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Abstract: The hosting of large on-premise computational resources is common practice. Cloud 
Computing offers a promising, alternative infrastructure for using scalable on demand off-premise 
resources. However, outsourcing whole applications is not a cost optimal solution in some scenarios, 
because the already existing on-premise resources are not considered. A flexible integration of 
additional resources from the cloud to compensate a shortage of suitable on-premise resources is a 
tradeoff between costs and efficiency. This article presents a realization of this approach in a cross-
cloud environment using the concept of workflows. The realization is evaluated by the development 
of a prototype. 
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1. Introduction 

The hosting of large on-premise computational resources by a computer center is common practice. 
However, it is not reasonable to provide a solution for all requested resource types in such a center. 
First of all, the initial purchase costs are very high. For small and medium enterprises (SME) it is 
nearly impossible to bear these costs alone. Even after a purchase the disadvantages still occur, 
mainly due to the operational costs. The hosting company is bound to the resources for many years, 
even if the computational power is no longer required. The old hardware does not benefit from new 
technologies which were developed in the meantime. If specific resources are used with unbalanced 
load, there is the risk of idling. An overprovisioning is also required for load peaks which also 
increase the costs. It is important to emphasize that the rare use of licensed software leads to 
opportunity costs. 
 Cloud computing offers a promising alternative infrastructure for using scalable on demand 
resources. Providers such as Amazon allow users to allocate virtualized computational resources. Of 
course, those providers allow for porting the full application. However, this might not be the most 
cost-effective solution, because the already existing on-premise resources are not considered. 
Therefore, for many scenarios it appears to be opportune to integrate cloud resources with easy-scale 
and dynamic provisioning into the local environment for the execution of computation intensive 
application parts whereas the other application parts are executed on local available general-purpose 
computational resources. An example is a highly parallelized application which could use a Graphics 
Processing Unit (GPU) in the cloud, while the remainder of the program is executed locally. 
 This article describes a realization of this approach in a cross-cloud environment using the 
concept of workflows. The realized ideas were taken from [1] and then extended to a prototype 
development. The motivation scenario can therefore be viewed as an example for a concept that 
applies to a much broader application domain. 
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2. Theoretical Development 

The integration of cloud resources when a shortage of suitable on-premise resources occurs is a cost-
effective solution. Figure 1 illustrates this approach for an example: some parallel parts of one 
application are executed off-premise, whereas the other parallel parts of the same application are 
executed on-premise. The parts which run on on-premise resources are called “local tasks” in the rest 
of this article whereas the parts which run on integrated cloud resources are called “cloud tasks”. A 
condition for this approach is an application which is divisible into parts. 
 

 
 

Figure 1. Approach of integrating cloud resources to compensate a shortage of on-premise resources 
for a single application. 

2.1 Basic Concept of Workflows 

Modeling a complex application as workflow supports its division into simpler individual parts that 
are executed as interacting tasks by a workflow management system. The reason why this article will 
focus on workflows to realize the above presented solution is that the division of applications into 
parts is natively supported. The basic ideas apply to a much broader application domain. 
 A workflow can be illustrated as directed graph composed of tasks as nodes and task 
dependencies as directed edges. Directed edges connect the predecessor task with its successor task. 
A task can only start its execution after its predecessor has finished its own execution. The 
application in Figure 1 can be seen as a workflow. A so-modeled workflow is called a workflow 
template that describes the behavior of a process; thus, it can be referred to as a general workflow 
definition. It is comparable with a program’s source code and binary. Workflow templates are 
described using a specific workflow modeling language. Such templates are deployed, instantiated, 
and executed on a workflow management system [2] [3] that takes care of the individual tasks’ 
progress and dependencies. Workflow instances follow the behavior of their assigned workflow 
template for a particular incident. It is comparable to a program’s execution. 

2.2 Workflows in Clouds 

Workflow templates are modeled independently of specific resources because new resources can be 
established or existing ones can be omitted or blocked. The binding of workflow tasks to resources is 
done at runtime. The concept of considering only physical resources is gone in the cloud vision of 
infinite resources that just have to be activated. Theoretically, any number of cloud resources can be 
instanced on demand. To execute a workflow task in a cloud, the software must be deployed on a 
cloud instance and be accessible from the workflow management system via a remote procedure call 
(RPC) mechanism like a web service. Cloud computing per se does not impose any specific 

58 Gerhards et al / Realizing the Flexible Integration of Cloud Resources into Workflows



limitations with respect to the usage Application Programming Interface (API). "With the emerging 
of the latest cloud computing paradigm, the trend for distributed workflow systems is shifting to 
cloud computing based workflow systems [4].” 

