

Realizing the Flexible Integration of Cloud Resources into Workflows

Michael Gerhards 1, Marco Jagodzinska 1, Volker Sander 1 and Adam Belloum 2

1 Faculty of Medical Engineering & Technomathematics
FH Aachen, University of Applied Sciences, Jülich, Germany

2 Institute of Informatics, University of Amsterdam
Amsterdam, Netherlands

Email: {M.Gerhards; Jagodzinska; V.Sander}@fh-aachen.de; A.S.Z.Belloum@uva.nl

Abstract: The hosting of large on-premise computational resources is common practice. Cloud
Computing offers a promising, alternative infrastructure for using scalable on demand off-premise
resources. However, outsourcing whole applications is not a cost optimal solution in some scenarios,
because the already existing on-premise resources are not considered. A flexible integration of
additional resources from the cloud to compensate a shortage of suitable on-premise resources is a
tradeoff between costs and efficiency. This article presents a realization of this approach in a cross-
cloud environment using the concept of workflows. The realization is evaluated by the development
of a prototype.

Keywords: dynamic resource allocation, cloud computing, cross-cloud workflows, service oriented
architecture, workflow, workflow orchestration.

1. Introduction

The hosting of large on-premise computational resources by a computer center is common practice.
However, it is not reasonable to provide a solution for all requested resource types in such a center.
First of all, the initial purchase costs are very high. For small and medium enterprises (SME) it is
nearly impossible to bear these costs alone. Even after a purchase the disadvantages still occur,
mainly due to the operational costs. The hosting company is bound to the resources for many years,
even if the computational power is no longer required. The old hardware does not benefit from new
technologies which were developed in the meantime. If specific resources are used with unbalanced
load, there is the risk of idling. An overprovisioning is also required for load peaks which also
increase the costs. It is important to emphasize that the rare use of licensed software leads to
opportunity costs.
 Cloud computing offers a promising alternative infrastructure for using scalable on demand
resources. Providers such as Amazon allow users to allocate virtualized computational resources. Of
course, those providers allow for porting the full application. However, this might not be the most
cost-effective solution, because the already existing on-premise resources are not considered.
Therefore, for many scenarios it appears to be opportune to integrate cloud resources with easy-scale
and dynamic provisioning into the local environment for the execution of computation intensive
application parts whereas the other application parts are executed on local available general-purpose
computational resources. An example is a highly parallelized application which could use a Graphics
Processing Unit (GPU) in the cloud, while the remainder of the program is executed locally.
 This article describes a realization of this approach in a cross-cloud environment using the
concept of workflows. The realized ideas were taken from [1] and then extended to a prototype
development. The motivation scenario can therefore be viewed as an example for a concept that
applies to a much broader application domain.

© 2012 The Author; licensee SIWN Press. This is an Open Access article distributed under
the terms of the Creative Commons Attribution License (http://creativecommons.org/

licenses/by/3.0), which permits unrestricted use, distribution, and reproduction
in any medium, as long as the author is properly attributed.

International Transactions on Systems Science and Applications
Volume 8 ▪ December 2012 ▪ pp. 57-69
sai: itssa.0008.2012.019

ISSN 1751-1461 (print)
ISSN 2051-5642 (online)

2. Theoretical Development

The integration of cloud resources when a shortage of suitable on-premise resources occurs is a cost-
effective solution. Figure 1 illustrates this approach for an example: some parallel parts of one
application are executed off-premise, whereas the other parallel parts of the same application are
executed on-premise. The parts which run on on-premise resources are called “local tasks” in the rest
of this article whereas the parts which run on integrated cloud resources are called “cloud tasks”. A
condition for this approach is an application which is divisible into parts.

Figure 1. Approach of integrating cloud resources to compensate a shortage of on-premise resources
for a single application.

2.1 Basic Concept of Workflows

Modeling a complex application as workflow supports its division into simpler individual parts that
are executed as interacting tasks by a workflow management system. The reason why this article will
focus on workflows to realize the above presented solution is that the division of applications into
parts is natively supported. The basic ideas apply to a much broader application domain.
 A workflow can be illustrated as directed graph composed of tasks as nodes and task
dependencies as directed edges. Directed edges connect the predecessor task with its successor task.
A task can only start its execution after its predecessor has finished its own execution. The
application in Figure 1 can be seen as a workflow. A so-modeled workflow is called a workflow
template that describes the behavior of a process; thus, it can be referred to as a general workflow
definition. It is comparable with a program’s source code and binary. Workflow templates are
described using a specific workflow modeling language. Such templates are deployed, instantiated,
and executed on a workflow management system [2] [3] that takes care of the individual tasks’
progress and dependencies. Workflow instances follow the behavior of their assigned workflow
template for a particular incident. It is comparable to a program’s execution.

