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Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a
business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent en-
ergy and emission trends in the country. Both energy use andGHG emissions inMexico have grown substantially
over the last two decades. We investigate howMexico might reverse current trends and reach its mitigation tar-
gets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To
meetMexico’s emission reduction targets, allmodeling groups agree that decarbonization of electricity is needed,
alongwith changes in the transport sector, either tomore efficient vehicles or a combination ofmore efficient ve-
hicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants.
The models find different energy supply pathways, with some solutions based on renewable energy and others
relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation
could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico
has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico
to achieve its emission reduction targets, albeit at a cost to the country.
© 2016BattelleMemorial Institute and The Authors. Published by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Mexico’s national greenhouse gas (GHG) emission reduction goals
align with the deep mitigation action required in climate stabilization
scenarios and are among the most aggressive in the world, both for de-
veloped and developing regions. Importantly, they are significantly
more ambitious than reduction targets in most other Latin American
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countries. While Mexico’s policy has been recognized as a leading
example in the region, emission trends in the country suggest that
reaching the official targetswill require a resourceful combination of ac-
tions and political agreements to redirect Mexico’s economic growth to
a low-carbon pathway. Energy demands and GHG emissions in Mexico
have increasedmarkedly in recent years, driven by expanding economic
activity, a growing population, and rising standards of living. How can
Mexico reverse current trends and substantially cut GHG emissions by
mid-century? In this paper, we explore this question presenting an in-
depth analysis of results for Mexico from selected policy scenarios of
the CLIMACAP-LAMP cross-model comparison exercise.

The Climate Modeling and Capacity Building in Latin America pro-
ject (CLIMACAP) and the Latin American Modeling Project (LAMP) are
international research collaborations focused on improving the
lsevier B.V. This is an open access article under the CC BY-NC-ND license
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Fig. 1.Mexican GHG emissions by source. Source: SEMARNAT (2013).
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modeling of energy systems, energy-economy interactions, and GHG
emissions in Latin America. Funded by the U.S. Agency for International
Development, the U.S. Environmental Protection Agency, and the
European Commission, they involve modeling teams from many coun-
tries, including Mexico, Argentina, Brazil, Colombia, the US, and mem-
bers of the European Union. Primarily through model inter-
comparisons (based on modeling a set of common scenarios) and
joint investigations, participants seek to illuminate energy and climate
policy questions of national, regional, and global significance. Both pro-
jects also emphasize dialogue with policy makers and contributing
modeling results to the evidence base for policy making in Latin
America.1

This paper is organized as follows. Section 2 describes GHG emission
trends in Mexico and provides an overview of Mexican climate policy.
Section 3 describes our cross-model comparison method, as well as
the policy scenarios evaluated. Section 4 presents our results, describing
the energy pathways that Mexico could follow to reduce emissions 50%
with respect to its 2010 emissions by 2050. In this section, we provide
an analysis of emission drivers, implications for energy supply and de-
mand, and potential mitigation of non-energy GHGs and other air pol-
lutants. Section 5 discusses policy costs, both from the macroeconomic
perspective as well as for the energy system transition to low-carbon
technologies. Section 6 concludes.

2. GHG emissions and climate policy in Mexico

2.1. GHG emissions

Annual GHG emissions in Mexico have risen sharply in the last two
decades, growing 33% between 1990 and 2010 (Secretaría de Medio
Ambiente y Recursos Naturales [SEMARNAT], 2013). The rate of emis-
sions growth exceeds the world average and is more than four times
that observed in other Organization for Economic Cooperation and
Development (OECD) countries during the same period (European
Commission, Joint Research Centre/PBL Netherlands Environmental As-
sessment Agency, 2011). Increased emissions from the production and
use of energy account for the vast majority of the growth and today
constitute two-thirds of the national total (Fig. 1).
1 For more on CLIMACAP, see http://climacap.org/.
Demographic and economic trends have played an important role in
the emissions increase.Mexico’s population grew nearly 40% from 1990
to 2010, to 112million people, while real gross domestic product (GDP)
per capita climbed 18% between 1993 and 2010 (Instituto Nacional de
Estadística y Geografía [INEGI], 2014). As the population and economic
activity have expanded, the demand for energy has grown alongside
(Fig. 2).

The energy intensity of production (total energy demand / GDP) has
remained essentially flat since the early 1990s, and energy demand per
capita has grown (INEGI, 2013; SENER, 2014g). Between1990 and2010,
total energy demand per capita increased 18%; excluding demand for
non-energy purposes, such as chemical feedstocks, final energy demand
per capita increased 6% (INEGI, 2014; SENER, 2014f,2014g). The trans-
port sector has been a key contributor to rising demand, as Fig. 3 shows.

Although the GHG intensity of Mexico’s energy supply (GHG emis-
sions / energy used) is trending downward, decreasing close to 20% be-
tween 1990 and 2010, this effect has been outweighed by higher
demand, producing the emissions profile in Fig. 1 (SEMARNAT, 2013;
SENER, 2014g).
2.2. Climate policy

Recognizing the trends in national emissions and energy use and
seeking to prevent dangerous climate change and promote low carbon
development, theMexican government has enacted a range of ambitious
climate policies. At the center of these is the General Law on Climate
Change (General Law), a statute adopted in 2012 and establishing the in-
stitutional and programmatic framework for national policy (SEMARNAT,
2012). At the institutional level, the General Law defines a National
Climate Change System consisting of the following entities:

• Inter-Ministerial Commission on Climate Change (ICCC) – A com-
mission of federal government ministries charged with developing
and implementing national climate policy and helping determine
Mexico’s position in international climate negotiations

• Climate Change Council – A body advising ICCC and composed of
leaders from the private sector, academia, and society at large

• National Institute of Ecology and Climate Change (INECC) – A
federal agency with a mandate including climate change research
and policy advice, GHG inventories and reporting under the United
Nations Framework Convention on Climate Change (UNFCCC), and
evaluation of climate change policies and programs

• State governments, representatives of national associations of munici-
pal authorities, and representatives of the federal legislature

The System is a formal collaboration between these institutions,
which are directed to develop and carry out policy via the three instru-
ments summarized in Table 1 (SEMARNAT, 2012). As Table 1 suggests,
regular updating of these instruments is envisioned, allowing the
country’s climate policy to adapt to changing conditions.

The General Law and the current National Strategy on Climate
Change (published in 2013) set a number of national mitigation and ad-
aptation goals. Significant quantitative goals formitigation—the focus of
this paper—are listed in Table 2.