2.3 Cloud Service Models and Deployment Models 

The National Institute of Standards and Technology (NIST) [5] distinguishes the three cloud service 
models: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service 
(IaaS). SaaS providers often focus on standard applications like text processing or customer relation 
management and will not cover the whole variety of possible tasks. PaaS offers preconfigured 
deployment environments. IaaS offers only a rudimentary system which gives the most freedom to 
the developer but also forwards the maintenance of the system. The rest of the article will focus on 
IaaS resources to assume the minimum of requirements. This should not limit the generality since 
SaaS or PaaS offerings can be used instead with less effort. 
 NIST [5] also distinguishes four different deployment models: Private Cloud, Community Cloud, 
Public Cloud, and Hybrid Cloud. Since the example scenario assumes that the specific hardware is 
not used frequently, a Private Cloud providing such hardware is not feasible. However, the Private 
Cloud can be used to provide general on-premise resources. Sharing the resources of a Community 
Cloud is only possible if such a community exists but this cannot be assumed. Since the article 
focuses on integrating off-premise resources, a Public Cloud fulfills all requirements. A Hybrid 
Cloud is used in a combination of two or more previous deployment models. 
 This article presents how on-premise resources can be effectively combined with rented Public 
Cloud IaaS resources. 

2.4 First Approach 

A simple possibility to execute a workflow task in the cloud is the usage of a service-oriented 
approach by deploying the task software as web service on the cloud instance and binding the 
workflow task to this web service. Web services provide standardized uniform interfaces which 
support interoperability of heterogeneous systems. The data to be processed are typically pushed as 
parameter from the workflow task to the assigned web service. An alternative approach for passing 
larger data sets is that the web service pulls the requested data itself using a more efficient 
transmission protocol together with a onetime access ticket granted by the workflow management 
system. 
 IaaS and PaaS resources are frequently provided following a pay-per-time billing structure. The 
time is billed when the resources are available even when the resources are not used. Therefore any 
cloud instance should be terminated after each use to avoid unnecessary costs while the resource is 
idling. The consequence is that the cloud instance has to be started again before a re-use is possible. 
The dynamic allocation of cloud instances at runtime forms a service oriented architecture (SOA). 
The task execution idles during the integration of the cloud instance. Preconfigured machine images 
contain only the required software to speed up the instantiation. Each abstract cloud task uses its own 
machine image which is identified evaluating the abstract task’s description in the workflow 
template. An alternative is the use of one basic machine image which is customized dynamically on 
startup time.  
 Procedure 1 summarizes all steps that have to be performed for each cloud task. The number 
indicates the order of performance. Dependend on the service model, some steps can be let skipped. 
The usage of on-premise resources or SaaS requires only Step 4, the software call, whereas the usage 
of IaaS requires all 5 steps. In the following Steps 1 to 3 are combined and named “integration”. 

2.5 Required Software for Prototype Development 

The development of a prototype to realize this approach requires a workflow management system and 
a cloud system. The next subsections describe the used open-source software. During the prototype 
description in Section 3 these technologies are hidden in the background. 
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1. Start cloud resource    

} IaaS 
2. Chose & deploy machine image    
3. Chose & deploy software  } PaaS 4. Call software / invoke service } on-premise & SaaS 
5. Terminate cloud resource  

 
Procedure 1. Steps which have to be performed for each cloud task. 

2.5.1 Workflow Management System 

The open-source flexible Business Process management (BPM) Suite jBPM of the JBoss community 
was used for the prototype. It provides an application server, a workflow engine to run workflows, an 
Eclipse Integrated Development Environment (IDE) with a Business Process Model and Notation 2.0 
(BPMN 2.0) conform editor as plugin to model workflows, a data base to persist workflow runs, and 
a WS-HumanTask implementation to integrate human interactions into workflows in a standard 
conform way. 