2.2 Workflows in Clouds

Workflow templates are modeled independently of specific resources because new resources can be
established or existing ones can be omitted or blocked. The binding of workflow tasks to resources is
done at runtime. The concept of considering only physical resources is gone in the cloud vision of
infinite resources that just have to be activated. Theoretically, any number of cloud resources can be
instanced on demand. To execute a workflow task in a cloud, the software must be deployed on a
cloud instance and be accessible from the workflow management system via a remote procedure call
(RPC) mechanism like a web service. Cloud computing per se does not impose any specific

58 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows

limitations with respect to the usage Application Programming Interface (API). "With the emerging
of the latest cloud computing paradigm, the trend for distributed workflow systems is shifting to
cloud computing based workflow systems [4].”

2.3 Cloud Service Models and Deployment Models

The National Institute of Standards and Technology (NIST) [5] distinguishes the three cloud service
models: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(IaaS). SaaS providers often focus on standard applications like text processing or customer relation
management and will not cover the whole variety of possible tasks. PaaS offers preconfigured
deployment environments. IaaS offers only a rudimentary system which gives the most freedom to
the developer but also forwards the maintenance of the system. The rest of the article will focus on
IaaS resources to assume the minimum of requirements. This should not limit the generality since
SaaS or PaaS offerings can be used instead with less effort.
 NIST [5] also distinguishes four different deployment models: Private Cloud, Community Cloud,
Public Cloud, and Hybrid Cloud. Since the example scenario assumes that the specific hardware is
not used frequently, a Private Cloud providing such hardware is not feasible. However, the Private
Cloud can be used to provide general on-premise resources. Sharing the resources of a Community
Cloud is only possible if such a community exists but this cannot be assumed. Since the article
focuses on integrating off-premise resources, a Public Cloud fulfills all requirements. A Hybrid
Cloud is used in a combination of two or more previous deployment models.
 This article presents how on-premise resources can be effectively combined with rented Public
Cloud IaaS resources.

2.4 First Approach

A simple possibility to execute a workflow task in the cloud is the usage of a service-oriented
approach by deploying the task software as web service on the cloud instance and binding the
workflow task to this web service. Web services provide standardized uniform interfaces which
support interoperability of heterogeneous systems. The data to be processed are typically pushed as
parameter from the workflow task to the assigned web service. An alternative approach for passing
larger data sets is that the web service pulls the requested data itself using a more efficient
transmission protocol together with a onetime access ticket granted by the workflow management
system.
 IaaS and PaaS resources are frequently provided following a pay-per-time billing structure. The
time is billed when the resources are available even when the resources are not used. Therefore any
cloud instance should be terminated after each use to avoid unnecessary costs while the resource is
idling. The consequence is that the cloud instance has to be started again before a re-use is possible.
The dynamic allocation of cloud instances at runtime forms a service oriented architecture (SOA).
The task execution idles during the integration of the cloud instance. Preconfigured machine images
contain only the required software to speed up the instantiation. Each abstract cloud task uses its own
machine image which is identified evaluating the abstract task’s description in the workflow
template. An alternative is the use of one basic machine image which is customized dynamically on
startup time.
 Procedure 1 summarizes all steps that have to be performed for each cloud task. The number
indicates the order of performance. Dependend on the service model, some steps can be let skipped.
The usage of on-premise resources or SaaS requires only Step 4, the software call, whereas the usage
of IaaS requires all 5 steps. In the following Steps 1 to 3 are combined and named “integration”.

2.5 Required Software for Prototype Development

The development of a prototype to realize this approach requires a workflow management system and
a cloud system. The next subsections describe the used open-source software. During the prototype
description in Section 3 these technologies are hidden in the background.

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 59

1. Start cloud resource

} IaaS
2. Chose & deploy machine image
3. Chose & deploy software } PaaS 4. Call software / invoke service } on-premise & SaaS
5. Terminate cloud resource

Procedure 1. Steps which have to be performed for each cloud task.

2.5.1 Workflow Management System

The open-source flexible Business Process management (BPM) Suite jBPM of the JBoss community
was used for the prototype. It provides an application server, a workflow engine to run workflows, an
Eclipse Integrated Development Environment (IDE) with a Business Process Model and Notation 2.0
(BPMN 2.0) conform editor as plugin to model workflows, a data base to persist workflow runs, and
a WS-HumanTask implementation to integrate human interactions into workflows in a standard
conform way.

