼ δμ−(4+2θe)/(3+θe) ∼ δμ−1.41. (19)

Equations (15) and (19) lead to a prediction for the exponent
γμ entering in the constitutive relation μ(J ). Together with
previous results showing that �c ∼ 1/

√
δz [6,43], one obtains

expressions for γ� and α�, corresponding to:

�c ∼ δμ−(1+θe)/(3+θe) ∼ δμ−0.41 (20)

both for inertial and viscous flows. In Sec. IV we investigate
the characteristic strain scale εv at which velocities decorrelate.
We compute the decay of stress occurring in between collisions
at fixed packing fraction, as well as the positive jump of stress
that occur when new contacts are formed. Stationarity then
implies that these two quantities must be equal in average,
leading to the prediction that in steady state:

εv ∼ 1/L2. (21)

Together with Eqs. (16) and (19) this result leads to a prediction
for the exponent αμ characterizing the constitutive relation
μ(I). One missing link to obtain a full scaling description of
the problem is how the packing fraction depends on other
control parameters. In Sec. V we make the additional as-
sumption that isotropic packings of frictionless particles in the
thermodynamic limit have a finite (although presumably small)
dilatancy. We show that this hypothesis implies the scaling
relation δφ ∼ δμ, known to agree well with observations. This
result enables us to predict the exponents αφ and γφ entering the
constitutive relation for φ(I) and φ(J ), leading to a complete
scaling description of rheological properties near jamming for
frictionless particles. In particular, the divergence of viscosity
with packing fraction in suspensions is expected to follow:

η

η0
∼ (φc − φ)−(8+4θe)/(3+θe) ∼ (φc − φ)−2.83. (22)

An outline of the logical relationships between the main
macroscopic and microscopic quantities is shown in Fig. 3.

microscopic

macroscopic I J

U L δzεv

δφδμ

�c

FIG. 3. Outline of logical relationships between main macro-
scopic and microscopic quantities, showing the key role that L and
δz have in relating control parameters to the shear rate. Dashed lines
indicate arguments that use an ansatz of flowing configurations being
similar to destabilized isostatic ones, whereas solid lines indicate
arguments independent of this assumption.

In Sec. VI we study the transition from viscous to inertial
flow. In Sec. VII we compare our results with previous
empirical and numerical observations. Overall, we find a
very good agreement between observations and predictions
for frictionless particles. We conclude by discussing open
problems, such as the influence of friction, which appears
to change exponents for inertial flows.

II. LEVER EFFECT L AND COORDINATION

To compute how the lever effect L depends on the deficit in
coordination δz, we again consider an anisotropic jammed
packing with z = zc and remove the δz weakest extended
contacts (our procedure is equivalent to instantaneously
eroding the surfaces of the particles making those contacts,
allowing particles to flow toward each other). The system can
now flow along floppy modes, i.e., collective motions along
which particles in contact remain at the same distance. These
floppy modes pervade the system [38].

Before the contacts were removed, forces were balanced
on every particle. A formal way to write force balance is the
virtual work theorem, recalled in Appendix 1. It states that for
any displacement field {δ 
Ri}, the work of external forces is
equal to the work of contact forces:∑

i


F ext
i · δ 
Ri = −

∑
ij

fij δrij , (23)

where fij > 0 is the contact force in the contact ij and
δrij is the change of distance between particles in contact,
δrij ≡ (δ 
Rj − δ 
Ri) · 
nij , where 
nij ≡ ( 
Rj − 
Ri)/|| 
Ri − 
Rj ||
and 
Ri is the position of particle i. We can use Eq. (23) for the
floppy modes that would appear if contacts were removed. For
floppy modes, δrij = 0 except for the fraction δz of the contacts
removed for which δrij < 0. On the other hand, external forces
are only present at the boundaries, and the left-hand side of
Eq. (23) corresponds to the work of the applied stress, which
for a simple shear reads �σδε, where � is the volume and δε

is shear strain. Overall, we get:

�σδε = −
∑

α

fαδrα ∼ Nδzδrf (δz), (24)

where the sum is on the Nδz contacts that were removed,
labeled by α. In Eq. (24) we estimated this sum by introducing
the characteristic magnitude of displacements in a floppy
mode, δr , and the characteristic force, f (δz), of the contacts
removed. It satisfies:∫ f (δz)/p

