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Effects of coordination and pressure on sound
attenuation, boson peak and elasticity in
amorphous solids

Eric DeGiuli,*a Adrien Laversanne-Finot,a Gustavo Düring,b Edan Lernera

and Matthieu Wyarta

Connectedness and applied stress strongly affect elasticity in solids. In various amorphous materials,

mechanical stability can be lost either by reducing connectedness or by increasing pressure. We present

an effective medium theory of elasticity that extends previous approaches by incorporating the effect of

compression, of amplitude e, allowing one to describe quantitative features of sound propagation,

transport, the boson peak, and elastic moduli near the elastic instability occurring at a compression ec.

The theory disentangles several frequencies characterizing the vibrational spectrum: the onset frequency

u0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi
ec � e

p
where strongly-scattered modes appear in the vibrational spectrum, the pressure-

independent frequency u* where the density of states displays a plateau, the boson peak frequency uBP

found to scale as uBP � ffiffiffiffiffiffiffiffiffiffiffi
u0u*

p
, and the Ioffe–Regel frequency uIR where scattering length and

wavelength become equal. We predict that sound attenuation crosses over from u4 to u2 behaviour at

u0, consistent with observations in glasses. We predict that a frequency-dependent length scale ls(u) and

speed of sound n(u) characterize vibrational modes, and could be extracted from scattering data. One

key result is the prediction of a flat diffusivity above u0, in agreement with previously unexplained

observations. We find that the shear modulus does not vanish at the elastic instability, but drops by a

factor of 2. We check our predictions in packings of soft particles and study the case of covalent

networks and silica, for which we predict uIR z uBP. Overall, our approach unifies sound attenuation,

transport and length scales entering elasticity in a single framework where disorder is not the main

parameter controlling the boson peak, in agreement with observations. This framework leads to a phase

diagram where various glasses can be placed, connecting microscopic structure to vibrational properties.
1 Introduction

From granular materials and foams to molecular glasses and
colloids, a wide range of amorphous materials exhibit a tran-
sition from liquid-like to solid-like behaviour. In the solid
phase, these materials display anomalous elastic properties. In
particular, amorphous solids universally present an excess of
vibrational modes over the Debye model (that predicts a
quadratic dependence of the density of vibrational modes with
frequency), a phenomenon referred to as the ‘boson peak’.1

Phonon dispersion is observed to change sharply in the vicinity
of the boson peak frequency:2–4 phase velocity displays a
minimum, and sound attenuation changes its frequency
dependence from u4 tou2. Thermal conductivity measurements
support that above these intermediate frequencies modes are
strongly scattered, and that their diffusivity (the frequency-
niversity, 4 Washington Place, New York,

atólica de Chile, Casilla 306, Santiago 22,

4

dependent diffusion coefficient associated to heat transport) is
small and independent of frequency,5 as observed numerically
in packings of repulsive particles.6,7 These observations are not
understood, since a comprehensive theory of transport in
amorphous solids is lacking. Moreover, they indicate the pres-
ence of at least one characteristic frequency scale, and through
the sound speed a characteristic length scale, whose relation to
disorder, however, remains controversial.7–9 As is well known,
the static structure does not indicate any obvious characteristic
length scale larger than particle size.10,11

Beyond its importance for elasticity and transport, the boson
peak relates to key features of the dynamics near the glass
transition. In fragile liquids (for which the activation energy
grows under cooling), the boson peak frequency decreases
toward zero under heating, while its amplitude increases.12,13

This observation has been interpreted14,15 as the existence of an
elastic instability at some temperature T* where the boson peak
frequency would vanish. At higher temperature, typical cong-
urations are saddles, with many unstable directions in phase
space. At lower temperature, a typical conguration lies near an
energy minimum and vibrational modes are stable, a scenario
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 (a) Stability diagram for packings of repulsive particles and
elastic networks, where e is compressive contact strain and z is
coordination. Stability requires z$ zc and e < ec, where ec(z)� (z� zc)