2.5.2 Cloud Virtualization System

OpenNebula [6] is an open-source software toolkit for cloud computing in recent version 3.8. It
enables the creation of Private, Public, and Hybrid Clouds. The prototype uses OpenNebula for local
tests to simulate a Public Cloud service provider without expenses on local resources. The fielding
operating system is GNU/Linux. Binary OpenNebula packages are for example distributed with
Ubuntu. Base for OpenNebula is a virtualization possibility like kernel based virtual machine (KVM).
For a minimal sample OpenNebula only needs one computer, which is both administration unit and
node. The processing power of the node is used by the virtual machines. The cloud resource instances
to test the prototype run the free machine image Ubuntu Server 12.04 from the OpenNebula-
marketplace as operating system so that configuring an own image is not necessary. OpenNebula
provides commandline-tools for direct user interaction, but there are also high-level APIs for
interacting from different programming languages like Ruby and Java, and the more low-level XML-
RPC API.
 Since the prototype should be extensible for other cloud service providers with their own APIs,
the OpenNebula API is wrapped to provide only the rudimentary functionality and to be immune
against interface changes from the perspective of the workflow. In future the proprietary prototype
wrapper will be replaced using a cloud unification layer or a cloud agnostic API like the Open Cloud
Computing Interface (OCCI) [7].

2.6 Example Workflow for On-Premise Execution

This section introduces an example workflow which is referenced in the rest of this article. The
workflow is designed for execution on on-premise resources. The vision is to execute one task on
integrated cloud resources. The procedure is described step by step in Section 3.
 The example BPMN 2.0 workflow illustrated in Figure 2 consists of four script tasks, two control
flow elements: split and merge, and the start as well as the end. The script tasks are Java dialect
programs which can be customized. The control flow elements have a defined behavior. The arrows
indicate the task dependencies which define the execution order of the tasks. The two control flow
elements split and merge the two execution branches of the workflow. That means that the script
tasks “Gauss” and “LuDecomposition” can be executed independent of each other in an arbitrary
order with no dependencies between them or even in parallel on different computers. The merge
waits until both parallel braches finished their execution.

60 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows

Figure 2. The example workflow consists of four script tasks and two control flow elements. It solves
a linear equation with two different algorithms and compares the results.

The workflow solves the linear equation system ݔܣԦ ൌ ሬܾԦ where matrix ܣ and vector ሬܾԦ are given

but the solution vector ݔԦ must be calculated. The first script task “readInputData” reads the input data
in form of matrix ܣ and vector ሬܾሬԦ. Then the data is forwarded to the two script tasks “Gauss” and
“LuDecomposition” which calculate the solution vector ݔሬሬԦ using their eponymous algorithm. Both
solution vectors are compared by the last script task “compareResulst”.
 The data flow can be seen analogous to the control flow. Every time a task produces data, it will
be consumed by its successor task. Every time a task consumes data, it was produced by its
predecessor task. So the data is hand over from task to task to be modified like in a pipeline
 Listing A shows the BPMN 2.0 workflow template XML source code of the four script tasks.
The template source code line numbers occur in the following explanation text in brackets, e.g. (A3).
The script syntax is Java based: scriptFormat=http://www.java.com/java in lines (A1), (A6), (A10),
(A14). Each script task forwards its execution to static Java methods which are implemented in the
class “Tasks” (2) (3) (7) (11) (15). The class “Data” stores the data which are globally available only
in the workflow template. The data are not visible outside of the workflow template, especially not in
the script task methods of the class “Tasks”. These data are used to store input and output values of
the script task methods. The workflow is designed for execution in a defined on-premise environment
without cloud integration. Therefore, only the service invocation is done (Step 4 of Procedure 1).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

...
<scriptTask name="readInputData" id="_3" scriptFormat="..."><script>
Data.inputA = Tasks.readInputA();
Data.inputB = Tasks.readInputB();
</script></scriptTask>

<scriptTask name="LuDecomposition" id="_4" scriptFormat="..."><script>
Data.resultX1 = Tasks.solve(Data.inputA, Data.inputB, “ludecomp”);
</script></scriptTask>

<scriptTask name="Gauss" id="_5" scriptFormat="..."><script>
Data.resultX2 = Tasks.solve(Data.inputA, Data.inputB, “gauss”);
</script></scriptTask>

<scriptTask name="compareResults" id="_6" scriptFormat="..."><script>
Data.comparison = Tasks.compareResults(Data.resultX1, Data.resultX2);
</script></scriptTask>
...

Listing A. BPMN source code of all four script tasks in the template of the example workflow.