0
P (f ′/p)d(f ′/p) ∼ δz, (25)

leading to f (δz) ∼ pδz1/(1+θe). Together with Eq. (24) and
using that p ∼ σ near jamming, we get:

L ∼ δr

δε
∼ δz−(2+θe)/(1+θe). (26)

Equation (26) was first derived by some of us for some specific
models [44], a result that will be published elsewhere [31]. It
is important to note that our derivation should hold true for any
deficit in coordination δz, up to the smallest values it can take,
i.e., δz ∼ 1/N [corresponding to O(1) contacts removed]. The
same situation occurs for soft particles above jamming, where
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it was argued that the shear modulus G vanishes as G ∼ δz

with a scaling that holds up to δz ∼ 1/N [45], as confirmed
numerically [46]. In both cases this behavior traces back to
the fact that near isostaticity (i.e., z = zc), the physics is
governed by counting arguments [for example, the summation
in Eq. (24)], which apply irrespective of the magnitude of δz.
Henceforth, we assume that it is the case for quantities of
interest.

III. RELATION BETWEEN COORDINATION
AND STRESS ANISOTROPY

We now seek to determine the relationship between the
coordination deficit δz and the increment of stress anisotropy
δμ. In particular, we define the exponent:

δμ ∼ δzyμ . (27)

To compute the exponent yμ we consider jammed configu-
rations and estimate the increment of stress anisotropy δμN

required to open one contact, thus corresponding to δz ∼ 1/N .
For simplicity, we consider isotropic packings and use the
fact that at jamming the shear modulus of soft particles
is of order G ∼ 1/N [45–47]. We show in Appendix 2
that this argument is unchanged for anisotropic packings. In
Appendix 3, we provide another argument which does not
assume the behavior of G and considers strictly hard particles.
It uses simple geometrical considerations and an assumption
on the randomness of contact forces in packings.

Consider a packing of hard particles. For our purpose
it is convenient to approximate such hard particles by soft
harmonic particles of stiffness k in the limit where they
are not deformed, i.e., p/k → 0. A shear modulus can
then be defined that follows G ∼ k/N [45–47]. If a shear
stress increment δσ = p δμ is imposed at the boundaries,
contact forces will change by some characteristic amount
δf , leading to a characteristic change of energy δf 2/k in
contacts. The energy per particle δE stored in the system is
thus of the order δf 2/k. By definition of the shear modulus,
one must also have δE ∼ δσ 2/G ∼ Nδσ 2/k ∼ Np2δμ2/k.
Comparing these expressions, we obtain

δf ∼ pδμ
√

N. (28)

The first contact opens when δf becomes of order of the
smallest force in the system, fs , which satisfies

∫ fs/p

0
P (f ′/p)d(f ′/p) ∼ 1/N, (29)

where P (x) ∼ xθe , leading to fs ∼ pN−1/(1+θe). Equating this
expression with δf implies

δμN ∼ N−1/2−1/(1+θe), (30)

a result in excellent agreement with the numerics of Ref. [17].
Comparing Eqs. (27) and (30) for δz = 1/N we get

yμ = 3 + θe

2(1 + θe)
. (31)

IV. STRAIN SCALE IN FLOW

A. Connection between lever amplitude and force unbalance

It is useful to realize that the lever amplitude L directly
connects to the ability of the contact network to balance
forces. Denoting f as the characteristic amplitude of the force
in the contacts between particles and F as the characteristic
amplitude of the sum of these forces on one particle, we define
the dimensionless quantity:

U = F

f
. (32)

If forces are balanced as in a static granular assembly,
then obviously U = 0, a limit that is reached continuously
as jamming is approached. Using the fact that a flowing
configuration has deformation modes permeating the system,
it is possible to show (see Appendix 1) that, independent of
the presence of inertia, the power done in deformation can be
written as

P =
∑

i


Fi · 
Vi, (33)

where 
Fi is the vectorial sum of the contact forces on
particle i and 
Vi is its velocity. It is useful to decompose