2.5.2 Cloud Virtualization System 

OpenNebula [6] is an open-source software toolkit for cloud computing in recent version 3.8. It 
enables the creation of Private, Public, and Hybrid Clouds. The prototype uses OpenNebula for local 
tests to simulate a Public Cloud service provider without expenses on local resources. The fielding 
operating system is GNU/Linux. Binary OpenNebula packages are for example distributed with 
Ubuntu. Base for OpenNebula is a virtualization possibility like kernel based virtual machine (KVM). 
For a minimal sample OpenNebula only needs one computer, which is both administration unit and 
node. The processing power of the node is used by the virtual machines. The cloud resource instances 
to test the prototype run the free machine image Ubuntu Server 12.04 from the OpenNebula-
marketplace as operating system so that configuring an own image is not necessary. OpenNebula 
provides commandline-tools for direct user interaction, but there are also high-level APIs for 
interacting from different programming languages like Ruby and Java, and the more low-level XML-
RPC API. 
 Since the prototype should be extensible for other cloud service providers with their own APIs, 
the OpenNebula API is wrapped to provide only the rudimentary functionality and to be immune 
against interface changes from the perspective of the workflow. In future the proprietary prototype 
wrapper will be replaced using a cloud unification layer or a cloud agnostic API like the Open Cloud 
Computing Interface (OCCI) [7]. 

2.6 Example Workflow for On-Premise Execution 

This section introduces an example workflow which is referenced in the rest of this article. The 
workflow is designed for execution on on-premise resources. The vision is to execute one task on 
integrated cloud resources. The procedure is described step by step in Section 3. 
 The example BPMN 2.0 workflow illustrated in Figure 2 consists of four script tasks, two control 
flow elements: split and merge, and the start as well as the end. The script tasks are Java dialect 
programs which can be customized. The control flow elements have a defined behavior. The arrows 
indicate the task dependencies which define the execution order of the tasks. The two control flow 
elements split and merge the two execution branches of the workflow. That means that the script 
tasks “Gauss” and “LuDecomposition” can be executed independent of each other in an arbitrary 
order with no dependencies between them or even in parallel on different computers. The merge 
waits until both parallel braches finished their execution. 
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Figure 2. The example workflow consists of four script tasks and two control flow elements. It solves 
a linear equation with two different algorithms and compares the results. 

 
The workflow solves the linear equation system ݔܣԦ ൌ ሬܾԦ where matrix ܣ and vector ሬܾԦ are given 

but the solution vector ݔԦ must be calculated. The first script task “readInputData” reads the input data 
in form of matrix ܣ and vector ሬܾሬԦ. Then the data is forwarded to the two script tasks “Gauss” and 
“LuDecomposition” which calculate the solution vector ݔሬሬԦ using their eponymous algorithm. Both 
solution vectors are compared by the last script task “compareResulst”. 
 The data flow can be seen analogous to the control flow. Every time a task produces data, it will 
be consumed by its successor task. Every time a task consumes data, it was produced by its 
predecessor task. So the data is hand over from task to task to be modified like in a pipeline 
 Listing A shows the BPMN 2.0 workflow template XML source code of the four script tasks. 
The template source code line numbers occur in the following explanation text in brackets, e.g. (A3). 
The script syntax is Java based: scriptFormat=http://www.java.com/java in lines (A1), (A6), (A10), 
(A14). Each script task forwards its execution to static Java methods which are implemented in the 
class “Tasks” (2) (3) (7) (11) (15). The class “Data” stores the data which are globally available only 
in the workflow template. The data are not visible outside of the workflow template, especially not in 
the script task methods of the class “Tasks”. These data are used to store input and output values of 
the script task methods. The workflow is designed for execution in a defined on-premise environment 
without cloud integration. Therefore, only the service invocation is done (Step 4 of Procedure 1).  
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 

... 
<scriptTask name="readInputData" id="_3" scriptFormat="..."><script> 
Data.inputA = Tasks.readInputA(); 
Data.inputB = Tasks.readInputB(); 
</script></scriptTask> 
 
<scriptTask name="LuDecomposition" id="_4" scriptFormat="..."><script> 
Data.resultX1 = Tasks.solve(Data.inputA, Data.inputB, “ludecomp”); 
</script></scriptTask> 
 
<scriptTask name="Gauss" id="_5" scriptFormat="..."><script> 
Data.resultX2 = Tasks.solve(Data.inputA, Data.inputB, “gauss”); 
</script></scriptTask> 
 
<scriptTask name="compareResults" id="_6" scriptFormat="..."><script> 
Data.comparison = Tasks.compareResults(Data.resultX1, Data.resultX2); 
</script></scriptTask> 
... 