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 61

The computational resources have neither to be integrated nor to be terminated (Steps 1 to 3 and Step
5 of Procedure 1).
 The two computation intensive script tasks in this workflow are “Gauss” and
“LuDecomposition”. The workflow management system calls the static Java method “solve” during
workflow execution of both of these tasks. Listing B shows the Java source code of this method. The
implementations of the other methods are not relevant for the context of this article and will be
skipped therefore. The readability of all Java source codes in this article was improved by removing
all exception handling and all Java imports. The computation intensive algorithms will not be
executed on the workflow management system computer. Instead the method invokes a web service
which is indicated by an endpoint. It is possible that both script tasks call the same Java method
because both different web services provide the same interface only on different endpoints (A7)
(A11). The correct web service endpoint is fetched from the ServiceRegistry lookup table by
evaluating the parameter value of “alg” (B8). The ServiceRegistry (B3) assigns all service names to
web service endpoint URLs independent if the web service is running on-premise or off-premise in
the cloud. A possible assignment is given in line (B2). The workflow management system feeds the
ServiceRegistry during workflow instantiation. The implementations of the mathematical algorithms
behind the web services are out of scope of this article. It is assumed that the services simply exist.
The client for the equation solver web service is created by Java API for XML Web Services (JAX-
WS) using the EquationSolver interface, the web service endpoint, and the web service description
language (WSDL) file (B9) – (B11). The invocation of the corresponding equation solver web service
generates the result (B12). After the result is returned to the workflow management system the script
task’s execution is finished and the workflow execution will continue with the merge control flow
element (B13).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

public class Tasks {
// the workflow management system fills this map
// ServiceRegistry.put(“gauss”, “http://149.201.206.241:8000/gauss”
public static Map<String, String> ServiceRegistry;

//Data.resultX1 = Tasks.solve(Data.inputA, Data.inputB, “ludecomp”);
//Data.resultX2 = Tasks.solve(Data.inputA, Data.inputB, “gauss”);
public static double[] solve(double[][] A, double[] b, String alg) {
 String serviceUrl = ServiceRegistry.get(alg);
 Service service = Service.create(new URL(serviceUrl + “?wsdl”),
 new QName(“http://webservice/”, alg + ”Service”));
 EquationSolver solver = service.getPort(EquationSolver.class);
 double[] resultX = solver.solveEquation(A, b);
 return resultX;
}
... // additional methods for other script tasks
}

Listing B. Java source code four the cloud interaction and web service deployment.

3. Prototype

A prototype which withstands the challenges indicated in Section 2 was developed in close relation to
the example workflow of Sub-section 2.6 to evaluate the concept. Sub-section 3.1 describes how the
example workflow is manually extended to prepare the cloud integration. Sub-section 3.2 describes
the reusable workflow independent software to manage the cloud integration into arbitrary
workflows. Sub-section 3.3 provides extensions to automate and optimize cloud integration.

3.1 Extension of the Example Workflow To Prepare Cloud Integration

The example workflow of Figure 2 described in Sub-section 2.6 will now be extended to prepare the

62 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows

cloud integration. Additional computational power is needed if the available on-premise resources are
insufficient. The two computation intensive tasks are “LuDecomposition” and “Gauss” which can be
executed in parallel. Let assume that there is only enough on-premise computational power to execute
one of these tasks, e.g. “LuDecomposition”. That means that the “Gauss” task must be executed in
the cloud which resources will be allocated and integrated into the workflow on runtime. Tasks with
short runtimes will be ignored in this description.
 Listing C shows the XML workflow template source code extension to integrate the cloud
resources for script task “Gauss” execution. The remaining template source code stays unchanged
like in Listing A. The only modifications are two source code lines which perform Steps 1 to 3 from
Procedure 1 to integrate the cloud resource instance and Step 5 to terminate the cloud resource
(C10.5) (C11.5). The class “Cloud” is used to handle interactions with cloud resources. The method
“solve” stays unchanged because it only depends on the dynamic web service end point assignment of
the ServiceRegistry. The script task “LuDecomposition” still uses the same method “solve” for on-
premise execution.

10
10.5
11
11.5
12

<scriptTask name="Gauss" id="_5" scriptFormat="..."><script>
Data.gaussCloud = Cloud.integrateCloud(“gauss”);
Data.resultX2 = Tasks.solve(Data.inputA, Data.inputB, “gauss”);
Data.gaussCloud.stopVM();
</script></scriptTask>

Listing C. BPMN source code extension to integrate cloud resources for a single task.

3.2 Reusable Workflow Independent Software for Cloud Integration

The previous section has shown how an existing workflow has to be extended to integrate cloud
resources. Listing D shows the Java source code of the used method “integrateCloud”. This method is
designed to be independent of the example workflow to be reusable for other workflows. The method
first fetches the corresponding virtual machine image from the MachineImageRegistry lookup table
by evaluating the service name (D4) (D8). This registry works similar to the ServiceRegistry and
assigns service names to machine images. The machine image contains the required software in form
of a web service. Then the method creates a cloud resource instance and starts the virtual machine
(D9) (D10). The cloud resource instance provides the web service endpoint which is published at the
ServiceRegistry (D11) (D12). This step guaranties that the “Gauss” web service invocation addresses
the correct end point in the cloud without modification of the method “solve” source code in Listing
B. The cloud resource handler is returned to the workflow management system in line (D13) to be
saved in line (C10.5). The billing period of a Public Cloud service provider would start now together

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

public class Cloud {
// the workflow management system fills this map
// MachineImageRegistry.put(“gauss”, “/images/gauss.img”);
public static Map<String, String> MachineImageRegistry;

// method call: Data.gaussCloud = Cloud.integrateCloud(“gauss”);
public static CloudInstance integrateCloud(String serviceName) {
 String machineImage = MachineImageRegistry.get(serviceName);
 CloudInstance cloudInstance = new OpenNebulaImpl(machineImage);
 cloudInstance.startVM();
 String serviceUrl = cloudInstance.getServiceEndpoint();
 ServiceRegistry.put(serviceUrl);
 return cloudInstance;
}
}

Listing D. Java source code to integrate clouds.

