
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Vacua and correlators in hyperbolic de Sitter space

Dimitrakopoulos, F.V.; Kabir, L.; Mosk, B.; Parikh, M.; van der Schaar, J.P.
DOI
10.1007/JHEP06(2015)095
Publication date
2015
Document Version
Final published version
Published in
The Journal of High Energy Physics

Link to publication

Citation for published version (APA):
Dimitrakopoulos, F. V., Kabir, L., Mosk, B., Parikh, M., & van der Schaar, J. P. (2015). Vacua
and correlators in hyperbolic de Sitter space. The Journal of High Energy Physics, 2015(6),
[95]. https://doi.org/10.1007/JHEP06(2015)095

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Mar 2023

https://doi.org/10.1007/JHEP06(2015)095
https://dare.uva.nl/personal/pure/en/publications/vacua-and-correlators-in-hyperbolic-de-sitter-space(e7b51945-cfa1-4f28-86d8-bebaf73f63fa).html
https://doi.org/10.1007/JHEP06(2015)095


J
H
E
P
0
6
(
2
0
1
5
)
0
9
5

Published for SISSA by Springer

Received: February 23, 2015

Accepted: May 14, 2015

Published: June 16, 2015

Vacua and correlators in hyperbolic de Sitter space

Fotios V. Dimitrakopoulos,a Laurens Kabir,a Benjamin Mosk,a Maulik Parikhb

and Jan Pieter van der Schaara

aDelta Institute for Theoretical Physics, IOP and GRAPPA, Universiteit van Amsterdam,

Science Park 904, 1090 GL Amsterdam, Netherlands
bDepartment of Physics, Beyond: Center for Fundamental Concepts in Science,

Arizona State University, Tempe, Arizona 85287, U.S.A.

E-mail: F.Dimitrakopoulos@uva.nl, L.R.Kabir@uva.nl, B.Mosk@uva.nl,

Maulik.Parikh@asu.edu, J.P.vanderSchaar@uva.nl

Abstract: We study the power- and bi-spectrum of vacuum fluctuations in a hyperbolic

section of de Sitter space, comparing two states of physical interest: the Bunch-Davies and

hyperbolic vacuum. We introduce a one-parameter family of de Sitter hyperbolic sections

and their natural vacua, and identify a limit in which it reduces to the planar section and

the corresponding Bunch-Davies vacuum state. Selecting the Bunch-Davies vacuum for a

massless scalar field implies a mixed reduced density matrix in a hyperbolic section of de

Sitter space. We stress that in the Bunch-Davies state the hyperbolic de Sitter n-point

correlation functions have to match the planar de Sitter n-point correlation functions. The

expressions for the planar and hyperbolic Bunch-Davies correlation functions only appear

different because of the transformation from planar to hyperbolic coordinates. Initial state

induced deviations from the standard inflationary predictions are instead obtained by con-

sidering the pure hyperbolic vacuum, as we verify explicitly by computing the power- and

bi-spectrum. For the bi-spectrum in the hyperbolic vacuum we find that the corrections

as compared to the standard Bunch-Davies result are not enhanced in specific momentum

configurations and strongly suppressed for momenta large compared to the hyperbolic cur-

vature scale. We close with some final remarks, in particular regarding the implications of

these results for more realistic inflationary bubble scenarios.
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1 Introduction

Cosmological observations point to a primordial universe that can be effectively described

by an approximate de Sitter phase. The details of this inflationary phase are to a large

extent still unknown, but the most recent Planck data does rule out a large fraction of

parameter space, giving us some hints about the underlying physics [1]. From a theoret-

ical point of view it is probably fair to say that inflation is poorly understood. Indeed,

few convincing theoretical constraints on the inflationary parameter space exist that would

identify natural, UV consistent, models. Trying to embed inflation into a fundamental

description like string theory is notoriously difficult, but the last decade has seen consid-

erable phenomenological progress in that direction (for a thorough discussion see [2] and

references therein). The absence of a guiding principle which is able to rule out a significant

fraction of inflationary models, combined with the attractive features of eternal inflation,
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has fueled the idea that perhaps our inflationary universe is just one realization in a huge

landscape of bubble universes that are continuously being produced as a consequence of a

stochastically varying scalar field during a phase of eternal inflation [3, 4].

This exotic possibility makes the general prediction that the spatial sections in our

universe should be hyperbolic on the largest scales that start probing the boundary of

the bubble. Clearly this general prediction is hard, if not impossible, to verify because the

primordial inflationary expansion typically redshifts the negative curvature scale far beyond

the observable universe [5], although in the inflationary landscape relatively short phases

of slow-roll inflation might be preferred [6], which could lead to observable consequences

in the CMB temperature correlations at low multipoles [7]. More particular predictions

include a bubble universe that might, under fortuitous conditions, provide an explanation

for the low power anomaly at low l due to the steepening of the slope right after penetration

of the barrier [8]. Another potential consequence of observational interest is that bubble

universes can in principle collide [9–11], which could leave definite non-isotropic signatures

in the Cosmic Microwave Background sky. Unfortunately the chance for a collision to have

taken place in our past is small and model-dependent, and therefore not seeing this effect

will not be able to rule out a multiverse origin [12].

Recently, another rather generic consequence of a multiverse origin has been ex-

plored [13–15]. In the context of an inflationary landscape one would expect the initial

vacuum state for quantum fluctuations in a single inflationary bubble to be entangled with

the rest of the eternally inflating universe, leading to a mixed state inside the bubble that

could be different from the standard Bunch-Davies vacuum. Since the Cosmic Microwave

Background temperature anisotropies (as well as the large scale structure distribution) are

probing the statistics of these inflationary quantum fluctuations, one could imagine uncov-

ering evidence in favor of this (mixed) initial state, in support of the idea that our universe

originated from false vacuum decay. This warrants a careful study of the actual (obser-

vational) potential to constrain departures away from the standard results for inflationary

fluctuations in the Bunch-Davies state and how these departures are related to the original

vacuum state of eternal inflation.

In this work we present a first step, triggered by some recent work in this direction [13],

in clarifying the connection between the vacuum state of the false, eternally inflating, vac-

uum and potential departures from the standard Bunch-Davies vacuum state in a hyper-

bolic bubble. As a starting point we identify a limit that connects hyperbolic coordinates

and its naturally associated vacuum to the de Sitter invariant Bunch-Davies state on planar

sections. Following up on older work in the context of open inflation, after selecting the

global Bunch-Davies vacuum we then use the mixed reduced density matrix defined in a

single hyperbolic coordinate patch of de Sitter space to explicitly show that the statistics

of inflationary fluctuations are indistinguishable from the standard planar Bunch-Davies

predictions at late times, as it should. Selecting instead the pure hyperbolic vacuum does

lead to differences that are however strongly suppressed in the curvature scale, as we again

show explicitly by computing the power- and bi-spectrum for scalar field vacuum fluctua-

tions. We end with a discussion on the implications in the context of (open) inflationary

models and some remaining open questions that we hope to return to in future work.
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2 A family of de Sitter hyperbolic sections and their vacua

We will start by constructing a limit in the family of de Sitter hyperbolic sections that

reduces to the planar description of de Sitter space. This allows us to explicitly see the

distinction between the natural vacuum state on a generic hyperbolic section and the

Bunch-Davies vacuum state as defined using planar coordinates, which can be understood

as a singular (but well-defined) limit of the natural hyperbolic vacuum.

2.1 A generalized hyperbolic embedding

Let us remind the reader that 4-dimensional de Sitter space can be defined as the embedding

surface in 5-dimensional flat space defined by

−X2
0 +X2

1 +X2
2 +X2

3 +X2
4 = 1 (2.1)

where the de Sitter curvature length scale has been normalized to one. This embedding

equation is clearly invariant under SO(1, 4) transformations, corresponding to the isometry

group of dS4. For our purposes we will be interested in two different coordinate sets

on this embedding surface that both belong to the class of isotropic and homogeneous

FLRW spaces. The standard coordinate set used for describing inflation is the planar

one, identifying flat spatial sections. In what follows, we will suppress the two (spatial)

coordinates X3 and X4 for purposes of efficiency, effectively suppressing an S2 in the de

Sitter space. The planar coordinates are defined as

X0 +X1 = etp

X0 −X1 =
(
r2
p e

2tp − 1
)
e−tp (2.2)

X2 = rp e
tp

leading to the well-known planar expression for the induced de Sitter metric

ds2 = −dt2p + e2tp
[
dr2
p + r2

p dΩ2
2

]
(2.3)

with −∞ < tp < +∞ and r > 0, and we reinserted the S2 part. Since X0 +X1 ≥ 0 these

coordinates only cover the upper half diagonal part in the X0 versus X1 plane. Besides the

obvious SO(3) isometries, the boost symmetries of the embedding space are realized on the

planar metric as an isometry involving a particular combination of time translation and

spatial scaling.1 Because inflation redshifts away any existing spatial curvature present

initially, this coordinate set should be an excellent approximation to derive the late-time

effects of a sustained phase of cosmological inflation. Nevertheless, one could imagine a sit-

uation where our universe has originated from a tunneling event out of an eternally inflating

false vacuum.2 The nucleated bubble would have negatively curved spatial sections [16, 17],

1More precisely, it corresponds with the isometry t→ t+γ and r → e−γr of the planar de Sitter metric.
2Moreover, in the nineties models of open inflation were of particular interest, independent of whether

their origin was due to tunneling [18, 19].
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leading to the hyperbolic coordinate set

X0 +X1 = cosh th + sinh th cosh rh

X0 −X1 = − cosh th + sinh th cosh rh (2.4)

X2 = sinh th sinh rh .

With these identifications the induced hyperbolic de Sitter metric reads

ds2 = −dt2h + sinh th
2
[
dr2
h + sinh2 rh dΩ2

2

]
(2.5)

where 0 ≤ th < +∞ and rh > 0, and as before we included the full S2 that was left out

in the embedding coordinate identification. The coordinate singularity at th = 0 can be

interpreted in the context of false vacuum decay as the creation of the open inflationary

bubble. Note that th = 0 corresponds to X0 = 0 (and X1 = 1, X2 = 0): the bubble

nucleation time from the point of view of the embedding space. The spatial sections cor-

respond to constant negative curvature slices that exhibit an SO(1, 3) isometry. We will

in fact be interested in a one-parameter generalization of this hyperbolic coordinate em-

bedding, obtained by boosting in the X0–X1 plane of the 5-dimensional embedding space.