2.
(b) Characteristic frequencies versus distance to elastic instability
1 � e/ec, at small dz $ 0. The onset frequency u0 � ffiffiffiffiffiffiffiffiffiffiffiffiffi

ec � e
p

is where
strongly-scattered modes appear in the vibrational spectrum; uBP is
the boson peak frequency; and uIR is the Ioffe–Regel frequency where
scattering length and wavelength become equal. The density of states
displays a plateau at u*, such that for e $ 0 we have u* � dz. The
vertical red line indicates e¼ 0. For e� ec or e# 0, all the frequencies
are nearly identical, thus the spectrum is characterized by a single
frequency scale.
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already proposed by Goldstein.16 Interestingly, the shear
modulus increases rapidly under cooling in fragile liquids,17,18

an effect that could be responsible for most of the growth of the
activation energy.17 One possibility is that the rapid change of
the shear modulus stems from the proximity of elastic insta-
bility, and that the material stiffens as it is cooled past T*.19,20

However, predictions for the behaviour of the shear modulus
near an elastic instability are contradictory, as some predict that
it should vanish at the instability,21,22 while others predict that it
does not.23,24

For these reasons, it is important to understand the nature of
the boson peak, its associated length scales, and its relationship
with elastic moduli. In most existing theories the presence of a
peak results from disorder. More specically, the boson peak
has been proposed to emerge as a consequence of localized
modes,25 microscopic disorder in force constants,26,27 meso-
scopic disorder in shear modulus,23,28–30 properties of disor-
dered matrices,14,31 or anharmonicity.32 Some of these
approaches, in particular,23,28,30 can reproduce the u4 to u2

cross-over of the sound attenuation and the presence of a
minimum in the speed of sound, but currently do not explain
the at diffusivity above this cross-over frequency. Most
importantly, although disorder certainly affects sound disper-
sion and mode diffusivity, there is ample evidence that in many
materials disorder is secondary in controlling the density of
vibrational modes.33 This fact is well-established even in very
disordered structures, such as random packings of particles34 or
silica.35,36 It must be more generally true in the various materials
where the boson peak is similar in the glass and in the
crystal.33,37

Why in many materials does disorder strongly affect trans-
port, but have such little effect on the density of vibrational
modes? If it is not disorder, what in the microscopic structure
controls the boson peak? In recent years these questions have
been addressed in simple amorphous solids made of repulsive
short-range particles,34,36,38–41 in colloidal glasses42,43 and in
covalent networks.35,36,44 One central result36,40,41 is the stability
diagram of Fig. 1a, showing that in these systems the key
microscopic parameters controlling mechanical stability are the
coordination z (the average number of contacts per particle in
packings, or the valence in covalent networks), and the applied
compressive strain e � f/(kr) where f, k, r are the typical force,
stiffness, and distance between strongly interacting particles (a
third important factor is the presence of weak interactions, such
as van der Waals interactions in covalent networks or long-
range interactions in a Lennard-Jones, but this effect simply
renormalizes the value of e, see below). Physically this diagram
implies that under compression, more contacts need to be
formed to guarantee mechanical stability. On the line sepa-
rating stable and unstable congurations, the boson peak
frequency vanishes and its amplitude becomes very large. An
important result of ref. 40 and 41 is that this phase diagram
holds true independent of the amount of disorder, and thus
applies to crystals as well. Thus if a crystal and a glass have
similar local order, then they should have a similar boson peak
amplitude. This is the case, for example, between silica and
cristobalite,35,36 but not so for radial short-range interactions,
This journal is © The Royal Society of Chemistry 2014
since in the latter case crystalline packings are much more
coordinated than random ones.34

At the theoretical level, two approaches exist to compute
vibrational properties in these systems. The phase diagram of
Fig. 1a was rst derived with variational arguments40,41 that
apply independently of disorder, which allows one to predict
the vibrational spectrum but is not informative on transport
properties. To capture the latter, effective medium,27,45–51 a self-
consistent method based on a perturbation in the disorder
amplitude, can be used when modes are not localized.
Thorpe46,47 applied this method to show that the shear modulus
vanishes continuously near rigidity percolation, and Schir-
macher27 argued that this transition is discontinuous when
interactions with negative stiffnesses are included.