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 63

with the instantiation of the cloud resource instance. After the result is returned by the web service in
line (C11), the method “stopVM()” in line (C11.5) terminates the cloud resource instance to stop the
billing period. Now the “Gauss” script task execution is finished and the workflow engine will
continue with the merge control flow element. In this example only one cloud resource instance was
started to execute the Gauss algorithm. The Workflow management system could directly start
additional cloud resource instances. Alternatively the first cloud resource instance could do this.

3.3 Implemented and Envisaged Extensions

The simple prototype presented above provides only the rudimentary functionality to integrate cloud
resources for individual workflow tasks. The design was chosen to lower the entry barrier for a
simple usage of the basic functionality. The framework is open for extensions which brings new
powerful opportunities. Some extensions are presented in the next sub-sections together with their
benefits and implementation proposals.

3.3.1 Dynamic Allocation of Cloud Resources

The extension of the example workflow in Sub-section 3.1 to prepare cloud integration was done by a
manual insertion of new method invocations into the source code of a script tasks in the workflow
template. These insertions can be automated by software to dynamically allocate cloud resources to
flexibly compensate on-premise resource shortages. The workflow management system has to check
the scheduler if enough on-premise resources are available. If not it modifies only the tasks in the
workflow template which should run on integrated cloud resources. This new workflow template is
than executed instead of the original one.
 Because the workflow management system cannot decide which individual tasks are allowed for
execution on integrated cloud resources, this must be configured. One possibility is the usage of task
annotations in the workflow template. This is similar to MAUI [8] where developers annotate which
methods of an application can be offloaded for remote execution. If annotations are not supported,
another possibility is the usage of workflow or task dependent configuration.
 Beside the integration into the workflow task, there are other locations where the cloud
administration can be integrated: the called functions, the workflow template, and the workflow
management system. A comparison of the different administration locations is done in [1].
 The concept of the workflow template extension has the benefit of being interoperable with other
workflow management systems without individual source code modifications. This makes it even
usable for proprietary systems. The same template extension application can be used by different
workflow management systems if the same modeling language is supported. Standard workflow
modeling languages like XPDL [9] and WS-BPEL [10] benefit most of this approach. Since the usage
of automated template modifications has been already validated in [11], no implementation advices
are given in this article.

3.3.2 Flexible Selection of Cloud Resources

The cloud itself was abstracted using the wrapper class “OpenNebulaImpl” together with the wrapper
interface “CloudInstance” in Listing D in line (D9). The source code is static and always instantiates
resources of the same cloud service provider for all tasks. But many other cloud service providers
exist. The flexible integration of resources of the most suitable cloud service provider for each
individual task is an optimization to form a cross-cloud workflow. The cloud service provider
selection could be arranged as Step 0 in Procedure 1.
 The selection process can be modeled similar to the three-phase cross-cloud federation model
described in [12]. In the discovery phase, the Cloud Service Broker creates a table in a database
which provides information about Assured Properties offered by the cloud service providers like in
the first three columns of Table 1. Possible properties are special hardware like general purpose
GPUs, best performance, lowest price, performance/price ratio, available volume resources of non-
pay-as-you-go contracts, and location of the cloud for liable reasons or for data nearness as well as

64 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows

data sensitiveness. This table must always be kept up to date. Each abstract cloud task specifies its
requirements. In the example in Table 2, “Gauss” has the requirements “a” and “b” whereas
“LuDecomposition” has the requirement “c”. These requirements are sent by the workflow
management system to the Cloud Service Broker before the integration of the cloud resource. Now in
the match-making phase, the Cloud Service Broker compares the cloud task’s requirements with the
cloud service providers’ assured properties. The cloud service providers that assure all requirements
of the requesting task are potential task owners. The last two columns of Table 1 indicate which
resources are the potential owner of which cloud task. In the authentication phase, the Cloud Service
Broker selects the cheapest potential owner as the current owner for each cloud task: “EC2” for
“Gauss” and “Azure” for “LuDecomposition”.

Table 1. Assured properties of cloud service providers. Table 2. Requirements of
individual cloud tasks.