Beyond the General Law and instruments arising from it, several
other laws and programs also contribute to Mexico’s climate policy.
These measures support national efforts toward a clean energy transi-
tion and complement the quantitative climate policy objectives set by
theGeneral Law and its programs (Nachmany et al., 2014). For example,
the 2008 Laws for Sustainable Energy Use and for the Use of Renewable
Energies and Funding the Energy Transition encourage and regulate re-
newable energy and low-carbon electricity;while the 2002General Law
for Sustainable Forest Development promotes a variety of initiatives to
reduce deforestation and forest degradation.

http://dx.doi.org/10.1007/s10666-011-9283-1
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Fig. 2. Per capita GDPa (left) and total energy demand (right) in Mexico. Sources: INEGI (2013, 2014), Consejo Nacional de Población (2014), Secretaría de Energía [SENER] (2014g).
aINEGI’s publicly available GDP records begin in 1993.
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The goals in Table 2 distinguish Mexico as a leader in mitigation
policy. The overall emission reduction goals—30% by 2020, 50% by
2050—are among the most aggressive in the Americas and significantly
more ambitious than reduction targets in other Latin American
countries with high GHG emissions, such as Brazil, Argentina, and
Venezuela (the last two have no formal reduction targets at all;
Nachmany et al., 2014). Importantly for international climate negotia-
tions,Mexico’s reduction goals are in linewith the deepestmitigation sce-
narios in the Intergovernmental Panel on Climate Change’s (IPCC’s) Fifth
Assessment Report (AR5), including RCP2.6 and scenarios in theWorking
Group III 430–480 CO2-equivalent (CO2e) category (Clarke et al., 2014;
Collins et al., 2013). These scenarios are premised on providing a good
chance of limiting to 2 ° C the increase in global average temperature
since pre-industrial times. They show worldwide GHG emissions falling
about 50% between 2000 and 2050 (approximately 40 GtCO2e / year to
approximately 20 GtCO2e / year), which corresponds neatly to Mexico’s
2050 objective (Clarke et al., 2014, p. 25). This result is suggestive, al-
though it admittedly does not account for equity and effort-sharing prin-
ciples that may imply that Mexico’s reductions should be more or less
than a typical country’s. However, Clarke et al. (2014) also survey the
effort-sharing literature and report that under a range of effort-sharing
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Fig. 3. Final energy demand in Mexico by sector. Source: SENER (2014f).
regimes, Latin American countries must cut emissions in 2050 between
about 35% and 70% relative to 2010 (20th percentile to 80th percentile
for the studies evaluated; p. 59). Mexico’s 2050 goal equates to a 57% de-
crease versus 2010, well within this interval.

Perhaps with comparisons like these in mind, the Mexican govern-
ment has stated that it hopes to lead the international community by ex-
ample on climate. As the current National Strategy on Climate Change
puts it, “the country ismoving forward in the fulfillment of its internation-
al commitments. [The Strategy] will also be, as it is executed, the best ar-
gument to demand collective action from the international community
against climate change” (Federal Government of Mexico, 2013, p. 9).
The strategic value of an ambitious climate program is especially relevant
as negotiations over the next UNFCCC agreement enter their final stages.

3. Cross-model methodology and policy scenarios

The models in our study employ state-of-the-art techniques to as-
sessmitigation policy and includemodels with detailed representations
of the energy sector, economy-wide models with the capability of
assessing interactions in all sectors of the economy and international
trade, and hybrid models that incorporate details of both energy sys-
tems analysis and the interaction of energy and climate policy with
the rest of the economy. In all, six models provided results for this
paper. Each represents Mexico as a separate country alongside other
Table 1
Key policy instruments defined in general Law on climate change.

National Strategy on
Climate Change

• Plan governing policy in the medium
to long term

• Prepared by SEMARNAT with INECC and the
Climate Change Council, approved by ICCC

• Covers climate scenarios, resource and land-use
trends, GHG emissions and mitigation potential
(including emission projections), vulnerability
assessment, mitigation and adaptation goals,
and policy implementation progress

• Mitigation content reviewed and updated
at least every 10 years; adaptation content
reviewed and updated at least every 6 years

Special Climate Change
Program

• Short-term implementation plan for
federal policies (six-year horizon)

• Developed by SEMARNAT with ICCC, approved
by ICCC

• Must agree with the National Strategy
State and municipal climate
change programs

• Implementation plans for state and
municipal policies

• Must agree with the National Strategy and the
Special Climate Change Program

Source: SEMARNAT (2012).



Table 2
Quantitative mitigation goals in general law on climate change and national strategy on
climate change.

2018 • Cities with more than 50,000 inhabitants emit no methane from solid
waste management

2020 • 30% reduction in national GHG emissions versus a business-as-usual
baseline (equates to a 5% increase compared to emissions in 2000 and a
10% decrease compared to emissions in 2010)2

• No further carbon loss from “original” ecosystems (i.e., ecosystems not
degraded by human activity)

2024 • 35% of national electricity from clean sources
2030 • 40% of national electricity from clean sources

• No net deforestation
• Negative emissions (net sink) from forestry

2050 • 50% reduction in national GHG emissions versus 2000
• 50% of national electricity from clean sources

Sources: SEMARNAT (2012), Federal Government of Mexico (2013).

Table 3
Key model features.

Model/institution Model type Regions Main low carbon
technologies

EPPA
Massachusetts
Institute of
Technology,
United States

Global general
equilibrium model
(16 economic
sectors) with a hybrid
approach including
engineering
information to model
the energy sector and
land-use changes

16 regions
including
Mexico and
Brazil

Gas with carbon
capture and storage
(CCS)
Coal with CCS
Wind
Solar
Biomass
Hydro
Nuclear
Biofuels
Hybrid vehicles

GCAM
Pacific
Northwest
National
Laboratory,
United States

Global energy system
and land use model
with a reduced-form
representation of the
carbon cycle and
climate

32 regions
including
Mexico,
Argentina,
Brazil, and
Colombia

Gas with CCS
Coal with CCS
Wind
Solar
Biomass
Biomass with CCS
Hydro
Nuclear
Biofuels

IMAGE
Netherlands En-
vironmental As-
sessment
Agency, The
Netherlands

Global energy model,
with a sub-model for
land use and land
cover and a
sub-model that
distributes emissions
based on marginal
abatement costs

26 regions
including
Mexico and
Brazil

Gas with CCS
Coal with CCS
Wind
Solar
Biomass
Hydro
Nuclear
Biofuels

Phoenix
Penn State
University,
United States

Global general
equilibrium model
(26 economic
sectors)

26 regions
including
Mexico, Brazil,
Colombia, and
Venezuela

Advanced gas
Gas with CCS
Coal with CCS
Wind
Solar
Biomass
Hydro
Nuclear
Biofuels
Hybrid vehicles

POLES
ENERDATA,
United Kingdom

Energy market
equilibrium model
with econometric
functions for
consumption
patterns

50 regions
including
Mexico and
Brazil

Gas with CCS
Coal with CCS
Wind
Solar
Biomass
Hydro
Nuclear
Biofuels
Hybrid vehicles