Vi into the motion of the particle relative to its neighbors 
V r

i

and the convection 
V c
i of the region of the system surrounding

particle i, which includes in particular the mean velocity of
the flow, the so-called affine velocity. Galilean invariance and
isotropy of space imply that the local force and the affine
velocity are not correlated on average, and we expect in general
that 〈 
Fi · 
V c

i 〉 ≈ 0 [48]. However, for generic dissipation
mechanisms, 
Fi and 
V r

i are correlated, so on average 
Fi · 
V r
i >

0. Equation (33) thus implies P ∼ NFV r ∼ NUfLε̇D.
Recall that the power injected at the boundary is P = �σε̇.
Using f ∝ σDd−1 we get P ∼ �f ε̇D1−d . Comparing these
two expressions for the dissipated power leads to

L ∼ 1/U . (34)

B. Decay of L at fixed coordination

The force unbalance U increases with strain as the particles
are convected with no contact creation at fixed volume, as long
as contact forces are positive (which is always true for purely
repulsive particles). This effect can be illustrated in the simple
example of a nearly straight line of connected rigid rods.U = 0
if the line is completely straight but increases as the line is
compressed and forms a zigzag. However, if the line is pulled,
contact forces are then negative, and U decreases toward zero.
The explanation for this fact stems from a simple geometrical
consideration: As one particle i moves, the direction of its
contacts 
nij tends to turn away from the direction of motion.
Since the resultant of the contact force is 
Fi = −∑

ij fij 
nij ,
the projection of the force on the direction of motion increases
if contact forces are positive. Because for a generic dissipation
mechanism one expects that 
Fi and the particle velocity with
respect to its neighbors 
V r

i are correlated, the norm of the
unbalanced force grows in average. This effect is proportional
to the change of orientation of the contact, itself proportional
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FIG. 4. (Color online) Typical stress vs strain curve for flow of
rigid particles, showing intervals where stress relaxes smoothly,
punctuated by instantaneous collisions (vertical segments).

to 
V r
i and thus to the lever amplitude L, leading to:

∂U
∂ε

∼ L, (35)

which simply means that the faster the motion, the faster forces
become unbalanced. Equations (35) and (34) then imply

∂L
∂ε

∼ −L3. (36)

C. Consequence of stationarity

Equation (36) was argued for in Ref. [6] for a specific model
of suspension flow, where it was noticed that Eq. (36) indicates
the presence of a characteristic strain scale εη ∼ 1/L2, for
which the viscosity would decay by a finite amount if no
contacts were created. At fixed volume, this effect leads to a
decrease of stress between collisions apparent in simulation,
see Fig. 4. We now use a finite-size scaling argument to argue
that the velocities decorrelate on the same strain scale, i.e.,
εv ∼ εη (we will give elsewhere an alternative derivation of
this result for a specific model of flow [31]).

To do so we consider a system with only a few floppy modes,
corresponding to δz ∼ 1/N . As discussed above we still expect
scaling relations to hold in that situation. In such a system, the
lever amplitudeL decreases in between collisions, as described
by Eq. (36). However, a collision can decrease the number of
floppy modes by adding one contact and thus increaseL. Since
the relative fluctuations of the number of floppy modes in a
subsystem are of order 1, and using that this number andL have
a power-law relation (26), a collision must locally change L
by �L ∼ L. In a stationary state, any such increase of L must
be compensated by the decrease of L in between collisions.
According to Eq. (36), this can occur only if the collision rate
in the subsystem is εη ∼ 1/L2. Collisions result in a change
in the nature of floppy modes and must therefore decorrelate
the particles velocities by some finite fraction [49], implying
εv ∼ εη and therefore Eq. (21). This prediction agrees very
well with numerical models of suspension flows [24], as we
shall confirm with new data in Sec. VII.

V. PACKING FRACTION

We now provide a finite-size scaling argument supporting
that δφ ∼ δμ. In Eq. (30) we computed the increment of stress
anisotropy required to open one contact in a jammed solid,
δμN . We will argue that, on average, opening one contact
triggers an avalanche, leading to a mean change of packing

fraction:

〈δφN 〉 ∼ δμN. (37)

From this result we argue that δφ ∼ δμ as follows. Consider an
infinitely large packing at μc, and increase the stress anisotropy
by some δμ > 0. As argued in Eqs. (27) and (31), this will
open δz contacts. We may next cut the system in subsystems of
volume �FS ∼ 1/δz. Following the opening of ∼O(1) contact,
each subsystem will change its packing fraction by some
amount δφ�FS . The average of this quantity will determine the
change of packing fraction δφ in the entire system. According
to Eq. (37) this average is simply δμ, leading to the desired
result δφ ∼ δμ.