Recently it was shown that this approach captures quanti-
tatively the singularity of some vibrational properties of repul-
sive particles near the unjamming transition,50 where the
coordination reaches the Maxwell threshold zc ¼ 2d where d is
the spatial dimension. In particular, the density of vibrational
modes and its characteristic frequency u* � dz h z � zc,39,41 the
mode diffusivity6,7 and the length scale lc � 1=

ffiffiffiffiffi
dz

p
character-

izing the modes at the boson peak39 are reproduced. However
this calculation assumed that no applied stress is present, i.e.
the axis e ¼ 0 in Fig. 1, an approximation that certainly breaks
down for repulsive particles, but applies to elastic networks with
weak spatial uctuations of coordination.52 Moreover, (i) the
sound attenuation was not considered in ref. 50 forbidding a
comparison with scattering data and (ii) the role of applied
pressure on transport, on the shape of the density of vibrational
modes, on length scales and on elastic moduli was not derived.
Understanding the effect of compression is particularly relevant
for packings of particles and colloidal glasses, as these systems
lie very close to the stability line of Fig. 1a,41–43 implying that the
effect of pressure in these systems is very strong. Moreover,
elastic instabilities in supercooled liquids are expected to
Soft Matter, 2014, 10, 5628–5644 | 5629
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generically occur at e s 0. (iii) The proposed framework allows
one to classify vibrational and transport properties in various
glasses, such as silica and covalent networks, based on their
structure, as shown in the phase diagram of Fig. 2. As we will
see, this comparison is rich and non-trivial. We argue that the
two-parameter theory of linear vibrational properties in amor-
phous solids we propose, while still reasonably simple, is
necessary to obtain a framework unifying observations in
systems as different as covalent networks and colloidal glasses.

In this work we extend the effective medium approximation
to describe at a microscopic level systems under compression,
where contacts carry a force. Although we provide a simplied
description where all contacts have the same stiffness, our
formalism is readily extendable to heterogeneous contacts.53

Our simplied description can, however, capture the presence
of weak interactions. Our central results are:

(1) Our effective medium approximation captures the phase
diagram of Fig. 1a. At a compressive strain ec � (z � zc)

2 an
instability occurs.

(2) The shear modulus remains nite at elastic instability,
and simply decreases by a factor of 2 as e is increased toward ec.

(3) We can compute four frequencies: the onset frequency
u0 � ffiffiffiffiffiffiffiffiffiffiffiffi

ec � e
p

where strongly-scattered modes appear in the
vibrational spectrum, the pressure-independent frequency u*

where the density of states displays a plateau, the boson peak
frequency uBP � ffiffiffiffiffiffiffiffiffiffiffi

u0u*
p

, and the Ioffe–Regel frequency uIR � u*

where scattering length and wavelength become equal. These
four frequencies are nearly identical only for e � ec or negative
e, and display three distinct scalings as e / ec, as shown in
Fig. 1b.

(4) The sound attenuation G(u)� u4 for u < u0 and G(u)� u2

for u0 < u < u*.
(5) The speed of sound is minimal at u0.
(6) Our analysis indicates that to infer transport properties

like diffusivity from scattering data, it is more convenient to
analyze the dynamical structure factor at xed u rather than at
Fig. 2 Schematic placement of amorphous solids (dashed lines) in
stability diagram, where e includes the effect of weak interactions, as
discussed in the main text. In the red region (1 � e/ec � 1), vibrational
properties are characterized by several distinct frequency scales, as
shown in Fig. 1b, and proximity to elastic instability strongly affects
transport. In the blue region, there is a single frequency scale. In the
green region, there is a gap in the density of vibrational states at
intermediate frequency. No solids can lie in the white region, which is
unstable.

5630 | Soft Matter, 2014, 10, 5628–5644
xed wave number q. This approach allows one to compute a
frequency-dependent speed of sound n(u) and scattering length
‘s(u). We argue that above the boson peak, these quantities
differ signicantly from the approximation used in the litera-
ture to extract them. In the intermediate and high frequency
regime, capturing correctly these quantities is important to
describe transport. Their scaling with frequency is predicted.