TIAM-ECN
Energy
Research Centre
of the
Netherlands,
The Netherlands

Global bottom-up
linear optimization
energy system model

20 regions
including
Mexico,
Argentina,
Brazil, Chile,
Colombia

Gas with CCS
Coal with CCS
Wind (onshore and
offshore)
Solar photovoltaic
(PV)
Concentrated solar
power (CSP)
Biomass
Hydro
Nuclear
Biofuels
Advanced vehicle
technologies,
including hybrid,
battery electric, and
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regions. For full details on eachmodel, includingmathematical formula-
tions, simulation or optimization algorithms, and datasets used, we
refer to existing publications by the modeling teams: EPPA (Paltsev
et al., 2005), GCAM (Wise and Calvin, 2011), IMAGE (Bouwman et al.,
2006), Phoenix (Sue Wing et al., 2011), POLES (Kitous et al., 2010),
and TIAM-ECN (Kober et al., 2014; Rösler et al., 2014; van der Zwaan
et al., 2013). A brief summary of some key features of the models is
shown in Table 3.

As outlined in the preface to this issue, modeling teams in the
CLIMACAP-LAMP project have evaluated a variety of scenarios of future
energy demand, climate policy, and GHG emissions in Latin America
(van der Zwaan, 2016-this issue). Here we focus on three in particular:

1) Core Baseline: A business-as-usual scenario including climate and
energy policies enacted prior to 2010.

2) 50% Abatement (GHG): A scenario in which GHG emissions, exclud-
ing CO2 from land use change, are reduced by 12.5% in 2020, linearly
increasing to 50% in 2050, with respect to 2010.

3) 50% Abatement (FF&I): A scenario in which fossil fuel and industrial
CO2 emissions are reduced by 12.5% in 2020, linearly increasing to
50% in 2050, with respect to 2010.

We use the Core Baseline scenario as a reference when analyzing
mitigation pathways and the 50% Abatement scenarios, which align
generally with Mexico’s long-term GHG emission reduction target, to
explore the technical and economic implications of deepmitigation. Re-
sults from 50% Abatement (FF&I) are reported for the one model that
does not represent emissions of non-CO2 GHGs (Phoenix), while results
from 50% Abatement (GHG) are presented for the five other models.3

All six models report emissions from energy use and apply scenario
targets to emissions from energy use. Reporting of non-energy emis-
sions is fragmentary, but scenario targets are applied to non-energy
emissions when models include them. Other important assumptions
in the scenario design include: a) for global models that can represent
international and regional policies, the same carbon constraints are im-
posed in the rest of the world; b) carbon trade between Latin American
countries and between non-Latin American countries is allowed, but
Latin American countries do not trade with non-Latin American
countries4; and c) land-use CO2 emissions are not subject to carbon
constraints.
2 As described in Federal Government of Mexico (2013), the business-as-usual baseline
is “a trend projection of GHG emissions in [the] absence of mitigation actions” (p. 46). It
assumes annual GDP growth of 3.6% and accounts for historical emissions, expected in-
creases in population, and energy sector policies and plans.

3 For notational simplicity, we refer to these two scenarios jointly as the “50% Abate-
ment scenario” when discussing results.

4 Trading of CO2 and non-CO2 emissions is permitted using IPCC global warming poten-
tials to estimate CO2e. The availability of trade lowers the global costs of attaining the 50%
Abatement targets andmeans that the level of abatement physically realized in each coun-
try or region may be higher or lower than the targets.

hydrogen
Results from thesemodels and scenarios shed light on the pathways
Mexico could follow to attain its long-run mitigation objectives. We
characterize potential pathways in terms of their assumptions about so-
cial and economic conditions; changes in energy intensity, fuel mixes,
and technology deployment; non-energy GHGemissions; economic im-
pacts; and co-benefits, such as reduced emissions of short-lived climate
pollutants. While the paths that emerge from the models are not the



Table 4
Real GDP – annual average growth rates.

Historical
(1993–2012)

IMF World Economic
Outlook Projection (2013–2019)

Model projections in 50% abatement scenario (2010–2050)

EPPA GCAM IMAGE Phoenix POLES TIAM-ECN

2.6% 3.5% 3.1% 2.0% 3.9% 3.2% 3.3% 3.1%

Sources: INEGI (2013), IMF (2014), CLIMACAP-LAMP (2015).
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only waysMexico could achieve its goals, they are a useful reference for
evaluating the scale of the required transformation and trade-offs faced
by Mexican policy makers and society as a whole.
4. Mitigation pathways to 2050

4.1. Economic and social context

As noted in Section 2, increasing population and rising standards of
living in Mexico have been important factors driving growth in GHG
emissions. The extent to which these socioeconomic trends continue
in the future will clearly affect the outlook for emission reductions. Crit-
ically, in the 50% Abatement scenario, all six CLIMACAP-LAMP models
envision population and income growing as they have historically. Pop-
ulation generally continues on the trajectory it has taken since 1990,
reaching about 150 million by 2050 (about 125 million in IMAGE;
CLIMACAP-LAMP, 2015). Meanwhile, real GDP increases at a rate
comparable to those reported inMexico’s official statistics and by inter-
national institutions such as the International Monetary Fund (IMF;
Table 4).

Projections of total GDP in 2050 in the 50% Abatement scenario
range between $2 trillion (GCAM) and $4.1 trillion (IMAGE) 2005 USD
(compare to the official 2010 GDP from INEGI, $1.1 trillion 2005 USD;
CLIMACAP-LAMP, 2015; INEGI, 2013). Taken together, the estimates of
production and population produce the GDP per capita projections
shown in Fig. 4.5
5 Fig. 4 and subsequent figures in this paper show that 2010 values in the six models
sometimes differ from each other and from official government numbers. This variation
is due to differences in the input data and assumptions used to construct and calibrate
the models’ baselines (for more on the models’ baselines, see van Ruijven et al., 2016-in
this issue. For GHG emissions specifically, the models report 2010 values that range be-
tween about 80% [TIAM-ECN] and 101% [POLES] of the government estimate. As a result
they do attain different absolute emission reductions in the 50% Abatement scenario al-
though they are targeting the same percent reduction.
Every model anticipates greater personal income accompanying an
expanding population; in most cases, real personal income more than
doubles between 2010 and 2050.6

As consumer income increases, however, real energy prices do as
well. Table 5 characterizes real prices for electricity and major fuels in
the 50% Abatement scenario. The prices are indexed to their 2010
values, and darker shading indicates a greater increase relative to 2010.