To prove Eq. (37), we consider the plasticity of a stable
packing of N hard particles, i.e., with μ < μc. Let us assume
that the stress anisotropy cycles adiabatically between −μ1

and μ1, where μ1 is smaller than, but of order, μc. We expect
that in the thermodynamic limit, the packing fraction will be
minimal at μ = 0, and we shall assume that it rises to a finite
(although presumably numerically small [13]) amount �φ for
μ = μ1. As μ is changed adiabatically, avalanches will be
triggered when the force in a contact vanishes, as numerically
investigated in Ref. [17]. There must be of the order Na ∼
μ1/δμN ∼ 1/δμN avalanches between μ = 0 and μ1. Thus
an avalanche leads to an average change of packing fraction
〈δφN 〉 ∼ �φ/Na ∼ δμN , i.e., Eq. (37).

Note that Eqs. (27), (31), and (37) imply a relationship
between coordination and packing fraction:

δz ∼ δφ1/yμ , (38)

with 1/yμ ≈ 0.83.

VI. VISCOUS TO INERTIAL TRANSITION

Experiments [9] and simulations [10,11,50,51] report a
transition from viscous to inertial flows as the strain rate ε̇

is increased at fixed packing fraction. For hard frictionless
particles, the location of this transition can be computed
precisely in our framework. The total power dissipated Ptot

has a contribution from the viscous drag (P ∝ Nη0L2ε̇2,
as discussed in the introduction) and from collisions (P ∝
Nε̇Ec/εv ∼ Nε̇3ML4, where we used εv ∼ 1/L2). Thus one
gets

Ptot ≈ NC1η0D
d−2L2ε̇2 + NC2Mε̇3L4, (39)

leading to a crossover strain rate ε̇v→i above which dissipation
is dominated by collisions:

ε̇v→i ∝ η0D
d−2

ML2
∝ η0D

d−2

M
δφ1/γφ ∼ η0

D2ρ
δφ2.83. (40)

The stress scale σv→i at which this crossover occurs is thus
σv→i ∼ η(φ)ε̇v→i ∼ η2

0/(D2ρ), which is independent of φ.
Thus the regime of strain rate where inertia is negligible van-
ishes rapidly when the jamming transition is approached [50].
Equating the total power dissipated of Eq. (39) with the power
injected P ∼ �σε̇, one gets the following scaling form for the
viscosity η ≡ σ/ε̇:

η

η0
= δφ−1/γφ f

(
ε̇

ε̇v→i

)
, (41)
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FIG. 5. (Color online) Numerical verification of scaling relations in the ASM. (a) Stress anisotropy μ vs viscous numberJ . Theory predicts
an exponent 0.35. (b) Volume fraction φ vs viscous number J . Theory predicts an exponent 0.35. (c) Coordination deficit δz vs viscous number
J . Theory predicts an exponent (1 + θe)/(4 + 2θe) ≈ 0.30.

where the scaling function f satisfies f (x) ∼ x0 as x → 0 and
f (x) ∼ x as x → ∞.

VII. COMPARISON WITH OBSERVATIONS

A. Suspension flows

1. Simulations

Scaling behavior described by Eqs. (4), (5), and (7) has
been precisely characterized in simple numerical models of
suspension flow, in particular for frictionless particles [5,19–
21,38]. The divergence of viscosity yields an exponent 1/γφ ∈
[2.5,2.8] for the most recent data with the largest system
size, in quantitative agreement with our prediction 1/γφ =
2.83. The exponent γμ characterizing the stress anisotropy
lies between γμ ∈ [0.25,0.37], consistent with our prediction
γμ = 0.35. Measurements of the correlation length exponent
in terms of the packing fraction are scarce and not very
recent (see Ref. [6] for measurement of length scale versus
coordination), and it would be valuable to have more accurate
measurements. Olsson and Teitel reported γ�/γφ = 0.6(1),
in reasonable agreement with our prediction, γ�/γφ = 0.43.
Coordination was measured in a quasistatic simulation using
soft particles [52], finding δz ∼ δφ. This observation, which
was performed over a very limited range, is consistent with
our prediction δz ∼ δφ0.83 [Eq. (38)].