Combined with rotations these transformation allow one to move the ‘nucleation’ time of

the hyperbolic bubble to any specific point on the embedding surface. Just performing a

Lorentz boost in the X0–X1 plane will change the nucleation time (and position in X1),

which yields the following generalized hyperbolic coordinate set

X0 +X1 = e−γ [cosh th + sinh th cosh rh]

X0 −X1 = eγ [− cosh th + sinh th cosh rh] (2.6)

X2 = sinh th sinh rh

where γ is the boost parameter. This generalized hyperbolic solution of the embedding

equation will of course lead to the same induced metric, but the nucleation time and position

of the associated bubble in the embedding space have now shifted to X0 = − sinh γ and

X1 = cosh γ respectively. Moreover, since th ≥ 0 one finds that X0 +X1 ≥ e−γ , restricting

the hyperbolic section to the upper right diagonal part in the X0 versus X1 plane, which

overlaps with, but for any finite γ is smaller than, the part of de Sitter covered by planar

coordinates. This is depicted in figure 1. One can verify that in the limit of infinite γ

the planar and hyperbolic coordinates cover the same region of de Sitter space, which is

consistent with the observation that in this limit the hyperbolic nucleation time in the

embedding space is shifted to X0 → −∞.

The generalization of the hyperbolic coordinate set introduced above allows us to

explicitly relate the planar and hyperbolic sections of de Sitter space. Since the two co-

ordinate sets cover the same region in the γ → ∞ limit, there should exist a one-to-one

mapping between the coordinates in that limit. More precisely, we would like to introduce

a new set of hyperbolic coordinates that are to be kept fixed in the limit γ →∞, and that

in the limit exactly reproduce the planar coordinate embedding solution. Note that any

(constant) shift or rescaling of the hyperbolic embedding coordinates is still a solution of

– 4 –
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Figure 1. Conformal diagram of dS4 with the left- and right-hyperbolic patch as the upper-left

resp. upper-right triangles. The dashed line is the unboosted situation γ = 0. For finite γ (solid

line), we see that that nucleation time of the left bubble gets pushed to earlier times, and vice versa

for the right bubble. In the limit of γ → ∞, we can see that the left bubble will cover the entire

upper-left triangle of the conformal diagram, coinciding with the planar patch.

the embedding equation, but will change the expression for the induced metric. Since we

expect the range of the hyperbolic time coordinate to be extended to −∞ and the negative

curvature to be scaled away, we redefine

t̃h ≡ th − γ ; r̃h ≡
1

2
rh e

γ . (2.7)

This leaves us with the following generalized hyperbolic solution to the embedding equation

X0 +X1 = e−γ
[
cosh (t̃h + γ) + sinh (t̃h + γ) cosh (2r̃h e

−γ)
]

X0 −X1 = −eγ
[
cosh (t̃h + γ)− sinh (t̃h + γ) cosh (2r̃h e

−γ)
]

(2.8)

X2 = sinh (t̃h + γ) sinh (2r̃h e
−γ)

where −γ ≤ t̃h < +∞. For finite γ the shift in hyperbolic time and the rescaling of

the hyperbolic radius (or equivalently the inverse rescaling of hyperbolic momentum) does

obviously not affect any hyperbolic patch observables, but it does allow one to analyze the

infinite boost limit in a simple and useful way. The induced hyperbolic metric now reads

ds2 = −dt̃2h + sinh (t̃h + γ)
2
[
4e−2γ dr̃2

h + sinh (2r̃he
−γ)

2
dΩ2

2

]
, (2.9)

which reduces to

ds2 = −dt̃2h + e2t̃h
[
dr̃2
h + r̃2

h dΩ2
2

]
after performing the limit γ → ∞, keeping t̃h and r̃h fixed, showing that (2.8) exactly

reduces to the planar embedding solution (2.2). Note that all the γ dependence in the

– 5 –
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induced metric is removed and one is left with precisely the planar line-element (2.3) in

terms of the coordinates t̃h and r̃h.

For any finite boost parameter γ, global de Sitter space is covered by two (adjacent)

hyperbolic sections, see figure 1. The other hyperbolic embedding can be obtained by

changing the sign of X1, resulting in the interchange of the expressions for X0 + X1 and

X0−X1 in (2.4). Acting with the same boost on this second hyperbolic embedding results

in the opposite effect, moving the nucleation time to X0 → +∞. The opposite minus

infinity boost should instead reduce to another planar section (with X0 +X1 and X0−X1

in (2.2) interchanged), suggesting that the redefined coordinates in this case should read

t̃h ≡ th + γ ; r̃h ≡
1

2
rh e

−γ . (2.10)

Putting this together we obtain for the adjacent hyperbolic section the following generalized

embedding

X0 +X1 = −e−γ
[
cosh (t̃h − γ)− sinh (t̃h − γ) cosh (2r̃h e

γ)
]

X0 −X1 = eγ
[
cosh (t̃h − γ) + sinh (t̃h − γ) cosh (2r̃h e

γ)
]

(2.11)

X2 = sinh (t̃h − γ) sinh (2r̃h e
γ)

where now γ ≤ t̃h < +∞. The induced hyperbolic metric in this case is obtained by just

replacing γ with −γ in (2.9). By construction the limit γ → ∞ should instead collapse

and in a sense remove the adjacent hyperbolic section. Clearly, in the opposite γ → −∞
the roles of the two hyperbolic sections are reversed.

Having established this explicit relation between hyperbolic and planar coordinates,

we can now use it to better understand and connect their respective vacua, which should be

different for any finite value of γ. In particular, the planar Bunch-Davies state is known to

be equivalent to the unique and de Sitter invariant Euclidean vacuum.3 On the other hand,

any pure hyperbolic vacuum state is defined on a negatively curved spatial slice that is not

a de Sitter Cauchy surface. This means that the Bunch-Davies state in a single hyperbolic

patch can only be described by an appropriately defined mixed state; see figures 2 and 3.

The mixed state defined on one of the two (conjugate) hyperbolic sections reproducing

the Bunch-Davies state was first constructed in [20] and was subsequently used in [21] to

compute the reduced density matrix and the corresponding entanglement entropy for a

single hyperbolic section.

One application of the one-parameter family of hyperbolic de Sitter foliations is that

one can confirm that the natural choice for a hyperbolic vacuum reduces to the planar

Bunch-Davies state in the limit γ → ∞. Secondly, one could attempt to generalize the

entangled expression for wavefunctions of the Bunch-Davies state, with support on both

the left and right hyperbolic section, and work out its dependence on the embedding boost

parameter. In the γ →∞ limit this should reduce to the pure planar Bunch-Davies state,

implying that the reduced density matrix carries some non-trivial γ dependence to make

sure the associated entanglement entropy vanishes in the strict γ →∞ limit.

3The invariance of the Bunch-Davies vacuum under de Sitter isometries strictly speaking fails for massless

fields, but since this subtlety does not affect our results we will ignore it from now on.

– 6 –
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|Ω
BD>

L R

Figure 2. Conformal diagram of dS4 with the

left- and right-hyperbolic patch shown. As nei-

ther patch contains a Cauchy slice of the full

dS4, restricting the Bunch-Davies vacuum to

one of them will yield a mixed state.

|Ω
H>

Figure 3. An observer confined to live in the

left-hyperbolic patch (a bubble universe) can

define his own pure hyperbolic vacuum. This

state will differ significantly from the mixed

state resulting from a restriction of the Bunch-

Davies state to this bubble.

To summarize, we established that the infinite boost limit of a hyperbolic de Sitter

patch (and as a consequence also its corresponding vacuum state) reduces to the planar de

Sitter patch (and the Bunch-Davies vacuum). This appears to be similar to an observation

made in [22] where the static vacuum, understood as the empty state for a corresponding

free-falling observer, was also argued to reduce to the Bunch-Davies state in the infinite

boost limit. Note that to each hyperbolic patch one can associate a free-falling observer

in one of the two center regions in between the hyperbolic patches that never intersects

either one of them. These time-like curves are indeed connected to each other by the same

embedding space boosts [23]. To complete the argument one needs to confirm that the

static vacuum state associated to this free-falling observer is connected to the hyperbolic

vacuum state. Note that (for γ = 0) the center region in between the hyperbolic patches is

usually covered by coordinates that are obtained from the hyperbolic coordinates as follows

th = i(tC − π
2 ) and rh = rC + iπ2 , resulting in the following center region metric

ds2 = dt2C + cos tC
2
[
−dr2

C + cosh rC
2dΩ2

]
, (2.12)

where rC is now a time-like coordinate. Each of the two center regions clearly identifies

a causal diamond belonging to the free-falling observer of interest. To make this explicit,

one notices that the coordinate transformation rs ≡ sin tC and tS ≡ rC indeed reproduces

the static patch metric, upon ignoring the two-dimensional sphere.4 This establishes a

4That the S2 part does not reproduce the standard static patch expression can be understood by realizing

that this static patch region is rotated by an angle π/2 with respect to the standard embedding. This affects

the S2 angles, which have to be transformed as well in order to obtain the complete static patch metric.

– 7 –
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map from the hyperbolic to the static patch of a specific free-falling observer, relating their

respective vacua and their behavior in the infinite (embedding) boost limit.

2.2 The hyperbolic vacuum

After having established a limit to obtain the planar embedding and coordinates, let us

now remind the reader of the standard positive frequency modes on a single hyperbolic

patch [20], as if it were the entire universe (see figure 3). The scalar wave equation for the

hyperbolic patch of de Sitter (2.5) reads[
1

sinh3 t
∂t sinh3 t∂t −

1

sinh2 t
∇2
H3 +m2

]
φ = 0 (2.13)

where we defined the Laplacian on the three-hyperboloid

∇2
H3 =

1

sinh2 r
∂r(sinh2 r∂r) +

1

sinh2 r
∇2
S2 . (2.14)

A natural set of solutions to the hyperbolic equations of motion (2.13) is given by

1

sinh(t)
P ip
ν− 1

2

(cosh(t))Yplm(r,Ω) (2.15)

where it is customary to define ν =
√

9
4 −

m2

H2 . The quantum numbers l,m label the usual

SO(3) irreps, and together with the continuous quantum number p it completely speci-

fies the hyperbolic momentum. Furthermore, P ip
ν− 1

2

are the associated Legendre functions

of the second kind and the Yplm are the orthonormal eigenfunctions of the hyperbolic

Laplacian (2.14)

∇2
H3Yplm(r,Ω) = −(1 + p2)Yplm(r,Ω). (2.16)

For ν > 1
2 , there is in fact a supplementary set of solutions with p = i(ν − 1

2) [20], cor-

responding to the complementary series representation of the de Sitter isometry group.