While themodels do not align exactly, there is general agreement on
significant, long-term real price increases for biomass and modest-to-
sizeable increases for natural gas and oil. The majority of models also
foresee higher real prices for electricity and coal by 2050, although the
magnitude of the price growth varies. Multiple model-specific factors
underlie these changes, including assumed mitigation policies, but
their net effect offsets to some degree the impact of rising consumer
income.
4.2. Energy supply

As shown in Fig. 1, energy emissions constitute the largest share of
GHG emissions in Mexico. In order to reach a 50% emission reduction,
Mexico will have to transform its energy supply to low-carbon energy
technologies. In this section,we focus on the transition of thepower sys-
tem to clean technologies and present impacts to the oil sector.

In 2013, Mexico’s total electricity generation was 257.9 TWh
(SENER, 2014h); Fig. 5 shows the mix by fuel used. Fossil fuels
accounted for 82% of total generation, with the rest coming from
hydro, nuclear, and other renewables. As shown in Fig. 5, the most im-
portant share of generation was for natural-gas combined cycle units,
with 49% of generation, followed by 18% for fuel oil, 12% for coal (includ-
ing dual units that generate with fuel oil and coal), 11% for hydropower,
and 5% for nuclear. Other renewables in the country,mainly geothermal
and wind, produced 3% of the total.

Mexico is transitioning away from fuel oil generation and rapidly
investing in natural gas, both in terms of generation facilities as well
as the associated infrastructure to supply gas (e.g., pipelines and lique-
fied natural gas terminals). Current programs from the energy sector
suggest that the business-as-usual trend for power generation will rap-
idly transform Mexico to a natural gas based system, particularly given
current prices of natural gas in North America. In recognition of poten-
tial issues for energy security and climate change, the government is
implementing environmental and energy policies to promote energy di-
versification and the use of clean energy sources,7 as described in
Section 2. Results include programs to promote wind generation in
sites with high wind potential, such as Oaxaca state and Baja California,
and the 39 MW Aura Solar I plant in Baja California Sur. Our modeling
results project a diversity of possible futures forMexico’s power system.
First, varying assumptions about economic growth and potential effi-
ciencymeasures result in awide range of projected electricity supply re-
quirements. As shown in Fig. 6, total generation is projected in the
baseline scenario between 2.0 EJ (EPPA) and 4.3 EJ (POLES). In the 50%
Abatement scenario, the range of electricity supply also varies shifting
downwards to 1.1 EJ (EPPA) and 4.1 EJ (POLES). This comes as a result
6 Thenotably highprojection in IMAGE is due inpart to high total GDP but also inpart to
lower projected population.

7 Mexico’s Special Climate Change Program and Special Program on Renewable Energy
specify targets both for emissions intensity of generation and for total generation from re-
newables and from clean energy sources.



Table 5
Real energy prices in 50% abatement scenario (2010 value in model = 100)a.

EPPA GCAM IMAGE Phoenix POLES TIAM-ECN

2020 2050 2020 2050 2020 2050 2020 2050 2020 2050 2020 2050

Biomassb NRc NR 105 218 117 235 NR NR 114 183 532 3218

Coald 76 47 101 99 113 125 97 150 108 109 120 575

Gasd 106 101 101 113 120 188 103 103 124 193 178 281

Oild 125 158 103 114 123 149 102 104 127 190 111 120

Electricitye 76 152 108 94 158 97 127 177 199 181 967 803

Source: CLIMACAP-LAMP (2015).
aLight shading: 110 ≤ value b 150; medium shading: 150 ≤ value b 200; dark shading: 200
≤ value.
bProducer price (except for IMAGE, which reported price for large consumers only)
cNR = not reported
dSpot price in global or regional market
ePrice for large consumers
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Fig. 6. Total electricity generation in core baseline and 50% abatement scenarios. Source:
CLIMACAP-LAMP (2015).
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of induced energy efficiency (as wewill discuss in the next section), but
also as a result of decreases in economic activity in the country and glob-
ally due to pricing carbon.While the envelope of total electricity supply
provides a range of potential expected generation in the baseline and
mitigation scenarios, it is worth highlighting some differences in the
trends of the models. POLES, IMAGE, and EPPA project a decrease in
total electricity supply in the 50% Abatement scenario, while GCAM,
Phoenix, and TIAM-ECN project an increase. In these last three models,
electrification becomes an important mitigation option driving electric-
ity demand upwards (as explained in the next section, electrification
also occurs in the other models; however, it is outweighed by other dy-
namics such as energy efficiency).

The generation mix also varies between the models in the baseline
scenario (Fig. 7). GCAM and EPPA find that natural gas will dominate
the mix in 2050 in the baseline case, with EPPA having the highest
share of gas at 74%. All other models find a relevant participation of
this fuel. The model that expects the least amount of gas in the electric-
ity mix is TIAM-ECN, projecting only 27%. All models estimate coal to be
used in the baseline case as well, from 10% (EPPA) to 50% (TIAM-ECN).
All models, except for Phoenix, find a minor share for oil-fired genera-
tion; the range is from less than 1% (IMAGE) to 28% (Phoenix). In
terms of renewables, the models vary widely. Both POLES and IMAGE
find significant participation by renewables, although the selection of
technologies differs. IMAGE chooses onshore wind and biomass, and
Coal

Diesel

Dual (Fuel Oil/Coal)

Fuel Oil

Geothermal

Hydro

Natural Gas

Nuclear

Solar PV

Turbogas

Wind

Fig. 5. Total electricity generation in Mexico in 2013. Source: SENER (2014h).
POLES opts primarily for solar technologies and wind. GCAM and
TIAM-ECN also find a relevant participation of renewables in the base-
line, of 24% and 14%, respectively. GCAM deploys biomass, geothermal,
wind, solar, and hydro, while TIAM-ECN mainly chooses wind and
hydro. In all, the models find a range from 8% participation of renew-
ables (EPPA) to 43% participation (IMAGE) in the baseline. Results
from some of the models therefore suggest that renewables will be
competitive without climate policy, to a certain extent, although this
is not the case in all models.

The 50% Abatement scenario drastically changes the electricity tech-
nology choices in all models. By 2050, POLES and TIAM-ECN findmixes
dominated by renewable energy, primarily by solar technologies of
which photovoltaic (PV) has the biggest share, and some participation
of wind and biomass. IMAGE also finds renewable energy dominates;
however, this model does not deploy much solar technology and in-
stead relies on biomass and wind. GCAM deploys natural gas with
CCS, biomass with CCS, nuclear, and somewind and solar. Phoenix sub-
stantially reduces oil-fuel generation and opts for coal CCS and wind.
EPPA projects a significant decrease in total electricity supply, due to ef-
ficiency and demand adjustments, and deploys primarily natural gas
with CCS, followed by hydro, coal with CCS, and a phase-out of fuel oil
generation.