 
Listing A. BPMN source code of all four script tasks in the template of the example workflow. 
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The computational resources have neither to be integrated nor to be terminated (Steps 1 to 3 and Step 
5 of Procedure 1). 
 The two computation intensive script tasks in this workflow are “Gauss” and 
“LuDecomposition”. The workflow management system calls the static Java method “solve” during 
workflow execution of both of these tasks. Listing B shows the Java source code of this method. The 
implementations of the other methods are not relevant for the context of this article and will be 
skipped therefore. The readability of all Java source codes in this article was improved by removing 
all exception handling and all Java imports. The computation intensive algorithms will not be 
executed on the workflow management system computer. Instead the method invokes a web service 
which is indicated by an endpoint. It is possible that both script tasks call the same Java method 
because both different web services provide the same interface only on different endpoints (A7) 
(A11). The correct web service endpoint is fetched from the ServiceRegistry lookup table by 
evaluating the parameter value of “alg” (B8). The ServiceRegistry (B3) assigns all service names to 
web service endpoint URLs independent if the web service is running on-premise or off-premise in 
the cloud. A possible assignment is given in line (B2). The workflow management system feeds the 
ServiceRegistry during workflow instantiation. The implementations of the mathematical algorithms 
behind the web services are out of scope of this article. It is assumed that the services simply exist. 
The client for the equation solver web service is created by Java API for XML Web Services (JAX-
WS) using the EquationSolver interface, the web service endpoint, and the web service description 
language (WSDL) file (B9) – (B11). The invocation of the corresponding equation solver web service 
generates the result (B12). After the result is returned to the workflow management system the script 
task’s execution is finished and the workflow execution will continue with the merge control flow 
element (B13). 
 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 

public class Tasks { 
// the workflow management system fills this map 
// ServiceRegistry.put(“gauss”, “http://149.201.206.241:8000/gauss” 
public static Map<String, String> ServiceRegistry; 
 
//Data.resultX1 = Tasks.solve(Data.inputA, Data.inputB, “ludecomp”); 
//Data.resultX2 = Tasks.solve(Data.inputA, Data.inputB, “gauss”); 
public static double[] solve(double[][] A, double[] b, String alg) { 
    String serviceUrl = ServiceRegistry.get(alg); 
    Service service = Service.create(new URL(serviceUrl + “?wsdl”),  
            new QName(“http://webservice/”, alg + ”Service”)); 
    EquationSolver solver = service.getPort(EquationSolver.class); 
    double[] resultX = solver.solveEquation(A, b); 
    return resultX; 
} 
... // additional methods for other script tasks 
} 

 
Listing B. Java source code four the cloud interaction and web service deployment. 

3. Prototype 

A prototype which withstands the challenges indicated in Section 2 was developed in close relation to 
the example workflow of Sub-section 2.6 to evaluate the concept. Sub-section 3.1 describes how the 
example workflow is manually extended to prepare the cloud integration. Sub-section 3.2 describes 
the reusable workflow independent software to manage the cloud integration into arbitrary 
workflows. Sub-section 3.3 provides extensions to automate and optimize cloud integration. 

3.1 Extension of the Example Workflow To Prepare Cloud Integration 

The example workflow of Figure 2 described in Sub-section 2.6 will now be extended to prepare the 
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cloud integration. Additional computational power is needed if the available on-premise resources are 
insufficient. The two computation intensive tasks are “LuDecomposition” and “Gauss” which can be 
executed in parallel. Let assume that there is only enough on-premise computational power to execute 
one of these tasks, e.g. “LuDecomposition”. That means that the “Gauss” task must be executed in 
the cloud which resources will be allocated and integrated into the workflow on runtime. Tasks with 
short runtimes will be ignored in this description. 
 Listing C shows the XML workflow template source code extension to integrate the cloud 
resources for script task “Gauss” execution. The remaining template source code stays unchanged 
like in Listing A. The only modifications are two source code lines which perform Steps 1 to 3 from 
Procedure 1 to integrate the cloud resource instance and Step 5 to terminate the cloud resource 
(C10.5) (C11.5). The class “Cloud” is used to handle interactions with cloud resources. The method 
“solve” stays unchanged because it only depends on the dynamic web service end point assignment of 
the ServiceRegistry. The script task “LuDecomposition” still uses the same method “solve” for on-
premise execution. 
 