These so-called “supercurvature modes” will not be of interest for the purposes that are

considered here, where our main focus will be on potential signatures in the large (“sub-

curvature”) momentum limit. We refer to [24] for an interesting account on the role and

interpretation of these supercurvature modes.

Switching to conformal time η we can write the metric of the hyperbolic slice as

ds2 = sinh2(t(η))
(
−dη2 + dr2 + sinh2(r)dΩ2

2

)
, (2.17)

where η = ln(tanh( t2)), or equivalently cosh t = − 1
tanh η and −∞ < η < 0. In terms of the

conformal time η we find that in the far past η → −∞ and in the limit of large momenta

p� 1 one obtains

P ip1

(
− 1

tanh η

)
∝ e−ipη

(
1− i

p tanh η

)
→ e−ipη, (2.18)

so we can identify these mode functions with the “natural hyperbolic vacuum”: they

define a state that is empty in the far past for large momenta, approaching the standard

– 8 –
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vacuum description in flat space. As expected, in the limit γ → ∞ that we introduced

in the previous section (2.10) the mode functions reduce to the standard Bunch-Davies

mode functions in flat slicing, explicitly connecting the hyperbolic and planar patch vacua

in this limit

lim
γ→∞

P ip1 (cosh(t̃+ γ)) ∝ e−ipη̃
(

1− i

pη̃

)
. (2.19)

For all the details we refer the reader to the appendix A.3, but it should be clear that

the tildes on the coordinates in the above equation relate to the redefined hyperbolic

coordinates that are kept fixed in the infinite boost limit. The mode functions (2.15) must

of course be properly normalized, enforcing [b̂plm, b̂
†
plm] = δll′δmm′δ(p − p′), implying the

following Klein-Gordon inner product

〈φplm, φplm〉KG = δll′δmm′δ(p− p′) (2.20)

giving (see appendix A.2)

N2
P p ≡ 〈P ip, P ip〉KG

=
2 sinh(πp)

π
.

(2.21)

With the help of (2.21) we can now express the field operator in a single hyperbolic

patch as (keeping in mind that we are ignoring supercurvature modes)

φ(t, r,Ω) =

∫ ∞
0

dp

∞∑
l=0

l∑
m=−l

1

NP p

1

sinh(t)

(
b̂plmP

ip

ν− 1
2

(cosh(t))Yplm(r,Ω) + h.c.

)
(2.22)

defining the natural hyperbolic vacuum state |ΩH〉 as

b̂plm|ΩH〉 = 0 ∀p, l,m. (2.23)

This hyperbolic vacuum state can be understood as a natural choice in an isolated

(stand-alone) open inflationary universe, as it is empty in the far past and reduces to the

planar Bunch-Davies vacuum state in the infinite boost limit. As we have elaborated upon

in the previous section, because a similar statement can be made for the vacuum in a static

patch [22], and because the region in between the two hyperbolic patches contains a causal

diamond region, this state can be analytically continued to the static (empty) vacuum for

a free-falling observer that never intersects the two adjacent hyperbolic de Sitter patches.

Clearly this state is very different from the unique de Sitter invariant Bunch-Davies

vacuum for generic γ, so one would expect behavior similar to what happens in the de

Sitter static vacuum or the flat Rindler vacuum. To that end let us analyze the behavior

of the energy momentum tensor in a (generic) hyperbolic vacuum. Note that for a flat

Rindler wedge in lightcone coordinates (u, v), there is a horizon at u = 0 and the Fulling-

Rindler vacuum |0FR〉 corresponds to the empty state in a single wedge. In that case it

is well-known that the Tuu component of the energy momentum tensor (with the usual

UV-divergence removed by subtracting the UV-divergent expectation value of Tuu in the

Minkowski vacuum |0M 〉) diverges as one approaches the horizon: 〈Tuu〉FR − 〈Tuu〉M =

− 1
48π

1
u2

in 1 + 1 dimensions for u > 0 (for a nice derivation of this result see [25]).
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A similar analysis can be done for the energy momentum tensor in the hyperbolic de

Sitter patch, where the global de Sitter invariant vacuum state is now the Bunch-Davies

vacuum |ΩBD〉. The obvious difference with the Rindler wedge is the absence of a timelike

Killing vector. In addition, the t = 0 surface is a (light-) cone, so a better analogy is

with Milne space, to which the de Sitter hyperbolic section reduces for small t. In any

case, we will use the same regularization procedure, restricting to the minimally coupled

massless case ν = 3
2 . The most convenient method to calculate components of the energy

momentum tensor makes use of the Wightman function G+(x, x′, t, t′) and specifically we

will look at the following contribution

〈(∂αφ)2(x, t)〉 = lim
x′,t′→x,t

∂α∂α′G(x, x′, t, t′). (2.24)

The Wightman function for the Bunch-Davies state is well known, but here we use the

expression in terms of an integral over the hyperbolic momentum p as given in [20]. This

allows us to consistently regulate the UV-divergence of 〈Tµν〉 in the two states of interest. In

appendix C we show that the difference 〈Ttt〉H −〈Ttt〉BD is UV-finite and diverges as t→ 0

〈Ttt〉H − 〈Ttt〉BD = − 11

240π2

1

t4
+O

(
1

t2

)
. (2.25)

So we conclude that the hyperbolic vacuum |ΩH〉 has singular properties that are com-

pletely analogous to the Minkowski Fulling-Rindler, Milne and de Sitter static vacuum,

see also [26]. The energy momentum tensor diverges in the limit t→ 0, so infinite energy

seems to be required to prepare the state at the (singular) origin. A complete description

all the way until t = 0 is therefore obviously inconsistent, but strictly speaking that does

not need to be fatal in this cosmological setting, in the sense that in a stand-alone open

universe this might be interpreted as the Big Bang singularity.

Of course, arguably the most natural and well-behaved choice for an initial state on

hyperbolic de Sitter sections is the de Sitter invariant Bunch-Davies state, to which we

turn next.

2.3 The Bunch-Davies state in the hyperbolic patch

Here we will just briefly summarize the results of [20] and [21]. More details can be found

in those papers and in appendix A. The most important observation is that mode functions

of one of the hyperbolic patches (2.15) do not correspond to regular mode functions on

the full (Euclidean) de Sitter space. In [20] the hyperbolic mode functions are analytically

continued to the other hyperbolic patch, allowing them to construct a set of regular mode

functions that can cover all of de Sitter space as follows

χ(R)
p =

 P ip
ν− 1

2

(z) for z ∈ R
i sin(π(ν− 1

2
))

sinh(pπ) P ip
ν− 1

2

(z) +
i sin(π(ip+ν− 1

2
))e

sinh(πp)

Γ[ν+ 1
2

+ip]

Γ[ν+ 1
2
−ip]P

−ip
ν− 1

2

(z) for z ∈ L .
(2.26)

These mode functions do not yet describe the Euclidean or Bunch-Davies vacuum, which

can for instance be concluded by the fact that they are not (anti-)symmetric under the
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transformation R ↔ L. It turns out that the linear combinations χR ± χL correspond

to the proper mode functions associated with the Euclidean or Bunch-Davies vacuum, as

was proven by computing the Wightman function [20]. The (still to be normalized) mode

functions are linear combinations of the associated Legendre functions

χp,σ =

ασp,RP
ip

ν− 1
2

(z) + βσp,RP
−ip
ν− 1

2

(z) for x ∈ R

ασp,LP
ip

ν− 1
2

(z) + βσp,LP
−ip
ν− 1

2

(z) for x ∈ L
(2.27)

where σ = ±1,5 and z = cosh(t); the expressions for the α’s and β’s are given in (A.7).

We stress that the associated Legendre functions P in (2.27) do not have to be analytically

continued any further.6 The full field expansion, with creation and annihilation operators

âσplm satisfying [âσplm, â
†
σ′p′l′m′ ] = δσσ′δll′δmm′δ(p− p′), is given by:

φ(t, r,Ω) =

∫
dp
∑
σ=±1

∑
l,m

1

Nχpσ
(âσplmχp,σ(z)Yplm(r,Ω) + h.c.) (2.28)

where Nχpσ is the Klein-Gordon norm consistent with the commutation relations.7 In

appendix A.2 we show that the normalization Nχpσ is given by

N2
χpσ ≡ 〈χp,σYplm, χp,σYplm〉KG

=
∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
N2
P p

(2.29)

where ᾱ, β̄ denote the complex conjugates of α, β. We conclude that the Bunch-Davies

vacuum state is defined as8

âσplm|ΩBD〉 = 0 ∀σ, p, l,m. (2.30)

Now let us describe the relation between the creation and annihilation operators of the

modes (2.27) and the creation and annihilation operators of hyperbolic modes (2.15). Both

field expansions (2.28) and (2.22) are linear combinations of associated Legendre functions.

We can find the relation between the âσplm and the b̂qplm (q = L,R) by comparing the

coefficients

b̂qplm =
∑
σ=±1

NP p

Nχp,σ

(
ασp,qâσplm + β̄σp,qâ

†
σpl−m

)
. (2.31)

Given (2.29), (2.31), they enforce[
âσplm, â

†
σ′p′l′m′

]
= δ(p−p′)δσσ′δmm′δll′[

âσplm, âσ′p′l′m′
]

= 0

⇔

[
b̂qplm, b̂

†
q′p′l′m′

]
=δ(p−p′)δmm′δll′δqq′[

b̂qplm, b̂q′p′l′m′
]

=0 .
(2.32)

5σ = ±1 is related to the combination χ
(L)
P ± χ(R)

P .
6They are constituents of χL and χR, which are already regular everywhere. This is different from [13].
7Strictly speaking the expression (2.28) is incomplete, since we should also include the “zero mode”. For

our purposes this will however not affect the results.
8As before we ignore the supercurvature modes.
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For more details we refer to [20] and the appendices. The above relationship confirms

that the normalizations (2.21) and (2.29) are consistent and in particular that the right nor-

malization for the hyperbolic mode functions is given by (2.21). This will be of importance

when comparing the predictions for the power- and bi-spectrum of the two different states

under consideration: the pure hyperbolic vacuum and the Bunch-Davies state (as we will do

in section 3). The latter is a mixed state from the point of view of a single hyperbolic patch,

due to the entanglement between the two hyperbolic patches in the Bunch-Davies vacuum.