To supplement these results, and to show that we correctly
describe the scaling behavior of microscopic observables

not easily measured in experiments, we have performed
simulations in a simple model of suspension flow. This
model is used by various authors and is a variant of the
bubble model of Durian, except that particles are hard. We
dubbed it the affine solvent model (ASM) [38], as in this
model the solvent is assumed to flow in an affine way,
unperturbed by the particles. Thus hydrodynamic interactions
are neglected, and damping occurs when particles move with
respect to the solvent. Observations indicate that the singular
behavior is preserved when more realistic lubrication forces
are considered [13,21,39], in agreement with our framework.
We simulated steady-state shear of 50:50 binary mixtures of
N = 1000 particles in three dimensions, with the ratio of
diameters of the large and small particles chosen to be 1.4.
We collected data under both constant pressure and constant
volume setups; see Ref. [53] for details about the simulation
methods. Our most accurate results on the exponents γμ and
γφ , shown in Figs. 5(a) and 5(b), give exponents γμ = 0.32
and γμ = 0.36, within error bars of our prediction 0.35. In
Fig. 5(c) we show that the coordination deficit δz ∼ J 0.30 is
also quantitatively predicted.

In Fig. 6 we show the fundamental relations among
microscopic quantities L, J , εv , and dL/dγ . As predicted,
these show that in the ASM L ∼ J −1/2 and dL/dγ ∼ L3.
In Fig. 6(c) we show the autocorrelation function C(γ ) =
〈Vr (0)Vr (γ )〉, a function of shear strain γ , for various values
of dimensionless pressure p = 1/J . These data are collapsed
in Fig. 6(d) by plotting versus γL2, indicating that relative
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FIG. 6. (Color online) Numerical verification of kinematic scaling relations in the ASM. (a) Lever amplitude L vs viscous number J .
Theory predicts an exponent −1/2. (b) Relaxation of lever amplitude in between collisions. Theory predicts dL/dγ ∼ −L3. [(c) and (d)]
Autocorrelation of relative velocities C(γ ) vs strain γ . Panel (d) shows a scaling collapse of C(γ ), indicating the presence of a strain scale
εη ∼ L−2, as predicted.
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FIG. 7. (Color online) Divergence of suspension viscosity as
measured in experiments of Ovarlez et al. [18] and Bonnoit et al. [54]
(symbols), compared to our prediction η ∼ δφ−2.83 (solid). In these
works the best-fit exponent was ≈2 when fitted on a large range of
packing fraction. However, the prediction 2.83 appears consistent
with data close enough to φc.

velocities lose their memory after a strain scale εv ∼ L−2, as
predicted.

In the literature, a wide variety of drag models have been
considered. To be in the overdamped universality class, motion
along floppy modes must be damped. When the drag is purely
associated to longitudinal motion between particles in contact,
or nearly in contact, the flow curves depend on the gap cutoff
below which this drag is applied: inertial when only touching
particles dissipate energy [11] and viscous otherwise [50].
This observation, which has been interpreted as a failure of
universality, is natural from the present approach, since motion
transverse to contacts dominates near jamming.

Thus model hc = 0 in Ref. [50] and model CDn in Ref. [11]
are inertial, while the other models considered therein are
viscous.

2. Experiments

Experiments on frictionless hard-particle systems near
jamming are scarce, but this regime is accessible in foams.
Foams are good systems to test result on hard spheres, as long
as the shear stress is not sufficient to deform them significantly.
In inverse avalanches it was that observed γμ = 0.38 [22],
consistent with our prediction γμ = 0.35.

Most experiments are done with grains, i.e., frictional
particles. It is often reported that the divergence of viscosity
give an exponent 1/γφ ≈ 2 [8,18], which may differ from
our prediction 2.83. However, a reanalysis of the data, shown
in Fig. 7, suggests that the exponent 2 may simply reflect
corrections to scaling: 2.83 appears to work for φ � 0.53.
Measurements of the exponents γμ yield γμ = 0.42 [22,23],
rather close to our prediction γμ = 0.35. Frictional simulations
suggest γμ = γφ = 0.5 [10], but these measurements are
lacking error bars. Thus for non-Brownian suspensions more
accurate measurements are required to decide if frictional and
frictionless particles behave identically or not.