10 
10.5 
11 
11.5 
12 

<scriptTask name="Gauss" id="_5" scriptFormat="..."><script> 
Data.gaussCloud = Cloud.integrateCloud(“gauss”); 
Data.resultX2 = Tasks.solve(Data.inputA, Data.inputB, “gauss”); 
Data.gaussCloud.stopVM(); 
</script></scriptTask> 

 
Listing C. BPMN source code extension to integrate cloud resources for a single task. 

3.2 Reusable Workflow Independent Software for Cloud Integration 

The previous section has shown how an existing workflow has to be extended to integrate cloud 
resources. Listing D shows the Java source code of the used method “integrateCloud”. This method is 
designed to be independent of the example workflow to be reusable for other workflows. The method 
first fetches the corresponding virtual machine image from the MachineImageRegistry lookup table 
by evaluating the service name (D4) (D8). This registry works similar to the ServiceRegistry and 
assigns service names to machine images. The machine image contains the required software in form 
of a web service. Then the method creates a cloud resource instance and starts the virtual machine 
(D9) (D10). The cloud resource instance provides the web service endpoint which is published at the 
ServiceRegistry (D11) (D12). This step guaranties that the “Gauss” web service invocation addresses 
the correct end point in the cloud without modification of the method “solve” source code in Listing 
B. The cloud resource handler is returned to the workflow management system in line (D13) to be 
saved in line (C10.5). The billing period of a Public Cloud service provider would start now together  
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public class Cloud { 
// the workflow management system fills this map 
// MachineImageRegistry.put(“gauss”, “/images/gauss.img”); 
public static Map<String, String> MachineImageRegistry; 
 
// method call: Data.gaussCloud = Cloud.integrateCloud(“gauss”); 
public static CloudInstance integrateCloud(String serviceName) { 
    String machineImage = MachineImageRegistry.get(serviceName); 
    CloudInstance cloudInstance = new OpenNebulaImpl(machineImage); 
    cloudInstance.startVM(); 
    String serviceUrl = cloudInstance.getServiceEndpoint(); 
    ServiceRegistry.put(serviceUrl); 
    return cloudInstance; 
} 
} 

 
Listing D. Java source code to integrate clouds. 

International Transactions on Systems Science and Applications ▪ Volume 8 ▪ December 2012 63



with the instantiation of the cloud resource instance. After the result is returned by the web service in 
line (C11), the method “stopVM()” in line (C11.5) terminates the cloud resource instance to stop the 
billing period. Now the “Gauss” script task execution is finished and the workflow engine will 
continue with the merge control flow element. In this example only one cloud resource instance was 
started to execute the Gauss algorithm. The Workflow management system could directly start 
additional cloud resource instances. Alternatively the first cloud resource instance could do this. 

3.3 Implemented and Envisaged Extensions 

The simple prototype presented above provides only the rudimentary functionality to integrate cloud 
resources for individual workflow tasks. The design was chosen to lower the entry barrier for a 
simple usage of the basic functionality. The framework is open for extensions which brings new 
powerful opportunities. Some extensions are presented in the next sub-sections together with their 
benefits and implementation proposals. 

3.3.1 Dynamic Allocation of Cloud Resources 

The extension of the example workflow in Sub-section 3.1 to prepare cloud integration was done by a 
manual insertion of new method invocations into the source code of a script tasks in the workflow 
template. These insertions can be automated by software to dynamically allocate cloud resources to 
flexibly compensate on-premise resource shortages. The workflow management system has to check 
the scheduler if enough on-premise resources are available. If not it modifies only the tasks in the 
workflow template which should run on integrated cloud resources. This new workflow template is 
than executed instead of the original one. 
 Because the workflow management system cannot decide which individual tasks are allowed for 
execution on integrated cloud resources, this must be configured. One possibility is the usage of task 
annotations in the workflow template. This is similar to MAUI [8] where developers annotate which 
methods of an application can be offloaded for remote execution. If annotations are not supported, 
another possibility is the usage of workflow or task dependent configuration. 
 Beside the integration into the workflow task, there are other locations where the cloud 
administration can be integrated: the called functions, the workflow template, and the workflow 
management system. A comparison of the different administration locations is done in [1]. 
 The concept of the workflow template extension has the benefit of being interoperable with other 
workflow management systems without individual source code modifications. This makes it even 
usable for proprietary systems. The same template extension application can be used by different 
workflow management systems if the same modeling language is supported. Standard workflow 
modeling languages like XPDL [9] and WS-BPEL [10] benefit most of this approach. Since the usage 
of automated template modifications has been already validated in [11], no implementation advices 
are given in this article. 