Let us here remind the reader that we would like to compare the predictions for the

expectation values of (scalar field) quantum fluctuations in the two different states that were

introduced above. A priori different initial states give different predictions for the cosmic

microwave background temperature anisotropies and the large scale structure distribution.

We should stress that we are technically not considering an actual bubble nucleation event,

where more intricate and model-dependent bubble wall physics could lead to additional

effects [27–29], see also [30]. Instead, we will work under the assumption that the two states

that were introduced capture an essential difference that is generic: the entangled nature of

the Bunch-Davies vacuum implies a mixed hyperbolic initial state, whereas the hyperbolic

vacuum corresponds to a pure state on a single hyperbolic section. Different (presumably

more realistic) states in open universes have been considered in the past [14, 27], but these

states appear to be quite different from the Bunch-Davies vacuum and therefore do not

seem to describe the essential difference we are after. In the process we hope to clear up

some confusion that might have arisen and that could also have consequences for more

realistic bubble states that were considered in the past.

We should add that one might anticipate the differences between the two states to

only become visible at small hyperbolic momentum p . 1, i.e. scales comparable to the

hyperbolic curvature. However, even small curvature suppressed changes in the initial state

might be enhanced in the (nonlinear) bi-spectrum, as has been pointed out and analyzed

in [31–33] and for a certain generic type of mixed state in [15]. This motivates our particular

interest in computing the bi-spectrum and comparing to the planar Bunch-Davies result.

But first let us review some general facts regarding correlators in de Sitter space and

summarize the results for the two-point functions.

3 Correlators in hyperbolic de Sitter space

Making use of the previously established relations between the de Sitter invariant Bunch-

Davies vacuum and the hyperbolic vacuum state, we will compute both the Bunch-Davies

and the hyperbolic vacuum power-spectra of scalar field quantum fluctuations.9 The

Bunch-Davies result can also be calculated using a reduced density matrix formalism in

the hyperbolic patch. Let us again emphasize that within our basic de Sitter set-up, even

though the Bunch-Davies state is mixed from the hyperbolic patch perspective, all hy-

perbolic Bunch-Davies correlators should match the (hyperbolic coordinate transformed)

planar Bunch-Davies correlators. As a consequence one can rule out large deviations of

Bunch-Davies hyperbolic correlators at late time and large momenta (when the hyperbolic

9See [26] for related work on the response of Unruh detectors.
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coordinates reduce to planar coordinates) as compared to the planar Bunch-Davies corre-

lators. That leaves the (pure) hyperbolic vacuum as the potentially more interesting state

to consider, as far as enhanced initial state effects with respect to the planar Bunch-Davies

state are concerned.

Let us start by pointing out that the field operator φp evaluated on points in the left

hyperbolic patch is trivial in the right hyperbolic patch

φp(x) = φL,p(x)⊗ IR for x ∈ L. (3.1)

As a consequence, de Sitter n-point functions of fields φp in the Bunch-Davies state, eval-

uated on points in the left hyperbolic patch, can be calculated either using the full global

description or by using a reduced density matrix ρ̂L = TrHR {|ΩBD〉〈ΩΩBD
|}, and their

results should agree. This is shown explicitly in appendix B.2. By defining the b̂qplm as

in (2.31), we can write the field operator for arbitrary values of p, l,m as

φplm(x) = b̂Lplm
1

NP p
P ip
ν− 1

2
,L
Yplm + h.c.

+ b̂Rplm
1

NP p
P ip
ν− 1

2
,R
Yplm + h.c.,

(3.2)

where

P ip
ν− 1

2
,L

=

{
P ip
ν− 1

2

(t) for t ∈ L

0 for t ∈ R
(3.3)

and vice versa for P ip
ν− 1

2
,R

. Although these functions are not mode functions on a full

Cauchy slice covering the de Sitter space, we are allowed to express the field in terms of

them. Note that the b̂L and b̂R operators mutually commute. To make explicit that the

field operator decomposes in the left and right hyperbolic patches, we write

φplm(x) =

(
b̂Lplm

1

NP p
P ip
ν− 1

2
,L
Yplm + h.c.

)
⊗ IR

+ IL ⊗
(
b̂Rplm

1

NP p
P ip
ν− 1

2
,R
Yplm + h.c.

)
.

(3.4)

Note that the expansion of a scalar field in Minkowski spacetime in terms of left and right

Rindler wedge modes is similar (see for instance [25]). The restriction of the operator (3.4)

to points in the left hyperbolic patch is by definition equal to the full operator evaluated

on points in the left hyperbolic patch. Note that if the field operator evaluated on points in

the left hyperbolic patch would also have support on the right hyperbolic patch, it would

not make sense to do a density matrix calculation as done above.

Clearly therefore Bunch-Davies scalar field correlators should be the same, indepen-

dent of whether one uses hyperbolic or planar coordinates. Of course, since the de Sitter

invariant length is expressed differently in terms of planar or hyperbolic coordinates, the

functional dependence of the equal (hyperbolic) time correlators will look different. Since

the difference between planar and hyperbolic coordinates vanishes in the late time and

large momentum limit, the the planar and the hyperbolic Bunch-Davies correlators match
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in that limit and small modifications are suppressed in the hyperbolic curvature scale. We

conclude that hyperbolic Bunch-Davies correlators can be computed either using a global

de Sitter description (for which the Bunch-Davies state is a pure initial state) or by con-

sidering a single de Sitter hyperbolic patch (for which the Bunch-Davies state is described

by a mixed density matrix).

After these important preliminaries let us now proceed by computing the power spec-

trum of a massless scalar field in a hyperbolic coordinate patch in the hyperbolic vacuum

and Bunch-Davies initial state respectively, as a function of the hyperbolic momentum p.

3.1 Power-spectrum results

For most of the details we refer to the appendix B. Here we will just quote the main results.

For the two point function in the hyperbolic vacuum state we find

〈ΩH |φpφ′p|ΩH〉 = δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

p2 + 1
(3.5)

where we have used the completeness relation of the eigenfunctions of the hyperbolic

Laplacian10 and the commutation relations. At late times t→∞ this approaches

〈ΩH |φpφ′p|ΩH〉 →
H2p

4π2(p2 + 1)
(3.6)

and the appropriately normalized power spectrum (at late times) equals

∆2
φ,H(p) =

H2

4π2

p2

p2 + 1
. (3.7)

The same (hyperbolic coordinate patch) two point function in the Bunch-Davies vac-

uum is instead found to be equal to

〈ΩBD|φpφp′ |ΩBD〉 = δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

p2 + 1
coth(πp). (3.8)

This result can either be obtained from a direct calculation using the global Bunch-Davies

vacuum construction and restricting to one of the hyperbolic coordinate patches [20], or

from a (mixed) density matrix calculation in a single hyperbolic coordinate patch, using the

explicit expression for the density matrix as reported in [21], as we confirm in appendix B.2.

As alluded to earlier, the reason for this expression to not exactly reproduce the scale-

invariant planar coordinate result for the scalar field power spectrum in the Bunch-Davies

vacuum is that different coordinates are used. As the hyperbolic and planar coordinates

are the same at late times and for small distances, the late-time power spectra at large

momentum should be the same as well. At late times t→∞ we find

〈ΩBD|φpφp′ |ΩBD〉 →
H2p

4π2(p2 + 1)
coth(πp). (3.9)

Correspondingly, the power spectrum (at late times) is given by

∆2
φ,BD(p) =

H2

4π2

p2

p2 + 1
coth(πp). (3.10)

10∑
lm |Yplm|

2 = p2

2π2 .
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Figure 4. The power spectra (logarithmic scale) for the hyperbolic vacuum (blue) and the Bunch-

Davies vacuum (red), as function of the hyperbolic momentum p with H = 1. The dashed line

indicates the scale-invariant planar Bunch-Davies result H2

4π2 .

Looking at these power spectra we indeed find that for p � 1, when cothπp ≈ 1

and p2 + 1 ≈ p2, the hyperbolic vacuum as well as the hyperbolic Bunch-Davies result

matches the standard scale invariant planar Bunch-Davies result H2

4π2 . They only start to

differ from each other and the standard planar Bunch-Davies expression for sufficiently

small momenta p . 1 (see figure 4). Note that although the corresponding wavelengths are

expected to lie far outside our observable window, given the fact that they correspond to

length scales longer or comparable to the hyperbolic curvature scale, for both hyperbolic

states the power is suppressed as compared to the standard planar Bunch-Davies result.

As these departures from the standard planar result become evident, one should keep in

mind that the difference found in the hyperbolic Bunch-Davies result can be attributed

to a coordinate change, whereas (part of) the change in the hyperbolic vacuum power

spectrum is related to an initial state modification. Although this difference might seem

unimportant at this point, when considering the bi-spectrum in the next section it is a

relevant distinction, since the bi-spectrum has been found to be particularly sensitive to

changes in the initial state.

Finally let us also remark that the bubble state put forward in [27] and more recently

used in [14] does resemble the Bunch-Davies state in the sense that the expectation value

of the number operator on hyperbolic sections agrees (giving thermal occupation numbers

in terms of co-moving momentum), but in one aspect is crucially different due to the fact

that it seems to have been constructed as a Bogoliubov transformation of the hyperbolic

vacuum. This would explain why their result for the power spectrum does not agree with

our hyperbolic Bunch-Davies result computed using a mixed density matrix.
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We conclude that, independent of the particular initial state under consideration, any

power-spectrum signatures of an open inflationary universe are confined to the curvature

scale, which has to be several orders of magnitude larger than the largest observable length

scale in the universe. Although the initial hyperbolic state is mixed when assuming a

(globally defined) planar Bunch-Davies state, the power-spectrum results in this admittedly

basic set-up in which all bubble wall physics is ignored, do not show large deviations, as

should be expected. This statement is clearly true for general hyperbolic n-point correlators

in the Bunch-Davies vacuum. Potentially enhanced bi-spectrum results due to initial state

excitations, as compared to the standard planar Bunch-Davies result, might be possible

however when using the pure hyperbolic vacuum as the initial state in the hyperbolic patch.