Provider
Name

Properties Price Potential Owner of Task Name Requirements
Gauss LuDecomp. Gauss a, b

App Engine a 3 LuDecompostion c
EC2 a, b 4
Azure a, b, c 6
force.com b, c 7

One challenge arises if the workflow execution depends on large data because the data movement

costs and time have to be considered. It will be a performance bottleneck if tasks are scattered to
cloud data centers over the whole world. But different tasks could always be executed on different
instance sizes (small, medium, large) in the same cloud data center because the data transmission
from one instance to another is normally limited by the network and not by the instance size.
Therefore, tasks that process the same data should integrate resources of the same cloud data center.
This is addressed by the special possible requirement: “integrate resources of the same cloud data
center as task XYZ”. A suitable property is added at runtime to the cloud data center which executes
task XYZ. If the selection of the cloud resource should be done fully automatic at runtime, a special
selection metric has to be developed to create the optimal configuration of the system. Ideas could be
borrowed from the domain of machine learning.

3.3.3 Provenance

The importance of validating and reproducing the outcome of computation processes is fundamental
to many application domains. It is exposed that there is a need to capture extra information in a
process documentation that describes what actually occurred. The automated tracking and storing of
provenance information during workflow execution could satisfy this requirement [13]. The amount
and the kind of data to be stored are always user and implementation dependent. Provenance traces
enable the users to see what has happened during the execution of the workflow. This also enables
failure analysis and future optimization. Provenance becomes even more important in distributed
environments because workflow tasks are loosely bound to computational resources. Using
provenance in the cloud-workflow domain enables the identification of task to cloud assignments so
that it is visible where the cloud task has been executed and where its data have been stored.
 Provenance also shows at which time the cloud instance was running and therefore causing costs.
Based on provenance traces, statistics can be created showing which workflows cause which costs,
which users cause which costs, which clouds cause which costs, which users instantiate which
workflows, which clouds execute which cloud task, etc.
 A provenance model describes how the gathered provenance data are interpreted and stored in the
provenance trace. Several provenance models exist and two of them are described briefly in the
following. A detailed comparison is done in [14]. The Open Provenance Model (OPM) [15] is very
prominent in the e-Science domain. It provides a comprehensive set of concepts to capture how

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 65

things came out to be in a given state and is designed to achieve inter-operability between various
provenance systems. Another provenance model is the so-called History-tracing XML (HisT) [11]. It
was developed within the HiX4AGWS project [16] and provides provenance following an approach
that directly maps the workflow graph to a layered structure within an XML document. HisT directly
supports the integration of digital signatures and is therefore optimized for the e-Business and cross-
organizational domain where responsibility and liability play an important role.

3.3.4 Reuse of Web Services by Keeping Alive Cloud Instances

In scenarios like parameter studies, the same workflow task is executed frequently. Other examples of
reusing the same task are loops, multiple workflow instances, and different workflows instances
using the same cloud task. The simple prototype introduced above integrates a new cloud instance for
each cloud task instance and terminates the cloud instance after the execution of the web service. The
cloud instance integration overhead slows down the workflow’s execution but can be reduced for
future invocations by keeping alive the cloud instance for reusability. A single cloud web service is
then used multiple times by different instances of the same abstract cloud task.
 The implementation is described in the following: cloud instances are only integrated and
terminated using a factory. The stop virtual machine command in Listing C (C11.5) is replaced by a
notification of the factory that the web service is no longer needed by the cloud task. The factory
keeps alive the cloud instance if it expects future web service invocations. Otherwise, the factory
terminates the cloud instance as usual. The prediction is possible by evaluating the instantiated
workflows in the workflow management system or simply by setting a keep-alive flag before first
workflow instantiation.

3.3.5 Reuse of Cloud Instance by Providing Multiple Web Services

To reduce cloud instance integration overhead, additional web services can be deployed on the same
integrated cloud instance. This optimization is most suitable for workflows with different cloud tasks
that can then be executed in a pipeline on the same cloud instance. Using this optimization, static
machine images cannot be instantiated because additional software must be installed during the
uptime of the cloud instance. The installation can be done using SSH in a shell script like in Listing
E. The third line copies the program encapsulated in a Java archive file (JAR) from a local repository
via secure copy (SCP) to the cloud instance. The fourth line uses secure shell (SSH) to start the
remote program. The program will publish its web service as new endpoint on the cloud instance. The
password prompts for SCP and SSH are suppressed using public/private key based authentication.
The required keys are stored on the workflow management system’s computer and in all machine
images. Lines 6 to 10 present the usage with example values. Listing F shows the Java main method
of the “gauss.jar”. Line 3 sets the program’s parameter as web service endpoint. Line 4 publishes the
JAX-WS web service class “GaussService” as endpoint.

The shell script and the Java program should be seen as the simplest example. The deployment of
web services which run in the context of an application server like JBoss is more complicated but still
possible.