3.3.2 Flexible Selection of Cloud Resources 

The cloud itself was abstracted using the wrapper class “OpenNebulaImpl” together with the wrapper 
interface “CloudInstance” in Listing D in line (D9). The source code is static and always instantiates 
resources of the same cloud service provider for all tasks. But many other cloud service providers 
exist. The flexible integration of resources of the most suitable cloud service provider for each 
individual task is an optimization to form a cross-cloud workflow. The cloud service provider 
selection could be arranged as Step 0 in Procedure 1. 
 The selection process can be modeled similar to the three-phase cross-cloud federation model 
described in [12]. In the discovery phase, the Cloud Service Broker creates a table in a database 
which provides information about Assured Properties offered by the cloud service providers like in 
the first three columns of Table 1. Possible properties are special hardware like general purpose 
GPUs, best performance, lowest price, performance/price ratio, available volume resources of non-
pay-as-you-go contracts, and location of the cloud for liable reasons or for data nearness as well as 
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data sensitiveness. This table must always be kept up to date. Each abstract cloud task specifies its 
requirements. In the example in Table 2, “Gauss” has the requirements “a” and “b” whereas 
“LuDecomposition” has the requirement “c”. These requirements are sent by the workflow 
management system to the Cloud Service Broker before the integration of the cloud resource. Now in 
the match-making phase, the Cloud Service Broker compares the cloud task’s requirements with the 
cloud service providers’ assured properties. The cloud service providers that assure all requirements 
of the requesting task are potential task owners. The last two columns of Table 1 indicate which 
resources are the potential owner of which cloud task. In the authentication phase, the Cloud Service 
Broker selects the cheapest potential owner as the current owner for each cloud task: “EC2” for 
“Gauss” and “Azure” for “LuDecomposition”. 
 

Table 1. Assured properties of cloud service providers.  Table 2. Requirements of 
individual cloud tasks. 

Provider 
Name 

Properties Price Potential Owner of  Task Name Requirements 
Gauss LuDecomp.  Gauss a, b 

App Engine    a 3   LuDecompostion        c 
EC2    a, b 4     
Azure    a, b, c 6     
force.com        b, c 7     

 
One challenge arises if the workflow execution depends on large data because the data movement 

costs and time have to be considered. It will be a performance bottleneck if tasks are scattered to 
cloud data centers over the whole world. But different tasks could always be executed on different 
instance sizes (small, medium, large) in the same cloud data center because the data transmission 
from one instance to another is normally limited by the network and not by the instance size. 
Therefore, tasks that process the same data should integrate resources of the same cloud data center. 
This is addressed by the special possible requirement: “integrate resources of the same cloud data 
center as task XYZ”. A suitable property is added at runtime to the cloud data center which executes 
task XYZ. If the selection of the cloud resource should be done fully automatic at runtime, a special 
selection metric has to be developed to create the optimal configuration of the system. Ideas could be 
borrowed from the domain of machine learning. 

3.3.3 Provenance 

The importance of validating and reproducing the outcome of computation processes is fundamental 
to many application domains. It is exposed that there is a need to capture extra information in a 
process documentation that describes what actually occurred. The automated tracking and storing of 
provenance information during workflow execution could satisfy this requirement [13]. The amount 
and the kind of data to be stored are always user and implementation dependent. Provenance traces 
enable the users to see what has happened during the execution of the workflow. This also enables 
failure analysis and future optimization. Provenance becomes even more important in distributed 
environments because workflow tasks are loosely bound to computational resources. Using 
provenance in the cloud-workflow domain enables the identification of task to cloud assignments so 
that it is visible where the cloud task has been executed and where its data have been stored. 
 Provenance also shows at which time the cloud instance was running and therefore causing costs. 
Based on provenance traces, statistics can be created showing which workflows cause which costs, 
which users cause which costs, which clouds cause which costs, which users instantiate which 
workflows, which clouds execute which cloud task, etc. 
 A provenance model describes how the gathered provenance data are interpreted and stored in the 
provenance trace. Several provenance models exist and two of them are described briefly in the 
following. A detailed comparison is done in [14]. The Open Provenance Model (OPM) [15] is very 
prominent in the e-Science domain. It provides a comprehensive set of concepts to capture how 
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things came out to be in a given state and is designed to achieve inter-operability between various 
provenance systems. Another provenance model is the so-called History-tracing XML (HisT) [11]. It 
was developed within the HiX4AGWS project [16] and provides provenance following an approach 
that directly maps the workflow graph to a layered structure within an XML document. HisT directly 
supports the integration of digital signatures and is therefore optimized for the e-Business and cross-
organizational domain where responsibility and liability play an important role. 