The models arrive at these endpoints by considering a number of
factors, including assumed costs, electricity requirements, mitigation
objectives, and production constraints such as natural resource avail-
ability, technology availability, and limits on the rate of grid integration
of certain technologies. For example, biomass supply in IMAGE is limit-
ed by land available for raising energy crops (defined as abandoned ag-
ricultural land and part of the natural grasslands in divergent land-use
scenarios), the productivity of available land, and energy losses during
the conversion of crops to fuels (Bouwman et al., 2006). Kober et al.
(2016-in this issue) summarize the natural resource and other electric-
ity production constraints operative in the models. With respect to
costs, it is important to note that relative costs, not absolute costs,
drive technology choice in any given model. Thus, for instance, the
models that opt for CCS in preference to renewables estimate that it is
a more cost-effective way to achieve deep emission reductions (ac-
counting for issues like the intermittency of renewables, transmission
and distribution costs, and so forth), not that CCS is inexpensive in an
absolute sense. The possibility of net negative GHG emissions with bio-
mass CCS (described further below) also has significant option value be-
cause it provides flexibility in sectors where abatement is difficult
(e.g., transport; Kriegler et al., 2014).

A key point of agreement, however, is that all models find significant
decarbonization of electricity is necessary to cut Mexico's GHG emis-
sions by 50%. Table 6 shows the percentage of power generated from
clean sources in the 50% Abatement scenario, defining “clean” as in



able 7
mission intensity of electricity supply in 2050 under 50% abatement scenario.

EPPA GCAM IMAGE Phoenix POLES TIAM-ECN

Generation (TWh) 305 754 637 699 1158 1012
Emissions
(Mt CO2)

10.0 −40.7 −291.7 53.7 55.5 −76.7

Emission intensity
(Mt CO2 / TWh)

0.03 −0.05 −0.46 0.08 0.05 −0.08

ource: CLIMACAP-LAMP (2015).

Baseline 50% Abatement
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Fig. 7. Electricity generation in 2050 by technology and scenario. Source: CLIMACAP-LAMP (2015).

Table 6
Percentage of power generated from clean sources in 50% abatement scenario vs. national
targets.

2020 2024 2030 2040 2050

National Targets 35% 40% 50%

EPPA 20% 22% 98% 100%
GCAM 31% 57% 76% 88%
IMAGE 22% 31% 63% 99%
Phoenix 27% 32% 57% 80%
POLES 30% 60% 82% 84%
TIAM-ECN 37% 91% 100% 100%

Sources: CLIMACAP-LAMP (2015); national targets – SEMARNAT (2012), Federal Govern-
ment of Mexico (2013).
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Mexico’s recently enacted Electricity Industry Law8 and comparing the
models’ results to targets in the General Law on Climate Change andNa-
tional Strategy on Climate Change.

Although the 50% Abatement scenario does not include the national
targets as explicit constraints, the modeled results agree with the
nearest-term target (for 2024) and are distributed around the 2030 tar-
get. By 2050, however, they differ systematically from the national goal,
allmodels envisioning a share of power from clean sources substantially
higher than 50%. Another way of thinking about the projected changes
in the power sector is in terms of emissions. To reduce economy-wide
emissions 50%by 2050, allmodels find that CO2 emissions from electric-
ity generation must decrease by more than 50% (relative to both the
baseline scenario and 2010 emissions). These findings suggest that
8 Per the Law, clean energy sources include non-biomass renewables, biomass, nuclear,
and CCS technologies (Secretaría de Gobernación, 2014).
attaining 50% clean generation by 2050 will not suffice to reach the
overall abatement target for the economy.

Another indicator that the Mexican government has mooted is the
emission intensity of the power mix. Emission intensity of electricity
generation in the country in 2013 was 0.456 t CO2e / MWh, as reported
in the Special Climate Change Program (SEMARNAT, 2013). Table 7
shows how models compare in this indicator for the 50% Abatement
scenario. Phoenix reports the highest emission intensity (0.08 Mt
CO2 / TWh), followed by POLES (0.05), and EPPA (0.03). Interestingly,
three models in our comparison exercise find that the power sector
will have to have negative emissions to reach the reduction target,
with IMAGE having the largest negative emissions followed by TIAM-
ECN and GCAM.

Regarding the oil sector, the 50% Abatement scenario implies a re-
duced role for oil in all models (Fig. 8). Relative to the baseline scenario,
IMAGE expects the amount of oil in the total primary energy supply to
be 82% lower in 2050; Phoenix projects a 67% decrease, TIAM-ECN
66%, EPPA 48%, GCAM 32%, and POLES 21%. The shift away from oil is
due to electrification; more use of biomass; alternative transport tech-
nologies; and energy efficiency in transportation, buildings, and indus-
try, as we explain in the next section.
2010 2020 2030 2040 2050

Fig. 8.Oil in primary energy supply in core baseline and 50% abatement scenarios. Source:
CLIMACAP-LAMP (2015).



Fig. 9. Energy intensity metrics in 50% abatement scenario in 2020 (left) and 2050 (right) (2010 value = 100)a. Sources: CLIMACAP-LAMP (2015); 2010metrics – SENER (2014f, 2014g),
INEGI (2013, 2014). aIndustrial demand includes feedstocks and demand for agriculture and fishing.
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Table 8
Percent change in GHG emissions from agriculture and land Use between 2010 and 2050,
50% abatement scenario.

EPPA GCAM IMAGE POLES TIAM-ECN

−12.5% −10.5% −121.4% −84.7% −35.0%

Sources: CLIMACAP-LAMP (2015), SEMARNAT (2013)
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4.3. Energy demand

All of the CLIMACAP-LAMP models indicate that demand-side mea-
sures are an integral part of a mitigation pathway for Mexico. Results
from the 50% Abatement scenario show substantial changes in
demand-side energy intensity and fuel mixes, implying important tech-
nological and behavioral shifts. However, the models differ in the em-
phasis they place on efficiency versus fuel and equipment switching as
well as in the impact projected in Mexico’s main energy-consuming
sectors—transport, industry, and the residential and commercial
sectors.

Fig. 9 summarizes four key energy intensity metrics from the 50%
Abatement scenario: national primary energy demand / GDP (Primary),
industrial final energy demand / GDP (Industry), transport final energy
demand / population (Transport), and residential and commercial final
energy demand / population (Residential & Commercial). Eachmetric is
indexed to its 2010 value as calculated from official Mexican govern-
ment sources. The panel on the left shows projected values in 2020,
while that on the right shows values in 2050.

Several points emerge from this graph.Mostmodels anticipate some
improvement in energy intensity by 2020 and a substantially greater
improvement by 2050. There are exceptions, though: GCAM counts on
little or no decrease in intensity even by 2050; and POLES and TIAM-
ECN project more modest improvements than Phoenix, IMAGE, and
EPPA in the long run. On a sectoral level, results varywidely for industry
and transport—ranging from no change in energy per GDP or person to
decreases of 50–75% ormore—while noneof themodels foresee a signif-
icant reduction in residential and commercial energy intensity. Inmany
models, in fact, residential and commercial intensity increases by 2050,
an outcome that may be due to rising per capita income.