B. Dry flows

Dry granular flows, where inertia dominates, have been
simulated with varying degrees of realism [13,14,17,52,55–
58]. In a simple quasistatic (I = 0) model using hard fric-
tionless particles poised near isostaticity [17], Combe and
Roux have measured explicitly the system-size dependence
of stress increments needed to cause instability. The result is
δμ ∼ N−αN with αN = 1.16(4), in very good agreement with
our prediction αN = 1.19.

At finite I, but still with frictionless particles, Refs. [13,14]
measured the exponents αμ and αφ , finding αμ = 0.38(4)
and αφ = 0.39(1), again apparently in quantitative agreement
with our prediction αμ = αφ = 0.35. Moreover, assuming that
relative velocities scale as nonaffine velocities, our prediction
on L also appears correct: L ∼ I−0.48 is observed in Ref. [13],
in agreement with our prediction L ∼ I−1/2. Finally, although
these authors have observed that the coordination converges
to isostaticity at jamming, no exponent is reported. Measuring
coordination precisely in the inertial regime may, however, be
more difficult to perform than in the viscous case [59].

Friction appears to have a strong effect on dry inertial
flow: Simulations with Coulomb friction coefficients ≈0.5
indicate that αμ ≈ αφ ∈ (0.8,1) [10,14–16], definitely distinct
from our prediction αμ = αφ = 0.35. In experiments on dry
granular flow, it is likewise found that αμ ≈ αφ ≈ 1 [12].
These data suggest that the present theory needs to be modified
for frictional particles, at least in the inertial case. Consis-
tent with these remarks, the viscous-to-inertial crossover is
observed to satisfy γε̇ ≈ 1 in a frictional system [9], off
from our prediction γε̇ = 2.83. Nevertheless, our prediction on
velocity fluctuations appears to be more accurate, as nonaffine
velocities are found to scale as I−0.5 in simulations [1] as
we predict for relative velocities. In experiments the reported
exponent is slightly larger, ≈0.7 [1,4].

VIII. CONCLUSION

A. Summary

In a first step, we related the power dissipated in flow of
frictionless particles to certain microscopic kinetic quantities.
The latter control singularities in the rheological properties
near jamming. In a second step, we have computed these quan-
tities, using a perturbation around the solid phase. Our main
hypothesis is that configurations in flow are similar to jammed
configurations at maximum stress anisotropy μc and destabi-
lized by an additional stress increment δμ. In this approach, the
properties of the solid phase are central, in particular the fact
that the density of contacts which can couple to external forces
is singular at small forces and characterized by a nontrivial
exponent θe. Our description of flow thus can be thought of as
that of a jammed solid, populated by elementary excitations
corresponding to the opening of weak contacts of density δz.

Our work is part of a more general approach seeking to
describe in real space the excitations that govern particulate
materials and their response. The excitations studied here are
associated to the rewiring of the contact network. Beyond flow,
we have argued previously that these excitations control the
stability of the solid phase: If the exponent θe were smaller,
packings would collapse and have extensive rearrangements
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as soon as they are perturbed [29,34,35]. Thus the value θe

is fixed by stability constraints in the solid phase, and this
in turn affects flow properties. A similar situation occurs
for soft vibrational modes, which are known to be present
in amorphous solids (where they are referred to as the
boson peak). We have argued [30,60–62] that the structure
of amorphous solids near jamming is such that soft vibrational
modes are stable, but barely so, a view also supported by recent
calculations in infinite dimensions [36,37]. Once again this
situation leads to a singular density of excitations [in that case
the density of vibrational modes D(ω)], causing anomalous
elastic and transport properties [30,63]. Similar cases where
stability is marginally satisfied and where the density of
excitations is singular occur in other glassy systems (such
as spin and Coulomb glasses) and is expected if interactions
are sufficiently long range [35].

B. Some open questions

Although we believe that our assumption on the nature
of flowing configurations is essentially correct, it would be
very valuable to justify it from purely dynamical consider-
ations. Work in that direction is in progress [31]. Another
challenge concerns length scales. Physically, the length �n.l.

that characterizes nonlocal effects in flow when a boundary is
present [15,64–66] is visible in many experiments and is of
practical importance. It is presently unclear if this length scale
corresponds to �c, which characterizes the main decay of the
velocity correlation function. Indeed, other length scales can
be defined in flow [67]. This question would benefit from more
accurate measurements.