3.3.4 Reuse of Web Services by Keeping Alive Cloud Instances 

In scenarios like parameter studies, the same workflow task is executed frequently. Other examples of 
reusing the same task are loops, multiple workflow instances, and different workflows instances 
using the same cloud task. The simple prototype introduced above integrates a new cloud instance for 
each cloud task instance and terminates the cloud instance after the execution of the web service. The 
cloud instance integration overhead slows down the workflow’s execution but can be reduced for 
future invocations by keeping alive the cloud instance for reusability. A single cloud web service is 
then used multiple times by different instances of the same abstract cloud task. 
 The implementation is described in the following: cloud instances are only integrated and 
terminated using a factory. The stop virtual machine command in Listing C (C11.5) is replaced by a 
notification of the factory that the web service is no longer needed by the cloud task. The factory 
keeps alive the cloud instance if it expects future web service invocations. Otherwise, the factory 
terminates the cloud instance as usual. The prediction is possible by evaluating the instantiated 
workflows in the workflow management system or simply by setting a keep-alive flag before first 
workflow instantiation. 

3.3.5 Reuse of Cloud Instance by Providing Multiple Web Services 

To reduce cloud instance integration overhead, additional web services can be deployed on the same 
integrated cloud instance. This optimization is most suitable for workflows with different cloud tasks 
that can then be executed in a pipeline on the same cloud instance. Using this optimization, static 
machine images cannot be instantiated because additional software must be installed during the 
uptime of the cloud instance. The installation can be done using SSH in a shell script like in Listing 
E. The third line copies the program encapsulated in a Java archive file (JAR) from a local repository 
via secure copy (SCP) to the cloud instance. The fourth line uses secure shell (SSH) to start the 
remote program. The program will publish its web service as new endpoint on the cloud instance. The 
password prompts for SCP and SSH are suppressed using public/private key based authentication. 
The required keys are stored on the workflow management system’s computer and in all machine 
images. Lines 6 to 10 present the usage with example values. Listing F shows the Java main method 
of the “gauss.jar”. Line 3 sets the program’s parameter as web service endpoint. Line 4 publishes the 
JAX-WS web service class “GaussService” as endpoint. 

The shell script and the Java program should be seen as the simplest example. The deployment of 
web services which run in the context of an application server like JBoss is more complicated but still 
possible. 

3.3.6 User Privileges for Cloud Integration 

Many different users instantiate workflows but not each of them should be able to integrate arbitrary 
cloud resources. Otherwise it would not be possible to map caused costs to individual cloud usages 
and an abuse of resources would be possible. Therefore, an authentication service is required on 
workflow side. This service maps the authentication mechanism of the organization to the 
authentication mechanism of the cloud service provider. The user privileges can be assigned 
considering many strategies, e.g. a user could have access only a limited time to a cloud or she/he 
could have only access to specific clouds or for specific workflows. Security Assertion Markup 
Language (SAML) assertions [17] can be used for this. A standard based security system like WS-
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Trust [18], Simple Authentication and Security Layer (SASL) [RFC 4422], oAuth [RFC 5849], or 
OpenID can be integrated into the workflow management system. 
 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 

#/bin/bash 
user=$1; instanceip=$2; serviceendpoint=”http://$2:$3”; program=$4; 
scp ~/$program $user@$instanceip:~/$program 
ssh $user@$instanceip java -jar ~/$program $serviceendpoint 
 
# usage example: 
# ./startws.sh nebula 149.201.206.241 8000/gauss gauss.jar 
# scp ~/gauss.jar nebula@149.201.206.241:~/gauss.jar 
# ssh nebula@149.201.206.241  
# java -jar ~/gauss.jar http://149.201.206.241:8000/gauss 

 
Listing E. Linux shell script to copy and start the software on the cloud instance. 