(7) We build a theory of transport that applies to non-local-
ized modes. In particular we nd that the mode diffusivity does
not depend on frequency as soon as the density of states devi-
ates from the Debye behaviour (i.e. for u > u0), in agreement
with previous numerical observations in sphere packings.6,7

(8) The length scale below which continuum elasticity breaks
down is ‘c � u0

�1/2, as shown in a companion paper.54

Results 2, 4 and 5 have been previously obtained in different
models, see e.g. ref. 29 and 55. These approaches however
assume that the boson peak stems from spatial uctuations in
elasticity, at odds with our work.

Finally, we compare these predictions to experimental and
numerical observations in glasses and particle packings, where
many of our scaling results agree with observations. We discuss
where certain glasses, such as silica, chalcogenides, colloids
and so particles are placed in our phase diagram, allowing us
to make predictions on their transport properties. Overall, our
approach unies sound attenuation, transport, elastic length
scales (discussed in a companion paper) and the boson peak in
a framework where disorder is secondary in controlling the
peak amplitude, in agreement with observations in many
materials.
2 Model
2.1 Ingredients to be incorporated

We seek to compute how salient aspects of the microscopic
structure of glasses affect their vibrational properties. The
following features have been argued to control the boson peak
in a variety of materials:34,36,41,56

(i) The connectedness z, or more precisely the excess
connectedness dz h z � zc with respect to the minimal
connectedness zc required for rigidity. The notion that struc-
tures must be sufficiently connected to bemechanically stable is
fundamental in engineering since the work of Maxwell.57 For an
elastic network, for example as shown in Fig. 3a, the connect-
edness is simply the coordination, i.e. the average number of
springs per node. In a packing of purely repulsive, short-range
particles, it is the average number of contacts per particle. For
radial interactions in general, Maxwell showed57 that zc ¼ 2d.
When interactions have a long-range component such as in a
Lennard-Jones glass, a distinction must be made between
strongly and weakly interacting particles,36,56 which allows to
dene z as the coordination of the network of strong interac-
tions. In general, the denition of connectedness depends on
the system. For example, for generic covalent networks, z is the
valence; if elements of different valences are present, z can be
changed continuously by monitoring the composition. For such
multi-body interactions one nds58 zc ¼ 2.4.
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 (a) Illustrative random network with small fluctuations in
coordination, and (b) diluted regular lattice. Note that these illustra-
tions are in 2D, but the theory is constructed in 3D.

† z0 is a parameter of the theory, which connects to coordination uctuations.
Indeed, random bond dilution implies a relationship between the uctuations
in coordination and z0. At xed z, larger z0 implies larger coordination
uctuations. If v is the variance of particle coordination, then v ¼ z(1 � z/z0) for
random independent dilution.
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(ii) The compressive strain e. It is well known that an applied
pressure can lead to elastic instability, such as the buckling of
thin rods and shells. It is also true in a bulk solid. To see this,
consider two interacting particles, forming a contact a. If they
are displaced relative to each other, the expansion of the energy
is to second order59,60

dEa ¼ ka

2

���rak���2 � fa

2sa

��rta ��2; (1)

where |rka| is the norm of the longitudinal displacement (in the
direction of the contact), |rta | is the norm of the perpendicular
(transverse) displacement, fa is the force in the bond a (by
convention, positive if the force is repulsive), ka is the stiffness
of the interaction, and sa is the distance between the two
particles. Since any longitudinal displacement increases dEa,
the longitudinal term is stabilizing. However, if the contact is
under compression, fa > 0 and the transverse term is destabi-
lizing: this is a geometrical consequence of the fact that any
small transverse displacement at a necessarily increases the
center-to-center distance between the particles, and therefore
lowers the energy, if the interaction is repulsive. The last term in
eqn (1) can be considered a spring orthogonal to the contact, of
stiffness �fa/sa. The relative contribution of the transverse to
the longitudinal term is characterized by a dimensionless

number ea ¼ fa
kasa

, whose typical value in the material is

denoted e, which is positive under compression. As we show
below, the role of pre-stress e can be important in amorphous
solids even when e � 1, if the excess coordination is small (zz
zc or smaller).