Fig. 10 shows projected shifts to lower carbon and alternative fuels
in the transport, industrial, and residential and commercial sectors.
Data for 1990–2009 are from SENER; data for 2010 and later are from
the 50% Abatement scenario.

The general trend in all models is toward increased penetration of
lower carbon fuels and technologies, in some cases with an acceleration
of adoption after 2020 or 2030. The models differ most markedly in the
transport sector: EPPA, GCAM, and Phoenix project relatively little fuel
and technology switching, while the other models envision substantial
changes by 2050. IMAGE anticipates a wholesale shift to hydrogen,
TIAM-ECN near-term penetration of biofuels and later uptake of hydro-
gen, and POLES a more balanced adoption of electricity, biofuels, and
some hydrogen. In the industrial and residential and commercial sec-
tors, all models foresee continued electrification, with the 2050 share
of electricity in final energy demand in many instances approaching or
exceeding 50%. There is some disagreement about the role of biomass,
although in the residential and commercial sector biomass use declines
over time in allmodels (reflectingdecreased use of traditional biomass).
With one exception (residential and commercial solar in POLES), no
models expect significant contributions from hydrogen or non-
biomass renewables.

4.4. Non-energy GHG emissions

As mentioned earlier, the CLIMACAP-LAMP models differ in their
coverage of non-energy GHG emissions. Notwithstanding, a reasonable
number (all except Phoenix) do report results for emissions from agri-
culture and land use, which constitute the majority of Mexico’s non-
energy GHG emissions (Fig. 1). In the 50% Abatement scenario, the tra-
jectory followed in this category varies widely across models.9 Table 8
summarizes the percent change in total GHGemissions fromagriculture
9 We note again that the 50% Abatement scenario does not apply emission reduction
constraints to CO2 emissions from land use. However, the constraints do apply to emis-
sions of other GHGs from land use as well as to all agricultural emissions.
and land use between 2010 and 2050, taking the 2010 value from
Mexican government sources.

These results suggest there are at least some paths to deep mitiga-
tion for Mexico that do not depend on substantial reductions in non-
energy emissions.
4.5. Emissions of other Air pollutants

Cutting emissions of GHGs with long-term warming potential fre-
quently leads to reduced emissions of other air pollutants as well
(Clarke et al., 2014). In Mexico, such effects are an explicit focus of cli-
mate policy: one of the five “strategic axes” of the country’s mitigation
policy is to “[r]educe emissions of Short-Lived Climate Pollutants
(SLCPs), and promote co-benefits in health and well-being” (Federal
POLES
TIAM−ECN

Fig. 11. Emissions of other air pollutants in core baseline and 50% abatement scenarios.
Source: CLIMACAP-LAMP (2015).



Table 9
Distinctive features of mitigation pathways.

Model Features

EPPA • Electricity generation in 2050 dominated by gas CCS
• Significant energy intensity improvements overall and in industry
and transport

• Lowest electricity supply requirements of all models owing to
demand-side responses

• Very high capital investment in transportation to deploy efficient
vehicles

• Relatively lower real fuel price increases than most other models,
except for oil

GCAM • Lowest per capita income projection of all models
• Modest fuel price increases except for biomass in long term
• Electricity generation in 2050 led by gas CCS, biomass CCS, and
more nuclear than any other model (electricity generation becomes
a net GHG sink)

• Little or no energy intensity improvement per any of the metrics
considered

• Very modest fuel switching in transport (to gas)
IMAGE • Highest per capita income projection of all models

• Fairly large fuel price increases across the board (except for
electricity)

• Electricity generation in 2050 dominated by biomass CCS with
some wind (electricity generation becomes a net GHG sink)

• Biomass also plays an important role in industrial final energy by
2050

• Substantial energy intensity improvements overall and in industry
• Most transport powered by hydrogen by 2050 (almost 70%)
• Lowest primary demand for oil of all models
• Very large decrease in non-energy emissions from agriculture and
land use

POLES • Large fuel price increases in near and long term, except for coal
• Greatest projected electricity requirements – about four times
higher in 2050 than at present

• Electricity generation in 2050 emphasizes non-biomass renewables
(primarily solar) with some fossil and biomass CCS

• Half of transport final energy from alternatives by 2050 (a mix of
electricity, biofuels, and hydrogen)

• Large decrease in non-energy emissions from agriculture
and land use

Phoenix • Electricity generation in 2050 dominated by wind, coal CCS, gas
without CCS, and hydro

• Significant intensity improvements overall and in industry and
transport

• Low electricity supply requirements owing to demand-side
responses

• Little fuel switching in transport
• Increased emphasis on electrification in industry and buildings after
about 2030

TIAM-ECN • Very large fuel price increases in near and long term (increases
greater than in other models for all fuels but oil)

• Significant increase in electricity requirements relative to the
baseline scenario

• Electricity generation in 2050 overwhelmingly based on
non-biomass renewables, especially solar (electricity generation
becomes a net GHG sink)

• Few energy intensity improvements compared to other models
• Substantial utilization of biofuels for transport through 2030, then a
shift toward hydrogen – over 85% of transport final energy from
lower carbon fuels in 2050

• Notable acceleration in electrification of residential and commercial
end uses after 2020

Source: CLIMACAP-LAMP (2015).

10 Phase 2 of the CLIMACAP-LAMP project will investigate impacts of climate change in
Latin America and adaptation policy.
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Government of Mexico, 2013, p. 20). SLCPs include black carbon, meth-
ane, hydrofluorocarbons, and tropospheric ozone, the latter commonly
formed in the atmosphere by interaction of methane, carbonmonoxide,
nitrogen oxides, and other gases (Climate and Clean Air Coalition to
Reduce Short Lived Climate Pollutants [CCAC], 2014). In addition to a
short-run impact on climate, these pollutants have a variety of harmful
health and environmental consequences (CCAC, 2014).

The CLIMACAP-LAMP models offer some estimates of emissions
of SLCPs, ozone precursors, sulfur dioxide, and organic carbon in
the baseline and mitigation scenarios (Fig. 11). The available results
indicate that emissions of these pollutants are indeed lower in the
mitigation scenario than under business-as-usual conditions, not-
withstanding decreasing emissions for several of the pollutants in
the baseline. The general agreement among models suggests air pol-
lution co-benefits along a range of mitigation pathways. The highest
average emission reductions across models in 2050 are reported for
sulfur dioxide (68% reduction), methane (45% reduction), and nitro-
gen oxides (34% reduction), indicating greater abatement potential
for these gases under mitigation policy.