3.2 The bi-spectrum in the hyperbolic vacuum

Let us next consider the bi-spectrum of scalar density perturbations in the hyperbolic

vacuum, which can in an approximate sense be thought of (for any finite boost parameter γ)

as an initial state ‘excited’ with respect to the standard planar Bunch-Davies vacuum.11

We will mainly be interested in the so-called squeezed limit, for which previous work

uncovered enhanced results for excited (planar) Bunch-Davies intial states [15, 31, 32, 34].

Moreover, as before it should be reasonable to work in the sub-curvature approximation

p� 1, for which the hyperbolic momenta pi are approximately equal to the standard (flat)

wavenumbers ki up to curvature suppressed corrections.

To compute the hyperbolic bi-spectrum we need the action to third order in the scalar

density perturbation ϕ and the hyperbolic curvature introduces some new ingredients as

compared to the planar calculation [35], which have been carefully dealt with in [14]. The

state of interest in [14] is however the bubble state constructed first in [27], which appears

to be related to the hyperbolic vacuum by means of a Bogoliubov transformation and is

therefore different from the Bunch-Davies vacuum. The bubble state can be viewed as

a (well-motivated and first principles derived) initial state modification with respect to

the hyperbolic vacuum, explaining their interest in trying to identify enhanced features

in the bi-spectrum. Note that their computation is a priori not applicable to initial state

modifications of the (planar) Bunch-Davies vacuum. Such an interpretation would only be

valid in the infinite boost limit, when the hyperbolic vacuum reduces to the planar Bunch-

Davies vacuum. As we explained, in our pure de Sitter set-up it is the hyperbolic vacuum

initial state that (for finite boost parameter γ) should be considered as the different state of

interest to be compared to the planar Bunch-Davies vacuum and that could perhaps display

interesting bi-spectrum enhancements. As emphasized before the hyperbolic Bunch-Davies

bi-spectrum equals the planar Bunch-Davies bi-spectrum and all apparent changes can be

related to the coordinate change from planar to hyperbolic. So here we will be interested

in computing the results for bi-spectrum in the hyperbolic vacuum, which can fortunately

be extracted straightforwardly from the results in [14].

So let us first briefly review the basic results reported in [14] and then apply them to

our case of interest. We will be interested in a massless minimally coupled scalar field, for

11Formally the hyperbolic vacuum can of course not be considered excited with respect to the Bunch-

Davies vacuum, since it belongs to a different Hilbert space.
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which the positive and negative frequency modes defined in a single hyperbolic patch, can

be nicely expressed as

up(η) = H
cosh η + ip sinh η√

2p(1 + p2)
e−ipη,

vp(η) = H
cosh η − ip sinh η√

2p(1 + p2)
eipη. (3.11)

The perturbed metric in one of the hyperbolic patches, is written in the ADM formalism as

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.12)

where, as usual, N is the lapse function, N i is the shift and hij = a2(t)e2ζγij is the spatial

metric, with curvature perturbation ζ. We will be interested in gravitationally induced non-

linearities on the scalar density perturbation, requiring that we need to introduce (generic)

slow-roll evolution of the background scalar φ(t) in order to couple the scalar inflaton field

to the scalar density perturbation. Now, plugging the above metric into the action for the

scalar degree of freedom (assuming slow-roll evolution) and solving the constraint equations

order by order, one can obtain the quadratic and cubic (and higher) action. The quadratic

action for scalar perturbations, in the flat gauge ζ = 0, to leading order in the slow roll

parameters is

S(2) =

∫
dtd3xa(t)3√γ

(
1

2
ϕ̇2 − 1

2a(t)2
∂iϕ∂

iϕ

)
, (3.13)

where ∂i is the covariant derivative with respect to γij . Up to this point this should all be

familiar, so let us now turn to the cubic action on a hyperbolic patch. As explained in [14]

the dominant term in the third order Lagrangian is found to be

L(3) = −√γa5φ̇
((
∂2 − 3

)−1
ϕ̇c

)
ϕ̇2
c . (3.14)

The new ingredient due to the hyperbolic curvature in this action is the −3 term. The ϕc
is (as usual) the redefined field (ϕ→ ϕc), defined as

ϕ = ϕc +
φ̇

4(ȧ/a)

[(
∂2 − 3

)−1
∂iϕc∂

iϕc

]
, (3.15)

which does not affect the quadratic action and has removed terms in the cubic action that

are proportional to the equations of motion. The bi-spectra of ϕ and ϕc are then related

as follows

〈ϕ(x1)ϕ(x2)ϕ(x3)〉= 〈ϕc(x1)ϕc(x2)ϕc(x3)〉 (3.16)

+
φ̇

4(ȧ/a)

[(
∂2−3

)−1〈∂iϕc(x1)ϕc(x2)〉
〈
∂iϕc(x1)ϕc(x3)

〉
+permutations

]
.

In harmonic space, introducing the geometrical factor∫
d3x
√
γYp1l1m1(x)Yp2l2m2(x)Yp3l3m3(x) ≡ F l1l2l3p1p2p3G

m1m2m3
l1l2l3

, (3.17)
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the bi-spectrum B(p1, p2, p3) is defined as

〈ϕp1l1m1ϕp2l2m2ϕp3l3m3〉 = B(p1, p2, p3)F l1l2l3p1p2p3G
m1m2m3
l1l2l3

. (3.18)

Of the two bi-spectrum contributions due to the field redefinition, the first term is then

computed using eq. (3.14) in the in-in formalism, where we already assumed the sub-

curvature limit allowing one to replace the momentum p with the planar momentum k

B(k1, k2, k3)=2Re

[
ivk1(0)vk2(0)vk3(0)

(∫ 0

−∞
dη

2a6φ̇

k2
1 +4

u̇k1(η)u̇k2(η)u̇k3(η)

)
+1↔2+1↔3

]
.

(3.19)

In a hyperbolic (quasi) de Sitter space the integral over conformal time is naturally divided

into two eras: from −∞ to −1, where the curvature term is dominant and from −1 to 0

corresponding to standard inflationary expansion. Assuming slow-roll evolution in both

eras, the expressions for φ̇ in terms of the slow-roll parameter ε change when transitioning

from the curvature-dominated era into the inflationary era. The mode functions defining

the hyperbolic vacuum |ΩH〉 in the sub-curvature approximation p � 1, in the different

eras, read as follows

uk(η) ' − i

a(η)
√

2k
e−ikη (−∞ < η . −1)

uk(η) ' − H√
2k3

(1 + ikη)e−ikη (−1 . η < 0)

u̇k(η) =
∂uk
∂η

1

a(η)
' 1

a2(η)

√
k

2
e−ikη,

vk(0) ' H√
2k3

. (3.20)

Using these expressions to do the integral in (3.19)and ignoring effects due to the discon-

tinuity in the transition between eras, one obtains [14]

B(k1, k2, k3) =
2
√

2εH4

4k1k2k3 (k1 + k2 + k3)

(
1

k2
1

+
1

k2
2

+
1

k2
3

)
. (3.21)

This result agrees with the standard planar Bunch-Davies result in single field inflation.

For completion the additional contribution from the field redefinition equals

Bredef(k1, k2, k3) =
φ̇

4H

k1 · k2

k2
3 + 4

H2

2k3
1

H2

2k3
2

+ permutations , (3.22)

but as shown in [14] the contribution from this term is subdominant in the squeezed limit

k3 � k1 ' k2 = k and therefore can be ignored when looking for other enhanced contribu-

tions in the squeezed limit, as expected for initial state modifications. The enhancement of

initial state modifications in the squeezed limit, as compared to the hyperbolic vacuum, was

indeed observed after adding the specific negative frequency term to the mode functions

that describes the bubble initial state [14]. However the Bogoliubov coefficient describing

this excited bubble state is exponentially suppressed in the hyperbolic momentum over

the curvature scale (which is normalized to one) e−πp, meaning that these effects for the

observable modes in the sky are exponentially suppressed and undetectable.
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After having reviewed the hyperbolic bi-spectrum calculation in [14], we will now

connect these results to our case of interest. To start out with, the quoted result for the

bi-spectrum (3.21) is of course the hyperbolic vacuum bi-spectrum in the late time, sub-

curvature limit, which agrees with the standard planar Bunch-Davies result. Clearly then,

no (modified initial state) enhancement with respect to the planar Bunch-Davies result is

found in the late time and large momentum limit. The squeezed enhancement that was

revealed in [14] for the excited bubble state, albeit exponentially suppressed in momentum,

is with respect to the hyperbolic vacuum and can only be interpreted as enhancement with

respect to the planar Bunch-Davies vacuum in the late time and large momentum limit. As

we noted, the late time and large momentum limit effectively corresponds to the action of

the infinite boost in the embedding space for which the hyperbolic vacuum indeed matches

the planar Bunch-Davies vacuum state, explaining the result. The excited bubble vacuum,

obtained by a Bogoliubov rotation from the hyperbolic vacuum, will also not agree with the

hyperbolic Bunch-Davies result. Instead the hyperbolic bi-spectrum in the Bunch-Davies

state has to match the planar Bunch-Davies result (written in hyperbolic coordinates),

obviously excluding a (squeezed) enhancement.