3.3.6 User Privileges for Cloud Integration

Many different users instantiate workflows but not each of them should be able to integrate arbitrary
cloud resources. Otherwise it would not be possible to map caused costs to individual cloud usages
and an abuse of resources would be possible. Therefore, an authentication service is required on
workflow side. This service maps the authentication mechanism of the organization to the
authentication mechanism of the cloud service provider. The user privileges can be assigned
considering many strategies, e.g. a user could have access only a limited time to a cloud or she/he
could have only access to specific clouds or for specific workflows. Security Assertion Markup
Language (SAML) assertions [17] can be used for this. A standard based security system like WS-

66 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows

Trust [18], Simple Authentication and Security Layer (SASL) [RFC 4422], oAuth [RFC 5849], or
OpenID can be integrated into the workflow management system.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

#/bin/bash
user=$1; instanceip=$2; serviceendpoint=”http://$2:$3”; program=$4;
scp ~/$program $user@$instanceip:~/$program
ssh $user@$instanceip java -jar ~/$program $serviceendpoint

usage example:
./startws.sh nebula 149.201.206.241 8000/gauss gauss.jar
scp ~/gauss.jar nebula@149.201.206.241:~/gauss.jar
ssh nebula@149.201.206.241
java -jar ~/gauss.jar http://149.201.206.241:8000/gauss

Listing E. Linux shell script to copy and start the software on the cloud instance.

 1
 2
 3
 4
 5

// args[0] = “http://149.201."206.241:8000/gauss”
public static void main(String[] args) throws Throwable {
 String serviceEndpointUrl = args[0];
 Endpoint.publish(serviceEndpointUrl, new GaussService());
}

Listing F. Java main method to deploy the web service out of the “gauss.jar”.

 The selection of the corresponding cloud service provider could be done by a human being. The
WS-HumanTask specification enables the integration of human interactions into workflows.
According to the specification, tasks are assigned to humans depending on their role. These human
roles can be mapped on the general security infrastructure. An example where LDAP users were
mapped to WS-HumanTask roles is given in [19].

4. Related Work

Cloud computing is the greatest IT hype of the last ten years. Therefore, many publications deal with
cloud computing. Surprisingly the combination of cloud computing with workflows is little
addressed. The automatically flexible integration of cloud resources to execute tasks of on-premise
workflows is not supported yet. In comparison to the mobile smartphone domain, approaches like
CloneCloud [20] already exists to dynamically partition applications between weak devices and
clouds. Some workflow management systems claim to be ready for the cloud but they are mostly
ported from the Grid domain and only support running in the cloud as extension to running in the
Grid. The flexible selection and interaction with cloud resources is not implemented in the workflow
management systems. One approach is presented in the following and then delimited to the approach
presented in this article.
 The Generic Workflow Execution Service (GWES) [21] is an open source workflow
management system and was developed by Frauenhofer-Gesellschaft for the management and the
automation of complex workflows in heterogeneous environments. The service orchestration goes
through five abstraction levels: User Request, Abstract Workflow, Service Candidates, Service
Instances, and Resources. The formal described User Request represents an abstract operation and is
automatically composed into an infrastructure independent non-executable Abstract Workflow. This
Abstract Workflow is mapped at runtime down to available Resources. During this process Service
Candidates web services are searched and optimally selected to become Service Instances. GWES
was originally developed basing on Grid technologies like Globus Toolkit as Grid Workflow
Execution Service (also GWES) and was then adjusted to the cloud domain.
 The proposed approach of this article differs from the basic GWES concept. GWES is a specific
workflow management system with an own workflow description language. In contrast the
interoperable approach of this article bases on an extension for existing modeling languages of

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 67

arbitrary workflow management systems by the simple automatically integration of cloud
administration which connect the workflow instance with the Cloud Service Broker to select, start,
and terminate cloud instances. By choosing a workflow management system independent approach
the benefit of using the already known system is given for the end-user.

5. Evaluation and Conclusion

This article presented a general concept for the hybrid execution of workflows by allowing the off-
premise execution of specific tasks in the cloud whereas the remaining tasks stay on-premise to avoid
unnecessary costs.
 The proposed prototype has the advantage that it neither depends on a particular workflow engine
nor on a particular workflow description language. It follows the approach of automatically
modifying workflow templates to incorporate the steps for dynamically allocating the appropriate off-
premise resources in a flexible manner. The Cloud Service Broker automatically selects the most
suitable cloud resource to guaranty the fulfillment of all task requirements. The end users’ interfaces
are not changed so that workflows can be used the same way as before.
 The security, trust, and privacy of the approach plays an important role which is minor addressed
in this article. The opponents of cloud computing often criticize the privacy issue. The proposed
approach does not consider these critics. It focuses on companies which are already willing to use the
cloud and provides possibilities to do this in a more cost-effective way. Security is important on
different levels. Cloud resource instantiations and cloud web service invocations must be protected
against unauthorized requests to avoid a misuse of resources. The workflow management system has
to check and grant assertions for requests. Also the data transmission between workflow management
system and the web service on the cloud instance must be encrypted which could decrease the
performance.
 Next steps of work will be an analysis of an according selection metric for the Cloud Service
Broker. The occurred costs of a partial off-premise execution will be compared with the costs of a full
off-premise execution to calculate a costs reduction ratio. The time overhead for migrating tasks
across cloud and organizational boundaries has to be measured for different providers and set it into
relation with the avoided costs. Efficient data movement strategies have to be implemented to reduce
migration overheads.