4.6. Summary of mitigation pathways

Surveying the results in the previous subsections makes clear that
each of the CLIMACAP-LAMP models takes a quite different path to sig-
nificant mitigation by 2050. These paths have some common elements
but vary considerably in their technical and sectoral emphases. The
emergent commonalities suggest that a route to Mexico’s 2050 goal
may have some core features. In a future where Mexico’s population,
GDP, and GDP per capita are all significantly higher, most or all models
find in the 50% Abatement scenario:

• Significantly higher electricity demand over time coupled with
decarbonization of the electricity supply (GHG emissions per generat-
ed MWh falling 80% or more between now and 2050)

• Widespread deployment of new low-carbon technologies in the
power sector, including CCS technologies

• A decrease in the amount of oil in the primary energy supply
• Increased overall penetration of lower carbon fuels and technologies in
industry, transport, and the residential and commercial sector (butwith
large differences over the specific fuels and technologies deployed)

• In the industrial and residential and commercial sectors, continued elec-
trification of energy end uses – with electricity’s share of final energy
growing at least as fast as it has over the last two decades

• Air pollution co-benefits relative to thebaseline scenario, notably reduc-
tions in emissions of sulfur dioxide, methane, and nitrogen oxides

• No substantial contributions from non-biomass renewables or hydro-
gen in final energy for industry and buildings

• A decline in the use of traditional biomass in the residential and com-
mercial sector

• Important long-term real price increases for electricity and biomass to-
gether with somewhat smaller long-term real price increases for natu-
ral gas and oil

Beyond this basic agreement, however, each model’s solution has
distinctive features as summarized in Table 9.

5. Mitigation costs

Climate policy costs discussed in this section refer to the mitigation
effort that Mexico requires to reach its emission reduction targets. It is
important to highlight these costs donot include the costs of adaptation,
and additionally they do not incorporate the benefits of reaching a sta-
bilization scenario for the country. Therefore, the costs presented in this
section should be considered only one part of the equation, that regard-
ing the resources that need to be allocated into mitigation for a given
level of emission reduction. The other side of the equation, the benefits
of mitigation, is an important area of research outside the scope of this
paper.10

There are some challenges in comparing cost estimates frommodels
of different structure and coverage of sectors in the economy such as the
ones in our model comparison. A comprehensive analysis of the differ-
ent metrics often used in the analysis of climate change mitigation,
both for economy-wide and energy system models, can be found in
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LAMP (2015).
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Paltsev and Capros (2013). As explained there, from a social perspective
the best measures to assess policy costs are those that estimate the total
impact on consumption, since policy makers are usually interested in
the appraisal of measures that could affect choices and impose costs
on consumers in their national territories. However, sincemanymodels
cannot estimate overall changes in consumption, other metrics are de-
rived that bear on the specific costs that some sectors could face under
mitigation scenarios. For example, since mitigation in the energy sector
is critical to reach emission reductions, many models focus on this sec-
tor and providemetrics regarding the costs of switches to lower-carbon
energy options. While these metrics do not capture important feed-
backs and interactions with other sectors of the economy, they are
useful indicators for policy makers in charge of energy policy.

Therefore, to discuss the costs of mitigation in Mexico, we structure
our analysis as follows. First we present impacts on GDP and changes in
consumption that result from the economy-wide models EPPA and
Phoenix. Second, we compare the different costs provided by the energy
systemmodels, in terms of the total area under themarginal abatement
cost curve for POLES and IMAGE, and total additional energy system cost
in the case of TIAM-ECN.

5.1. Macroeconomic costs

The two economy-wide models with the capability of capturing
macroeconomic effects derived from climate policy are EPPA and Phoe-
nix (both are recursive dynamic CGE models, see Table 3). Both models
assume similar growth rates (3.5% and 3.4%, respectively) and compare
well in their baseline trajectories (Fig. 12). For the baseline scenario,
EPPA estimates Mexico’s economy by 2050 will be $3.6 trillion 2005
USD, compared to Phoenix’s $3.9 trillion estimate. Reaching a 50% re-
duction in 2050 displaces the growth trend curves downward in both
models, as expected (Fig. 12). Both models find a loss of GDP of 1% in
2020 when the policy is first implemented; GDP losses are higher in
EPPA thereafter. In 2030, EPPA estimates a GDP loss of 4% compared to
2% in Phoenix and by 2050 EPPA estimates a GDP loss of 15% compared
to a 7% GDP loss in Phoenix. In 2050, total GDP loss reported by EPPA is
$526 billion compared to $292 billion in Phoenix.

Several parameter specifications and calibrations of themodels may
explain these deviations in total policy cost. First, the models differ in
baseline projections. Importantly, Phoenix has higher baseline emis-
sions than EPPA. Other differences in model features also contribute to
the cost estimates. Among the more relevant are: a) the vintage struc-
ture for capital (EPPA includes capital vintage to account for investment
in long-lived assets in some sectors of the economy, such as the power
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Fig. 12.GDPprojections in core baseline and 50% abatement scenarios. Source: CLIMACAP-
LAMP (2015).
sector); b) different structure of the production functions for electricity,
which influences the substitution between technologies within the sec-
tor; c) differences in which GHGs and sources of emissions are modeled
(EPPA accounts in detail for CO2 from land-use emissions, cement and
bioenergy production, and all GHGs, while the current version of Phoe-
nix does not); d) differences in estimates of total resource endowments
in the country (for example the total oil reserves considered and coal,
gas, and renewable energy potential); e) differences in the selection of
elasticities of substitution between energy sources. A detailed sensitivi-
ty analysis to unfold the impact of these parameters is out of the scope
of this research, however.

While total GDP loss is a naturalmetric used for communicating pol-
icy costs, economists usually prefer to use consumption orwelfaremea-
sures, because they relate to the level of total economic wellbeing of the
population in each country, and more clearly reflect the economic im-
pact on the population for any given period. Consumption is one of
the components of final demand in macroeconomic GDP accounts,
with investment, government expenditure, and net trade. Investment
in any given period does not contribute to current consumption (it al-
lows future periods’ consumption). The net-trade component is affected
bymovements in terms of trade, and thus requires a separate analysis to
evaluate potential losses/gains from trade derived from climate policy.
Government expenditure could or could not be productive, and thus it
is preferable to consider it also separate from consumption.

Fig. 13 presents the total consumption estimated by the EPPA and
Phoenix models, as an indicator of policy costs for Mexico’s population.
As shown in the figure, both models report reduced consumption as a
result of climate policy. Similar to GDP losses, total consumption losses
in EPPA are higher than in Phoenix. In 2050, total consumption losses in
EPPA are $375 billion 2005 USD versus $118 billion in Phoenix. Howev-
er, the total absolute consumption level is higher in EPPA all through the
period, both in the baseline and mitigation cases. In the 50% Abatement
scenario, total consumption in EPPA in 2050 is $2,152 billion 2005 USD
versus $1,643 billion in Phoenix.