Our first conclusion is therefore that the bi-spectrum in the hyperbolic vacuum is

clearly (and unsurprisingly) not enhanced with respect to the planar Bunch-Davies result

in the late time and sub-curvature limit. In fact it is straightforward to (perturbatively)

extend this conclusion beyond the strict sub-curvature or large momentum limit by ana-

lyzing the leading correction. The first correction in the large momentum approximation

is obtained from an asymptotic expansion of the hyperbolic mode function at late times

up(η � 1, p� 1) ≈ H√
2p3

(1 + ipη) e−ipη
(

1− 1

2p2
+O

(
1/p4

))
. (3.23)

Noting the last term (in brackets) one observes that the leading large momentum correction

will give additional contributions suppressed in the large momentum limit with at least one

factor of 1/p2,12 but leaving the relative momentum dependence in tact. As a consequence

enhancements in the squeezed momentum limit as compared to the planar Bunch-Davies

result are excluded, as that would typically require additional terms featuring negative

frequencies. It should be clear that corrections suppressed as 1/p2, without additional

enhancements in particular momentum configurations, does not constitute an interesting

non-Gaussian signature of an open inflationary universe.

We conclude that, unfortunately, the bi-spectrum in the hyperbolic vacuum does not

produce interesting enhancements that could be searched for. This conclusion is in fact

corroborated by approximately constructing the hyperbolic vacuum as an excited state

on top of the (global) planar Bunch-Davies vacuum (see appendix D). Effectively one

then discovers that the relevant Bogoliubov coefficients are suppressed exponentially in

momentum, ensuring that these effects will not be observable. So we conclude that the

hyperbolic vacuum does not give rise to large (enhanced) corrections in the bi-spectrum as

compared to the standard planar Bunch-Davies result.

12Re-installing the hyperbolic curvature scale, which was set to one, this term would be explicitly dimen-

sionless and read kc/p
2.
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4 Conclusions

Before summarizing our results, let us remind the reader once more that our motivation was

to carefully study the relation between the hyperbolic and planar coordinate patches and

their corresponding states in (mostly) pure de Sitter space. We believe these results to be

of interest, and partially applicable, in the context of de Sitter false vacuum decay, but it is

also clear that in that case a more complete analysis should include (model-dependent) wall

physics that will affect the details. Instead we concentrated on a general and qualitative

difference between two examples of initial states on a hyperbolic section of de Sitter space:

the pure hyperbolic vacuum and the (mixed) de Sitter invariant Bunch-Davies state. We

first of all noted that the pure hyperbolic vacuum is formally inconsistent, due to the energy

momentum tensor becoming singular at the null boundary of the hyperbolic section. This

issue should of course plague all pure hyperbolic states, including states obtained from the

hyperbolic vacuum by a (unitary) Bogoliubov transformation.

The Bunch-Davies vacuum is qualitatively different and a priori it might have been

the case that non-Gaussian signatures are enhanced in the hyperbolic vacuum as compared

to the bispectrum in the (mixed) Bunch-Davies state on the hyperbolic patch. As we have

emphasized throughout, all planar n-point correlators in the Bunch-Davies state, with all

points in the hyperbolic section, should equal the n-point Bunch-Davies correlators com-

puted using the density matrix on the hyperbolic patch. The only differences introduced

are due to the coordinate change. And since the hyperbolic and planar coordinates coincide

in the late time and large momentum (sub-curvature) limit all effects due to the coordinate

change should also disappear.

Using the hyperbolic coordinate embedding we explicitly constructed a family of hy-

perbolic solutions that reduces to the planar coordinates in the infinite boost limit, as such

providing a limiting relation between the hyperbolic vacuum and the planar Bunch-Davies

vacuum. As a corollary we also argued that the hyperbolic vacuum can be mapped to a

specific static vacuum, implying that the static vacuum should also reduce to (a sector of)

the Bunch-Davies state in the infinite boost limit, as was first noted in [22]. Again, this

limiting behavior implies that in the late time and large momentum limit, the bi-spectrum

results for the hyperbolic vacuum should agree with the standard planar Bunch-Davies

result and using the results of [14] this was indeed confirmed. Looking at the leading cor-

rection in the large momentum expansion, we verified that no enhancement in particular

momentum configurations is generated and that the corrections are at least suppressed as

1/p2. These type of curvature suppressed Non-Gaussian corrections will clearly be impos-

sible to detect. So unfortunately, on the basis of our simplified analysis here, we conclude

that no distinctive detectable signal of an open inflationary universe in the fluctuation

statistics on small sub-curvature scales is expected.

To summarize, the two hyperbolic states introduced make practically identical pre-

dictions in the late time sub-curvature limit. In fact, in the infinite boost limit the states

become formally identical to the planar Bunch-Davies vacuum. For the Bunch-Davies state

this seems to imply that the hyperbolic density matrix ρBD should depend on the boost pa-

rameter γ. Correspondingly, the associated von Neumann entropy Tr(−ρBD ln ρBD) of the
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mixed Bunch-Davies state on the hyperbolic section should depend on the boost parameter

γ to ensure that the entropy vanishes in the infinite boost limit. This density matrix was

computed in [21] and it would be of interest to consider the generalization for non-zero

boost parameter γ. Although one might think the density matrix and corresponding en-

tropy to be boost invariant, this is not entirely obvious and the above observation does

indeed suggest it might not be, perhaps in some subtle (singular) way. The dependence

on the boost parameter should be such that it is invariant under γ → −γ, effectively in-

terchanging the two hyperbolic sections. Since the boost dependence can be implemented

through a simple rescaling on the left hyperbolic momenta (and a time shift) (2.7) and the

inverse rescaling on the right hyperbolic momenta (and time shift) it should be possible

to trace the boost dependence of the Bunch-Davies state in terms of the left and right hy-

perbolic modes. It should then be straightforward to construct the corresponding density

matrix and explicitly confirm that the density matrix and corresponding entropy become

trivial in the infinite boost limit.

In more realistic scenarios, trying to incorporate the bubble nucleation dynamics, an

initial state has been proposed that seems to be constructed by effectively performing a

unitary Bogoliubov transformation on the hyperbolic vacuum state [27]. Although this

bubble state is in certain aspects very similar to the Bunch-Davies vacuum, the correlation

functions are different as compared to the Bunch-Davies hyperbolic correlation functions

that we computed. It might be of interest to revisit the original construction and under-

stand better how it is related to ours. We hope to address this and some of the other

remaining questions in future work.

Acknowledgments

We thank I-Sheng Yang and Ben Freivogel for useful discussions. This work is part of the

Delta ITP consortium, a program of the Netherlands Organisation for Scientific Research

(NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

This work is also supported in part by the Foundation for Fundamental Research (FOM),

which is part of NWO.

A Mode functions

A.1 Solutions to the hyperbolic equation of motion

The metric for both the left and right hyperbolic patch is given by:

ds2 =
1

H2

(
−dt2 + sinh2 t

(
dr2 + sinh2 r dΩ2

2

))
(A.1)

where the coordinates t, r, φ, θ are dimensionless and c = 1. The action for a massive

non-interacting minimally coupled scalar field φ is given by:

S = −1

2

∫ √
−g d4x

(
gµν∂µφ∂νφ+m2φ2

)
. (A.2)
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The action of a conformally coupled scalar field can be written in the Einstein frame with

effective mass m2 = 2H2. The equation of motion is given by

0 =

(
1

sinh3(t)

∂

∂t
sinh3(t)

∂

∂t
− 1

sinh2(t)
∇2
H3 +

m2

H2

)
φ

=

(
1

sinh3(t)

∂

∂t
sinh3(t)

∂

∂t
− 1

sinh2(t)
∇2
H3 +

9

4
− ν2

)
φ

(A.3)

where ν is defined as ν =
√

9
4 −

m2

H2 and ∇2
H3 is the Laplacian on the hyperboloid H3. We

will use ν ′ = ν − 1
2 , consistent with [20], such that ν ′ = 1 corresponds to the massless

minimally coupled case and ν ′ = 0 corresponds to the massless conformally coupled case

for which the effective mass is m2 = 2H2.

The eigenfunctions Yplm of the Laplacian ∇2
H3 on the hyperboloid H3, that are regular

in r = 0, are given by [20]:

−∇2
H3Yplm = (p2 + 1)Yplm

Yplm(r,Ω) = fpl(r)Ylm(Ω)

fpl(r) =
Γ(ip+ l + 1)

Γ(ip+ 1)

p√
sinh r

P
−l−1/2
ip−1/2 (cosh r)

= (−1)l
√

2

π

Γ(−ip+ 1)

Γ(−ip+ l + 1)
sinhl r

dl

d(cosh r)l

(
sin pr

sinh r

)
(A.4)

where Ylm(Ω) is the normalized spherical harmonic function on the unit two-sphere, Γ(z) is

the Gamma function and P νµ (z) is the associated Legendre function of the first kind [36].13

The mode functions that correspond to the natural hyperbolic vacuum are given by:{
H

sinh tP
ip
ν′ (cosh t) positive energy modes

H
sinh tP

−ip
ν′ (cosh t) negative energy modes

: p ≥ 0

}
. (A.5)

Mode functions on a Cauchy slice of de Sitter, must be regular and consist of linear

combinations of the hyperbolic mode functions in the left and right hyperbolic patches [20].

The mode functions that correspond to the Bunch-Davies state are given in [20]:

χp,σ =



(
eπp − σe−iπν′

Γ(ν ′ + ip+ 1)
P ipν′ (z)− e−πp − σe−iπν′

Γ(ν ′ − ip+ 1)
P−ipν′ (z)

)
for x ∈ R(

σeπp − e−iπν′

Γ(ν ′ + ip+ 1)
P ipν′ (z)− σe−πp − e−iπν′

Γ(ν ′ − ip+ 1)
P−ipν′ (z)

)
for x ∈ L

=

{
ασp,RP

ip
ν′ (z) + βσp,RP

−ip
ν′ (z) for x ∈ R

ασp,LP
ip
ν′ (z) + βσp,LP

−ip
ν′ (z) for x ∈ L

(A.6)

where z = cosh t and the constants ασp,q and βσp,q are defined as:

ασp,L = σ
eπp − σe−iπν′

Γ(ν ′ + ip+ 1)
ασp,R =

eπp − σe−iπν′

Γ(ν ′ + ip+ 1)

βσp,L = −σe
−πp − σe−iπν′

Γ(ν ′ − ip+ 1)
βσp,R = −e

−πp − σe−iπν′

Γ(ν ′ − ip+ 1)
.

(A.7)

13The Legendre function P and Q correspond to B and D, respectively.
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These mode functions must be normalized through the Klein-Gordon normalization (see

section A.2).