Finally, one central remaining question is the role played by
friction. As discussed in Sec. VII, and visible in Table I, friction
strongly affects critical exponents in the inertial case but only
weakly, if at all, in the viscous case. One key assumption of
our approach, proximity to isostaticity, appears to be valid in
the problematic inertial case: Under constant stress boundary
conditions, the steady state of simple shear dry granular flow is
very nearly isostatic [68]. In our view, a central question for the
future is what controls the stability of such isostatic frictional
systems, how these respond to an additional stress anisotropy
δμ, and how the combination of finite softness, inertia, and
friction qualitatively affect the flow curves [57].
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APPENDIX

1. Virtual work theorems

In the main text we make use of two work theorems, which
we derive here in the frictionless case [42]. We also derive the
microscopic expression for the stress tensor.

The first work theorem applies to any jammed packing
(z > zc) and begins with the equations for force balance,


F ext
i =

∑
ij

fij 
nij , (A1)

where 
F ext
i is the external force on particle i and fij is the

contact force in contact ij . Contracting this equation along an
arbitrary (“virtual”) displacement field δ 
Ri , and summing over
all particles, we find

∑
i

δ 
Ri · 
F ext
i =

∑
i

δ 
Ri ·
∑
ij

fij 
nij

= −
∑
ij

fij δrij , (A2)

where δrij = (δ 
Rj − δ 
Ri) · 
nij is the normal displacement at
contact ij . This statement is called the theorem of virtual
work. When a packing is jammed, there exists solutions
to (A1) where all the forces are applied at the boundary of
the packing. In this case we identify

∑
i δ


Ri · 
F ext
i = W as

the work injected in the displacement {δ 
Ri}. The work can

be written W = �
↔
σ :

↔
ε = −�d pεV + �σε, where

↔
σ is the

stress tensor,
↔
ε is the strain tensor, ε is shear strain, and εV

is the volumetric strain (zero if constant-volume boundary
conditions are imposed and positive for dilation). Therefore
for a jammed packing

W = −
∑
ij

fij δrij . (A3)

A similar relation holds in an unjammed system. When
z < zc, there are floppy modes that pervade the system, i.e.,
any velocities imposed at boundaries can be accommodated
by motions that maintain all contacts. Let us suppose that the
list of contacts {ij} includes some contacts with walls at the
boundary of the domain. The previous statements imply that
the set of equations

uij = ( 
Vj − 
Vi) · 
nij (A4)

has a solution for the velocities { 
Vi} when the uij are nonzero
only at boundaries. Contracting these equations of “geometric
balance” along an arbitrary force field gives

∑
ij

fijuij = −
∑

i


Vi ·
∑
ij


nijfij =
∑

i


Vi · 
Fi, (A5)

where 
Fi is the vectorial sum of contact forces incident on
i; this is the theorem of complementary virtual work. In this
case the left-hand side of (A5) is nonzero only at boundaries,
and inspection of this at a contact ij shows that if the {fij }
are taken as the true contact forces in contacts, then this is the
power injected in the imposed velocity field {uij }. Therefore
the left-hand side is the power P .

Finally, let us show how the microscopic expression for
the stress tensor can be obtained. In the jammed case, we
multiply (A1) with the particle positions 
Ri and sum the
resulting equations (without contracting the vectors). This
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gives

∑
i


F ext
i


Ri = −
∑
ij

fij 
nij 
rij , (A6)

where 
rij = 
Rj − 
Ri . The left-hand side of (A6) is a discretiza-

tion of a boundary integral − ∫
∂�


n · ↔
σ 
r dS, where 
n is an

outward-facing normal to the boundary. By the divergence

theorem, this is equal to − ∫
�

∇ · (
↔
σ 
r ) dV . But then force

balance implies ∇ · ↔
σ = 0 so

∫
�

∇ · (
↔
σ 
r ) dV = ∫

�

↔
σ tdV ≡

�
↔
σ t and

↔
σ = 1

�

∑
ij

fij 
rij 
nij . (A7)

Similar equations hold in the more general frictional case,
including the effect of rotations [71].