 1 
 2 
 3 
 4 
 5 

// args[0] = “http://149.201."206.241:8000/gauss” 
public static void main(String[] args) throws Throwable { 
  String serviceEndpointUrl = args[0]; 
  Endpoint.publish(serviceEndpointUrl, new GaussService()); 
} 

 
Listing F. Java main method to deploy the web service out of the “gauss.jar”. 

 The selection of the corresponding cloud service provider could be done by a human being. The 
WS-HumanTask specification enables the integration of human interactions into workflows. 
According to the specification, tasks are assigned to humans depending on their role. These human 
roles can be mapped on the general security infrastructure. An example where LDAP users were 
mapped to WS-HumanTask roles is given in [19]. 

4. Related Work 

Cloud computing is the greatest IT hype of the last ten years. Therefore, many publications deal with 
cloud computing. Surprisingly the combination of cloud computing with workflows is little 
addressed. The automatically flexible integration of cloud resources to execute tasks of on-premise 
workflows is not supported yet. In comparison to the mobile smartphone domain, approaches like 
CloneCloud [20] already exists to dynamically partition applications between weak devices and 
clouds. Some workflow management systems claim to be ready for the cloud but they are mostly 
ported from the Grid domain and only support running in the cloud as extension to running in the 
Grid. The flexible selection and interaction with cloud resources is not implemented in the workflow 
management systems. One approach is presented in the following and then delimited to the approach 
presented in this article. 
 The Generic Workflow Execution Service (GWES) [21] is an open source workflow 
management system and was developed by Frauenhofer-Gesellschaft for the management and the 
automation of complex workflows in heterogeneous environments. The service orchestration goes 
through five abstraction levels: User Request, Abstract Workflow, Service Candidates, Service 
Instances, and Resources. The formal described User Request represents an abstract operation and is 
automatically composed into an infrastructure independent non-executable Abstract Workflow. This 
Abstract Workflow is mapped at runtime down to available Resources. During this process Service 
Candidates web services are searched and optimally selected to become Service Instances. GWES 
was originally developed basing on Grid technologies like Globus Toolkit as Grid Workflow 
Execution Service (also GWES) and was then adjusted to the cloud domain. 
 The proposed approach of this article differs from the basic GWES concept. GWES is a specific 
workflow management system with an own workflow description language. In contrast the 
interoperable approach of this article bases on an extension for existing modeling languages of 
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arbitrary workflow management systems by the simple automatically integration of cloud 
administration which connect the workflow instance with the Cloud Service Broker to select, start, 
and terminate cloud instances. By choosing a workflow management system independent approach 
the benefit of using the already known system is given for the end-user. 

5. Evaluation and Conclusion 

This article presented a general concept for the hybrid execution of workflows by allowing the off-
premise execution of specific tasks in the cloud whereas the remaining tasks stay on-premise to avoid 
unnecessary costs. 
 The proposed prototype has the advantage that it neither depends on a particular workflow engine 
nor on a particular workflow description language. It follows the approach of automatically 
modifying workflow templates to incorporate the steps for dynamically allocating the appropriate off-
premise resources in a flexible manner. The Cloud Service Broker automatically selects the most 
suitable cloud resource to guaranty the fulfillment of all task requirements. The end users’ interfaces 
are not changed so that workflows can be used the same way as before. 
 The security, trust, and privacy of the approach plays an important role which is minor addressed 
in this article. The opponents of cloud computing often criticize the privacy issue. The proposed 
approach does not consider these critics. It focuses on companies which are already willing to use the 
cloud and provides possibilities to do this in a more cost-effective way. Security is important on 
different levels. Cloud resource instantiations and cloud web service invocations must be protected 
against unauthorized requests to avoid a misuse of resources. The workflow management system has 
to check and grant assertions for requests. Also the data transmission between workflow management 
system and the web service on the cloud instance must be encrypted which could decrease the 
performance. 
 Next steps of work will be an analysis of an according selection metric for the Cloud Service 
Broker. The occurred costs of a partial off-premise execution will be compared with the costs of a full 
off-premise execution to calculate a costs reduction ratio. The time overhead for migrating tasks 
across cloud and organizational boundaries has to be measured for different providers and set it into 
relation with the avoided costs. Efficient data movement strategies have to be implemented to reduce 
migration overheads. 
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