5.2. Energy system costs

Energy systemmodels are able to provide estimates for costs of mit-
igationwithdifferentmetrics. Because no singlemetricwas available for
all of the energy systemmodels in our study,we focus on the area under
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Fig. 14. Total costs as areaundermarginal abatement cost curve – 50% abatement scenario.
Source: CLIMACAP-LAMP (2015).
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the marginal abatement cost curve11 estimate (MAC-area), an indicator
provided by POLES and IMAGE, while for TIAM-ECN we use total addi-
tional energy system cost. MAC-area costs are shown in Fig. 14. For
2020 and 2030, POLES estimates lower costs than IMAGE (around 60%
of the cost of IMAGE); however costs are higher in POLES in the last
two decades (POLES costs are higher than those in IMAGE by a factor
of two in 2050). This suggests that mitigation options in POLES com-
pared to IMAGE aremuch cheaper at the beginning, but as stringent tar-
gets are imposed, mitigation comes at a much higher cost in POLES. The
IMAGE model reports a total annual cost of $4.5 billion 2005 US dollars
in 2020, compared to $2.6 billion in the POLES model. By 2050, total an-
nual MAC-area costs are $50 billion and $99 billion for IMAGE and
POLES, respectively. These correspond to $41 and $114 per tonne CO2e
reduced in 2050 in these models. It is worth noting that one limitation
of the MAC-area method is that it does not capture any of the welfare
losses associated with previous distortions in the economy, such as
taxes and subsidies to energy, which are relevant in Mexico.

In the case of TIAM-ECN, the metric is not strictly comparable to the
rest of the models. This model provides costs as additional total energy
system costs. In 2020, TIAM-ECN estimates $53 billion 2005 US dollars
per year additional costs for the energy system, in 2030 $263 billion
per year, and by 2050 $403 billion per year. The cost per tonne CO2e re-
duced in 2050 is $364.

Further areas of research on policy costs could include the evalu-
ation of distributional impacts on different income groups in Mexico
as well as the potential to reduce net mitigation costs through pric-
ing carbon and using the revenue to offset distortionary taxes on
labor and capital. An interesting question to explore in this context
is whether stringent mitigation might induce some energy poverty
in the absence of such offsets. All models find that large investment
in new energy infrastructure is required, and therefore further stud-
ies on capital costs and financingmechanisms could also follow to in-
form investment decision-making.
5.3. Cost summary

In sum, both macroeconomic models estimate GDP and consump-
tion losses resulting from the 50% Abatement scenario. Considering
the range of results from both models, GDP losses in 2020 could be on
the order of 1%, in 2030 between 2% and 4%, and in 2050 between 7%
and 15%. Consumption also decreases in a similar fashion. By 2050,
total consumption losses found by the two models are between $118
and $375 billion 2005 USD per year. The rest of the models provide dif-
ferent metrics to assess costs. POLES and IMAGE find costs in 2050 be-
tween $50 and $99 billion 2005 US dollars per year, using the area
under the marginal abatement cost curve metric. Finally, TIAM-ECN re-
ports additional total cost for the energy system of $403 billion 2005 US
dollars per year in 2050.

It is interesting to compare these numbers to the Mexican govern-
ment’s own assessment of the costs of deep mitigation. In their pivotal
2009 study The Economics of Climate Change in Mexico, SEMARNAT and
Secretaría de Hacienda y Crédito Público (SHCP) estimate that the cu-
mulative cost of cutting national CO2 emissions 50% by 2050 would be
between .56% and 3.24% of current GDP, depending on the discount
rate and assumptions about the cost of carbon (SEMARNAT and SHCP,
2009; the baseline year for emissions is 2002). Taking GDP in 2009
from INEGI (2013), these percentages equate to between about $6 bil-
lion and $33 billion 2005 USD—far lower than any of the costmetrics re-
ported by the CLIMACAP-LAMP models. Divergent scenario definitions,
discount rates,12 and assumptions about the availability and costs of
demand-side mitigation options likely explain some of the differences
11 Amarginal abatement cost curve relates the quantity of emissions abatedwith a price
level.
12 The reported costs from the CLIMACAP-LAMP models are not discounted.
between the CLIMACAP-LAMP and SEMARNAT/SHCP findings, although
a full accounting of the differences is beyond the scope of this paper.

6. Conclusions

Reversing energy and emission trends inMexico and cutting nation-
al GHG emissions in half by mid-century is an ambitious proposition,
one requiring coordinated, sustained action in multiple political, social,
and technical domains. Our analysis indicates, however, that it is not a
problemwith a single dominant solution. The CLIMACAP-LAMPmodels
follow a variety of pathways to deep mitigation for Mexico by 2050,
each internally consistent and the product of market activity and opti-
mizing behavior by individuals andfirms given reasonable assumptions.
As outlined in Section 4, these pathways have important commonalities
but differ in substantial ways.

Our results imply that Mexican policy makers have more degrees of
freedom thanmight be supposed as they plan for their 2050 goal. Some
paths to deep mitigation do not require wholesale changes in transport
fueling infrastructure, for example, and some necessitate little or no im-
provement in industrial energy intensity compared to the present.
While a decarbonized electricity supply does appear to be essential, it
could be achieved in several ways, depending on policy priorities and
technology availability. A key issue in this context is the long-run out-
look for CCS in general and biomass CCS in particular. Many of the
models rely on CCS to lower the carbon intensity of electricity in the
50% Abatement scenario, and several use biomass CCS to create new
carbon sinks, offsetting emissions in other areas. Although CCS technol-
ogies are increasingly well-understood, significant challenges to scaling
up their deployment remain, starting with successfully completing
large-scale demonstration projects in the power sector (International
Energy Agency, 2013). Additional uncertainties surround the potential
for leakage of stored CO2, the regional availability of CO2 storage capac-
ity, and the shape of the learning curve for CCS (Keppo and van der
Zwaan, 2012). If CCS options and costs do not develop as anticipated,
CCS-dependent pathways may prove problematic. At the same time,
pathways depending on electricity from non-biomass renewables pres-
ent their own technical challenges, including resource intermittency,
energy storage, and transmission and distribution requirements.

Issues like these underscore the importance of another question for
Mexican policymakers: how to design amitigation strategy to be robust
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across a range of potential futures. The commonalities between the
modeled pathways offer some information in this regard, but additional
research exploring assumptions and areas of uncertainty in the models
would be helpful. A second area where further inquiry is clearly needed
concerns policy costs. Our results give some idea of the magnitude of
mitigation costs, but the distributional impacts of mitigation policy
and the potential to reduce costs through fiscal reform should be exam-
ined in more detail. Better assessment of mitigation costs and plans for
meeting them, including support from international sources, will only
strengthen Mexico’s mitigation program. Considering the scope of the
country’s climate policy, both theMexican people and the international
community have an interest in this outcome.
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