2. Shear modulus and anisotropy

In weakly coordinated packings of elastic particles, generic
elastic moduli are small and scale as ∼z − zc, a scaling that
holds up to δz = 1/N . This is true except in the direction
of the applied stress, where the modulus is large: It is not
vanishing and goes as (z − zc)0 [47,72]. This result explains
why the bulk modulus is always large for purely repulsive
particles, as observed numerically [73]. In an anisotropic
packing carrying a shear stress σ of order of the pressure
p, the stiff mode of deformation is not a pure compression,
as it now has a shear component. However, imposing some
additional stress on the system δσ and δp will generically
couple to the soft moduli, except if δσ/δp = σ/p = μ. In our
case we impose an additional shear stress increment with no
additional compression: There is thus a finite coupling to the
weak elastic moduli leading to a large particle displacement,
as we have assumed in the text to derive Eq. (28).

3. Derivation of δμN for strictly hard particles

For a simple shear in the xy plane, it is useful to write
Eq. (A7) in a compact notation as

σ = 1

�
〈f |l〉, (A8)

p = d

�
〈f |r〉, (A9)

where σ = ↔
σ xy , |f 〉 is the vector of contact forces fij (of

dimension Nc, the number of contacts), |r〉 is the vector
of the distances rij between particles in contact, and |l〉
has components lij = (
rij · x̂)(
nij · ŷ). We denote by |δf 〉 the

change of contact forces induced by increasing the shear stress
by δσ . It must obey the conditions:

1

�
〈δf |l〉 = δσ, (A10)

〈δf |r〉 = 0. (A11)

If hard particles are compressed homogeneously from a
loose state, say, by reducing the linear size L of a cubic
box containing them, the system will eventually jam into an
isostatic configuration: There are just enough contacts to forbid
floppy modes, which involve the Nd degrees of freedom of
the particles, as well as the dimension L of the box. At that
point, there is a single set of contact forces that satisfies force
balance on each particle, i.e., Eq. (A1) with no left-hand side.
However, if the system is then allowed to shear (for example,
by deforming the square box into a rectangle), then there is one
floppy mode associated to this additional degree of freedom,
see, e.g., Ref. [74]. It will disappear once a new contact is
formed. At that point, the space of contact forces satisfying
force balance is of dimension 2. This situation is generic
in practical situations, for example, when the shear stress is
adiabatically increased to study plasticity in packings [17].

We denote by |f1〉 and |f2〉 an orthonormal basis of this
space. The components of these vectors thus scale as 1/

√
N .

We choose |f1〉 to be in the direction of the true contact forces
before the stress increment. Equation (A9) then implies for a
purely repulsive system (where all contact forces must have
the same sign) the following system-size dependence:

〈f1|r〉 ∼
√

N, (A12)

〈f1|l〉 ∼
√

N, (A13)

where the second relation stems from Eq. (A8) and the
assumption that σ ∼ p, i.e., μ �= 0. Our central assumption
is that |f2〉 is essentially a random vector with limited spatial
correlations. More precisely we assume that:

〈f2|r〉 ∼ 1, (A14)

〈f2|l〉 ∼ 1, (A15)

as follows from the central limit theorem if the sums in
Eqs. (A14) and (A15) concerns weakly correlated variables.

Writing |δf 〉 = β1|f1〉 + β2|f2〉, one readily gets expres-
sions for β1 and β2 from Eqs. (A10) and (A11). Using
Eqs. (A12)–(A15) one finds β1 � β2 and β2 ∼ δσN . We seek
to compute the characteristic change of force in a contact δf ,
which then must follow:

δf 2 = 〈δf |δf 〉
Nc

= β2
1 + β2

2

Nc

∼ Nδσ 2, (A16)

which is equivalent to Eq. (28).
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[6] G. Düring, E. Lerner, and M. Wyart, Phys. Rev. E 89, 022305
(2014).

[7] A. Lemaı̂tre, J.-N. Roux, and F. Chevoir, Rheol. Acta 48, 925
(2009).

[8] F. Boyer, E. Guazzelli, and O. Pouliquen, Phys. Rev. Lett. 107,
188301 (2011).

[9] A. Fall, A. Lemaitre, F. Bertrand, D. Bonn, and G. Ovarlez,
Phys. Rev. Lett. 105, 268303 (2010).

[10] M. Trulsson, B. Andreotti, and P. Claudin, Phys. Rev. Lett. 109,
118305 (2012).
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