A.2 Klein-Gordon normalization

Hyperbolic modes. We normalize the hyperbolic modes on the hyperbolic patch using

the variable z = cosh t and using the orthonormality of the Yplm:

N2
P p ≡ 〈φplm, φplm〉KG

= i

∫
Σ
dΣµ

(
φplm∂µφ

∗
plm − φ∗plm∂µφplm

)
= i sinh3 t

(
P ipν′ (cosh t)

sinh t
∂t

(
P−ipν′ (cosh t)

sinh t

)
−
P−ipν′ (cosh t)

sinh t
∂t

(
P ipν′ (cosh t)

sinh t

))
= i(z2 − 1)

(
P ipν′ (z)∂zP

−ip
ν′ (z)− P−ipν′ (z)∂zP

ip
ν′ (z)

)
.

(A.8)

For the minimally coupled massless case ν ′ = 1 we have:

N2
P p = i(z2−1)P ip1 (z)P−ip1 (z)×

(
1

z−ip
+
ip

2

1

1+z
+
ip

2

1

1−z
− 1

z+ip
+
ip

2

1

1+z
+
ip

2

1

1−z

)
=

2p

|Γ[1 + ip]|2

=
2 sinh(πp)

π
.

(A.9)

In fact, for ν ′ 6= 1 this normalization is also valid. In [20] it is shown that one can expand

the mode functions in the t→ 0 regime:

1

sinh t
P ipν′ (cosh t) ≈ 2ip

Γ[1− ip]
tip−1. (A.10)

Using this expansion in (A.8) also results into the normalization (A.9). This normalization

is valid for any t by the properties of the Klein-Gordon normalization.

Bunch-Davies modes. The Bunch-Davies modes are given in terms of linear combina-

tions of the hyperbolic modes in (A.6). Schematically we have (using the orthogonality of

the hyperbolic mode functions):

N2
χσ,p = 〈χσ,p, χσ,p〉

=
∑
q=L,R

∑
q′=L,R

〈
(
ασp,qP

p,q + βσp,qP̄
p,q
)
,
(
ασp,q′P

p,q′ + βσp,q′P̄
p,q′
)
〉KG

=
∑

q,q′=L,R

(
ασp,qᾱ

σ
p,q′〈P p,q, P p,q

′〉KG + ασp,qβ̄
σ
p,q′〈P p,q, P̄ p,q

′〉KG

+ᾱσp,q′β
σ
p,q〈P̄ p,q, P p,q

′〉KG + βσp,qβ̄
σ
p,q′〈P̄ p,q, P̄ p,q

′〉KG

)
= N2

P p

∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
,

(A.11)

where we used:
〈P p,q, P p,q′〉KG = −〈P̄ p,q, P̄ p,q′〉KG = δqq′N

2
P p ,

〈P p,q, P̄ p,q′〉KG = 〈P̄ p,q, P p,q′〉KG = 0.
(A.12)
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Using (A.7) we find:∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
=

8 sinhπp (coshπp− σ cosπν ′)

|Γ[ν ′ + ip+ 1]|2
. (A.13)

So finally we can substitute (A.13) into (A.11):

N2
χσ,p = N2

P p

∑
q=L,R

(
ασp,qᾱ

σ
p,q − βσp,qβ̄σp,q

)
=

2 sinhπp

π
× 8 sinhπp (coshπp− σ cosπν ′)

|Γ[ν ′ + ip+ 1]|2

=
16 sinh2 πp (coshπp− σ cosπν ′)

π |Γ[ν ′ + ip+ 1]|2
.

(A.14)

This is consistent with [20], but note that we included an extra factor of 2 sinh πp into the

normalization, in order to simplify the expressions (A.7). The normalized mode functions

are the same as in [20], of course.

A.3 Mode functions for the massless scalar field

Since we are mostly concerned with the massless minimally coupled scalar field (ν ′ = 1), we

state the normalized mode functions for that case explicitly in hyperbolic time coordinate

t and in conformal time η = ln tanh t
2 :

1

NP p

H

sinh t
P ip1 (cosh t) =

H√
2p(p2 + 1)

(
coth

t

2

) ip
2

(p csch t+ i coth t)

=
H√

2p(p2 + 1)
e−ipη (p sinh η − i cosh η) ,

(A.15)

where we have chosen a convenient phase factor in the normalization, that does not affect

the physics. The conformal time η is defined as:

ds2 =
1

H2

(
−dt2 + sinh2 t

(
dr2 + sinh2 rdΩ2

2

))
=

sinh2(t(η))

H2

(
−dη2 + dr2 + sinh2 rdΩ2

2

)
⇒ η =

∫
dt

sinh t

= ln tanh
t

2
.

(A.16)

Other useful relations between “hyperbolic” time t and “conformal” time η are:

sinh t = − 1

sinh η
, cosh t = − coth η. (A.17)

At early times η → −∞ the mode function for the massless minimally coupled scalar

field (A.15) behaves like a positive energy mode function:

H√
2p(p2 + 1)

e−ipη (p sinh η − i cosh η) = sinh η

(
H(p+ i)√
2p(p2 + 1)

e−ipη +O(e2η)

)

≈ sinh η
H(p+ i)√
2p(p2 + 1)

e−ipη.

(A.18)
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The infinite boost limit γ → ∞ (2.7) corresponds to the large t (or small η) and large

momentum limit. In particular in terms of conformal time, the rescaling for small η reads

η → η e−γ , implying that the combination p η is invariant in the limit. This gives

e−ipη (p sinh η − i cosh η) = p sinh η e−ipη
(

1− i

pη
+O(η)

)
≈ e−ipη (pη − i) .

(A.19)

This is exactly the mode function for a massless scalar field in the flat de Sitter slicing (up

to the appropriate normalization).

B Power spectra for the massless field

B.1 Direct calculation

Power spectrum in hyperbolic vacuum. The power spectrum in the hyperbolic vac-

uum can be computed in a straightforward way

〈ΩH |φpφ′p|ΩH〉

=
H2

sinh2(t)

∑
lm

∑
l′m′

YplmY
∗
p′l′m′

NP pNP p′

× 〈ΩH |
(
b̂plmP

ip
ν′ + b̂†plmP

−ip
ν′

)(
b̂p′l′m′P

ip′

ν′ + b̂†p′l′m′P
−ip′
ν′

)
|ΩH〉

=
H2

sinh2(t)

∑
lm

∑
l′m′

YplmY
∗
p′l′m′

P ipν′ P
−ip′
ν′

NP pNP p′
〈ΩH |b̂plmb̂†p′l′m′ |ΩH〉 using b̂plm|ΩH〉 = 0

= δ(p− p′) H2

sinh2(t)

∑
lm

|Yplm|2

∣∣∣P ipν′ ∣∣∣2
N2
P p

using
[
b̂plm, b̂

†
p′l′m′

]
= δ(p− p′)δll′δmm′

= δ(p− p′) H2

sinh2(t)

p2

2π2

∣∣∣P ipν′ ∣∣∣2
N2
P p

, (B.1)

where we used the completeness relation for the Yplm in the last step. For the massless

minimally coupled case ν ′ = 1 we have:

〈ΩH |φpφ′p|ΩH〉 = δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

(p2 + 1)
, (B.2)

and for large t→∞

〈ΩH |φpφ′p|ΩH〉 → δ(p− p′)H
2

4π2

p

(p2 + 1)
. (B.3)

The power spectrum for the massless minimally coupled scalar field is given by:

〈ΩH |φ2|ΩH〉 =

∫
dp

∫
dp′〈ΩH |φpφ′p|ΩH〉

=

∫
d ln p

H2

4π2

p2

p2 + 1

⇒ ∆2
φ,H(p) =

H2

4π2

p2

p2 + 1
.

(B.4)
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Power spectrum in Bunch-Davies vacuum. The computation is similar to the

previous case:

〈ΩBD|φpφp′ |ΩBD〉 =
H2

sinh2 t

∑
lml′m′

∑
σσ′

YplmY
∗
p′l′m′

Nχp,σNχp′,σ′

× 〈ΩBD|
(
âσplmχp,σ+â†σplmχ̄p,σ

)(
âσ′p′l′m′χp′,σ′+â

†
σ′p′l′m′χ̄p′,σ′

)
|ΩBD〉

=
H2

sinh2 t

∑
lml′m′

YplmY
∗
p′l′m′

∑
σσ′

χp,σχ̄p′,σ′

Nχp,σNχp′,σ′
〈ΩBD|âσplmâ†σ′p′l′m′ |ΩBD〉

= δ(p− p′) H2

sinh2 t

∑
lm

|Yplm|2
∑
σ

∣∣∣∣ χp,σNχp,σ

∣∣∣∣2 using [âσplm, â
†
σ′p′l′m′ ]

= δσσ′δll′δmm′δ(p− p′)

= δ(p−p′) H2

sinh2 t

p2

2π2

∑
σ


(
ασp,Lᾱ

σ
p,L

N2
χpσ

+
βσp,Lβ̄

σ
p,L

N2
χp,σ

) ∣∣∣P ipν′ ∣∣∣2
+
ασp,Lβ̄

σ
p,L

N2
χpσ

P ipν′ P
ip
ν′ +

ᾱσp,Lβ
σ
p,L

N2
χpσ

P−ipν′ P−ipν′

. (B.5)

In the last step we used the completeness relation for Yplm and the expansion of χ in terms

of the associated Legendre polynomials (A.6), (A.7). Here we will compute the spectrum

for the massless scalar field (ν ′ = 1). For the massless minimally coupled scalar (ν ′ = 1)

the cross terms involving P ipP ip and P−ipP−ip vanish:

∑
σ

ασp,Lβ̄
σ
p,L

N2
χpσ

∝
∑
σ

(eπp + σ)(e−πp + σ)

coshπp+ σ
∝
∑
σ

σ = 0, (B.6)

and similarly for the term involving P−ipP−ip. So for the massless minimally coupled case

(ν ′ = 1) we have:

〈ΩBD|φpφp′ |ΩBD〉 = δ(p− p′) H2

sinh2 t

p2

2π2

∑
σ

(
ασp,Lᾱ

σ
p,L + βσp,Lβ̄

σ
p,L

N2
χp,σ

)∣∣∣P ip1

∣∣∣2
= δ(p− p′) H2

sinh2 t

p2

2π2

∑
σ

π

16 sinh2 πp

(eπp + σ)2 + (e−πp + σ)2

coshπp+ σ

∣∣∣P ip1

∣∣∣2
= δ(p− p′) H2

sinh2 t

p2

2π2

π cosh(πp)

2 sinh2(πp)

∣∣∣P ip1

∣∣∣2
= δ(p− p′) H2

sinh2(t)

p(cosh2(t) + p2)

4π2(p2 + 1)
coth(πp). (B.7)

For large t→∞ we have:

〈ΩBD|φpφp′ |ΩBD〉 = δ(p− p′)H
2

4π2

p coth(πp)

p2 + 1
(B.8)
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and

〈ΩBD|φ2|ΩBD〉 =

∫
dp

∫
dp′〈ΩBD|φpφp′ |ΩBD〉

=
H2

4π2

∫
dp
p cothπp

p2 + 1
+ supercurvature modes

=
H2

4π2

∫
d ln p

p2 cothπp

p2 + 1
+ supercurvature modes.