Acknowledgements

This work was carried out in the context of HiX4AGWS. HiX4AGWS is supported of the Federal
Ministry of Education and Research in Germany. Grant No.: 17N3409.

References

[1] M Gerhards, V Sander, and A Belloum, About the flexible Migration of Workflow Tasks to

Clouds: Combining on- and off-premise Executions of Applications. The Third International
Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2012),
France, July 2012, pp. 82-87.

[2] E Deelman, D Gannon, M Shields, and I Taylor, Workflows and e-science: an overview of
workflow system features and capabilities. Future Gener. Comput. Syst., Vol. 25, 2009, pp. 528-
540.

[3] J Yu and R Buyya, A Taxonomy of Workflow Management Systems for Grid Computing.
Journal of Grid Computing, Vol. 3, No. 3-4, 2005, pp. 171-200.

[4] X Liu, D Yuan, G Zhang, W Li, D Cao, Q He, J Chen, and Y Yang, The Design of Cloud
Workflow Systems. SpringerBriefs in Computer Science.

[5] P Mell and T Grance, National Institute of Standards and Technology (NIST), The NIST
Definition of Cloud Computing. Special Publication 800-145, September 2011.

[6] OpenNebula Enterprise Cloud and Datacenter Virtualization http://www.opennebula.org

68 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows

[7] Open Grid Forum (OFG), Open Cloud Computing Interface (OCCI), June 2011.
[8] H T Dinh, C Lee, D Niyato, and P Wang, A Survey of Mobile Cloud Computing: Architecture,

Applications, and Approaches. Wireless Communications and Mobile Computing.
[9] R M Shapiro, Workflow Management Coalition Working Group One, XPDL 2.1 Integrating

Process Interchange & BPMN. January 2008.
[10] D Jordan and J Evdemon, Web Services Business Process Execution Language Version 2.0

(BPEL). OASIS Standard, April 2007.
[11] M Gerhards, A Belloum, F Berretz, V Sander, and S Skorupa, A History-tracing XML-based

Provenance Framework for Workflows. The 5th Workshop on Workflows in Support of Large-
Scale Science (WORKS), November 2010, pp. 1-10.

[12] A Celesti, F Tusa, M Villari, A Puliafito, How to Enhance Cloud Architectures to Enable Cross-
Federation. 3rd International Conference on Cloud Computing (CLOUD), 2010, pp. 337-345.

[13] Y L Simmhan, B Plale, and D Gannon, A Survey of Data Provenance in e-Science. SIGMOD
RECORD, Vol. 34, 2005.

[14] M Gerhards, V Sander, T Matzerath, A Belloum, D Vasunin, A Benabdelkader, Provenance
Opportunities for WS-VLAM: An Exploration of an e-Science and an e-Business Approach. The
6th Workshop on Workflows in Support of Large-Scale Science (WORKS), November 2011, pp.
57-66.

[15] L Moreau, B Clifford, J Freire, J Futrelle, Y Gil, P Groth, N Kwasnikowska, S Miles, P Missier, J
Myers, B Plale, Y Simmhan, E Stephan, and J Van den Bussche, The Open Provenance Model
Core Specification (v1.1). Future Generation Computer Systems, Vol. 27, No. 6, pp. 743-756,
June 2011.

[16] History-tracing XML for an Actor-driven Grid-enabled Workflow System (HiX4AGWS),
http://www.fh-aachen.de/en/research/projekt-hixforagws/

[17] S Cantor, J Kemp, R Philpott, and E Maler, Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS Standard, 15 March 2005.

[18] K Lawrence and C Kaler, WS-Trust 1.3 OASIS standard. March 2007.
[19] M Gerhards, S Skorupa, V Sander, P Pfeiffer, and A Belloum, Towards a Security Framework

for a WS-HumanTask Processor. 7th International Conference on Network and Service
Management (CNSM 2011), Paris, France, October 2011.

[20] B Chun, S Ihm, P Maniatis, M Naik, A Patti, CloneCloud: Elastic Execution between Mobile
Device and Cloud. Proceedings of the sixth conference on Computer systems (EuroSys'11),
2011, pp. 301-314.

[21] Generic Workflow Execution Service (GWES) http://www.gridworkflow.org/kwfgrid/gwes/docs/

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 69