(B.9)

The power spectrum is given by

∆2
φ,BD(p) =

H2

4π2

p2 cothπp

p2 + 1
(B.10)

which reduces for p� 1 to an approximately scale invariant spectrum:

∆2
φ(p) ≈ H2

4π2
. (B.11)

B.2 Reduced density matrix calculation

In this section we derive the power spectrum in the Bunch-Davies state using an alternative

method. We consider the reduced density matrix that remains after having traced out the

degrees of freedom in the right hyperbolic patch. We find the same answer as in the direct

calculation (B.10), (B.7). The reduced density matrix for the left hyperbolic patch has

been calculated by Maldacena and Pimentel [21] and is given by:

ρ̂L,p,l,m = TrHR {|ΩBD〉〈ΩBD|}

= (1− |γp)|2)

∞∑
n=0

|γp|2n|n; p, l,m〉〈n; p, l,m|
(B.12)

where for the massless scalar field γp and |n; p, l,m〉 are given by:14

γp(m = 0) = ie−πp

|n; p, l,m〉 =
(b̂†plm)n
√
n!
|ΩH〉.

(B.13)

For a point in the left hyperbolic wedge x ∈ L the two point function is given by (2.22):

〈ΩBD|φpφp′ |ΩBD〉 = TrHL
{
φpφp′ ρ̂L

}
= δ(p− p′) H2

sinh2(t)

∑
lm

|Yplm|2
|P ip1 |2

N2
P p

× (1− |γp|2)
∑
n

|γp|2n (2n+ 1)

= δ(p− p′) H2

sinh2(t)

p2

2π2

cosh2(t) + p2

2p(p2 + 1)

1 + |γp|2

1− |γp|2

= δ(p− p′) H2

sinh2(t)

p

4π2

cosh2(t) + p2

(p2 + 1)
coth(πp)

(B.14)

which is equal to the result of the direct calculation (B.7).

14For the massive scalar field Maldacena and Pimentel apply a Bogoliubov transformation on the set of

b̂plm operators to bring ρ̂L in the form of (B.12).
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C Divergence of the energy momentum tensor

As is the case in the Fulling-Rindler vacuum, the energy momentum tensor diverges at the

null boundary of the hyperbolic patch. One could construct lightcone coordinates u = η−r
and v = η + r in order to calculate Tuu. Equivalently, we consider the leading divergence

of Ttt in the t→ 0 limit, which is more convenient.

Ttt = (∂tφ)2 − 1

2
gttg

σρ(∂σφ)(∂ρφ) . (C.1)

For the massless case we have:

〈Ttt〉 =
1

2
〈(∂tφ)2 + grr(∂rφ)2 + gθθ(∂θφ)2 + gφφ(∂φφφ)2〉. (C.2)

One can calculate this directly using the hyperbolic mode functions (2.15) and the den-

sity matrix (B.12) for the Bunch-Davies expectation value 〈Tµν〉BD. Equivalently, for the

leading order term we can use the Wightman functions G+(x, x′) as given in [20]:

〈(∂tφ)2〉 = lim
t′→t

∂t∂t′G
+(t, t′), (C.3)

and similarly for the other coordinates. Note that the contribution of the supercurvature

modes to the Wightman function only leads to subleading divergences.15 The contribution

of the subcurvature modes to the Wightman function for the massless ν ′ = 1 case is

given by [20]:

G+(t, t′, ζ) =
H2

sinh t sinh t′
1

8π2

∫ ∞
−∞

dp
sin pζ

sinh ζ

eπp

sinhπp

(cosh t+ip)(cosh t′−ip)
1 + p2

(
tanh t′

2

tanh t
2

)ip
,

ζ = cosh r cosh r′ − sinh r sinh r′
(
cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)

)
. (C.5)

One can check the following:

〈(∂tφ)2〉 = lim
t′→t

∂t∂t′G
+(t, t′, ζ) =

H2

4π2

∫ pF

0
dp p(p2 + 1) coth(πp)

1

t4
+O

(
1

t2

)
(C.6)

〈(∂rφ)2〉 = lim
r′→r

∂r∂r′G
+(t, t, ζ) =

H2

4π2

∫ pF

0
dp p(p2 + 1) coth(πp)

1

t2
+O

(
t0
)

〈(∂θφ)2〉 = lim
θ′→θ

∂θ∂θ′G
+(t, t, ζ) = sinh2 r

H2

4π2

∫ pF

0
dp p(p2 + 1) coth(πp)

1

t2
+O

(
t0
)

〈(∂φφ)2〉 = lim
φ′→φ

∂φ∂φ′G
+(t, t, ζ) = sin2 θ sinh2 r

H2

4π2

∫ pF

0
dp p(p2 + 1) coth(πp)

1

t2
+O

(
t0
)
.

15For ν′ > 0 the supercurvature mode contribution to the Wightman function is [20]:

G+
∗ (t, t′, ζ) =

H2

4π
5
2

Γ[−ν′ + 1]Γ[ν′ +
3

2
]
sinh(ν′)ζ

sinh ζ

(
sinh t sinh t′

)ν′−1
. (C.4)

For the minimally coupled massless case ν = 3
2

the supercurvature mode becomes time-independent. The

contribution to the energy momentum tensor is of subleading order.
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Note that all these are divergent as t → 0, but they also show the usual UV-divergence.

The UV-divergence is regulated by a cutoff pF . The difference 〈Ttt〉H−〈Ttt〉BD will be UV-

finite. We combine the components (C.6) to obtain 〈Ttt〉BD. The expectation value 〈Ttt〉H
is obtained by replacing coth πp→ 1, where we use the expectation value 〈b̂†plmb̂plm + I〉 in

the two different states:16

〈b̂†plmb̂plm + I〉BD = cothπp

〈b̂†plmb̂plm + I〉H = 1.
(C.7)

Finally, we calculate the difference 〈Ttt〉H − 〈Ttt〉BD:

〈Ttt〉H − 〈Ttt〉BD =
H4

2π2

∫ ∞
0

dp p(p2 + 1) (1− cothπp)
1

t4
+O

(
1

t2

)
= − 11

240π

1

t4
+O

(
1

t2

)
.

(C.8)

Note that we took the cutoff pF to infinity and obtain a UV-finite integral.

D The hyperbolic vacuum embedded in the Bunch-Davies state

From [21] we have for the massless case ν ′ = 1:

|ΩBD〉 =
(
⊗plmeγpb̂

†
Lplm⊗b̂

†
Rplm

)
|ΩH,L〉 ⊗ |ΩH,R〉 (D.1)

or suppressing the indices p, l,m:

|ΩBD〉 = eγb̂
†
L⊗b̂

†
R |ΩH,L〉 ⊗ |ΩH,R〉 (D.2)

with γ = ie−πp. The left hyperbolic vacuum |ΩH,L〉 is not a state of the full system; we

need information about the state in the right hyperbolic patch as well. The simplest way

to embed the left hyperbolic vacuum in the full Hilbert space, we can consider the simple

and symmetric state |ΩH,L〉 ⊗ |ΩH,R〉. This state is not the natural vacuum state (the

Bunch-Davies state) for the full de Sitter space.

Proposition.

|ΩH,L〉 ⊗ |ΩH,R〉 ∝ e−|γp| â
†
+⊗ â†− |ΩBD〉. (D.3)

Proof. We will show that the right hand side of (D.3) vanishes when we act with any

of the b̂Llpm annihilation operators. We use the expression for the hyperbolic annihilation

operator b̂Llpm in terms of the creation and annihilation for Bunch-Davies modes (2.31),

suppressing from now on the labels p, l,m:

b̂L =
∑
σ

NP

Nχσ

(
ασLâσ + β̄σLâ

†
σ

)
. (D.4)

We want to show that b̂L acting on the r.h.s. of (D.3) vanishes:∑
σ

NP

Nχσ

(
ασLâσ + β̄σLâ

†
σ

)
e−|γp|â

†
+⊗â

†
− |ΩBD〉

?
= 0. (D.5)

16We can calculate 〈b̂†plmb̂plm + I〉 by using the density matrix (B.12).
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Consider the annihilation operator âσ acting on (D.3):

â±e
−|γp|â†+â

†
− |ΩBD〉 =

[
â± , e

−|γp|â†+â
†
−
]
|ΩBD〉

= −
[
â± , |γp|â†+â

†
−

]
e−|γp|â

†
+â
†
− |ΩBD〉

= −|γp|â†∓e−|γp|â
†
+â
†
− |ΩBD〉.

(D.6)

Substituting this result in (D.5) gives:

∑
σ

NP

Nχσ

(
ασLâσ+β̄σLâ

†
σ

)
e−|γp|â

†
+⊗â

†
− |ΩBD〉=NP

∑
σ

(
−
α−σL
Nχ−σ

|γ|+
β̄σL
Nχσ

)
â†σe
−|γp|â†+⊗â

†
− |ΩBD〉.

(D.7)

It is easy to check that the quantity between brackets on the r.h.s. of (D.7) vanishes for

both σ = ±1. This finalizes the proof:

b̂Le
−|γ|â†+⊗â

†
− |ΩBD〉 = 0 ∀p, l,m. (D.8)

The state (D.3) is pure. Note that the symmetric and antisymmetric modes corre-

sponding to σ = ±1 are entangled with each other and their reduced density matrices are

thermal.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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