(iii) If there is a hierarchy in the strength of the interactions
involved (for example in covalent networks the van der Waals
interactions are much weaker than covalent bonds), it is useful
to introduce a dimensionless number W ¼ kweak/kstrong where
kweak (kstrong) is the characteristic stiffness of the weak (strong)
interaction.36,44,56 In our model, we do not explicitly consider
this possibility. However, weak interactions play a role very
similar to the transverse stiffness induced by negative forces in
the contacts. Both perturbations are negligible, except if the
network of strong interactions is not well-connected (z z zc or
smaller). The transverse vs. longitudinal aspect of these
perturbations is not expected to make a qualitative difference.
This journal is © The Royal Society of Chemistry 2014
Accordingly, weak interactions effectively renormalize the value
of e, decreasing it by some amount proportional to W: the
system is stabilized by weak interactions.
2.2 Model

Elastic networks are arguably the simplest models to study the
role of connectedness and applied stress on vibrational prop-
erties in amorphous structures. However, different geometries
of networks can be considered. In rigidity percolation, bonds
are diluted randomly and independently from a lattice,61 as
shown in Fig. 3b. This model has the disadvantage that large
uctuations of coordination appear, so that near the rigidity
transition the rigid (mechanically stable) cluster is a fractal
object that excludes a nite fraction of bonds. This scenario
does not apply to granular and colloidal systems34 and is not
believed to occur in covalent glasses either,62 because large
uctuations of coordination or density are penalized energeti-
cally. In this model computing elastic properties near the
rigidity transition remains a challenge, andmean eld methods
such as effective medium theory give incorrect results.61 A better
model is constructed by removing the large spatial uctuations
of coordination, while keeping the network random. This can
be done off-lattice, as illustrated in Fig. 3a, or on-lattice, by
diluting bonds with correlations that remove coordination
uctuations. For example, bonds can be progressively diluted
from the most connected pairs of nodes.52 It was recently found
that the elastic properties in such networks can be computed
accurately, at least in the absence of pressure. In particular,
effective medium theory (EMT) – a mean-eld approximation
that neglects large spatial uctuations of coordination – accu-
rately describes such elastic networks.50 As described below, the
EMT equations are determined by what happens when a single
bond is assumed disordered. This implies that diluting bonds
independently, as in rigidity percolation, or with correlations,
as we consider, lead to the same EMT equations: the effect of
correlations in bond dilution is simply to make mean-eld
methods, such as EMT, accurate. In this work, we continue to
use bond dilution (under an applied pressure) together with
EMT. As we will see, this procedure allows to make accurate
predictions that are veried in amorphous solids, such as
particle packings.

In particular, we consider an isotropic lattice of coordination
z0 > zc in three dimensions, which is randomly diluted to reach a
nal coordination z¼ zc + dz; an illustrative example of a diluted
lattice is shown in Fig. 3b. We will take† z0 ¼ 12. To model
random dilution and compression of the lattice, each spring
constant and contact force are set to nonzero values ka ¼ k0 and
fa ¼ ek0sa with mean probability P¼ z/z0, and 0 with probability
1 � P. As discussed above, bond dilution should be performed
with correlations that maintain small coordination uctua-
tions. It will turn out that EMT does not depend at all on these
Soft Matter, 2014, 10, 5628–5644 | 5631
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correlations, so we need not specify them precisely. We make
the approximation that the force in each bond is identical
(which violates force balance as soon as P < 1, but nevertheless
leads to accurate predictions, see below). We also assume that
springs are weakly deformed sa ¼ s, which is asymptotically
valid when e� 1. Note that in this model the compressive strain
e and pressure p are linearly related, but this is not exact in
general.‡
3 Effective medium theory

We study the average effect of compression and coordination
when our diluted lattice is forced at frequency u. We write |d~Ri
¼ (d~R1, d~R2, ., d~RN) for the vector of node displacements and
|~Fi ¼ (~F1, ~F2, ., ~FN) for the vector of applied forces. Then an
imposed oscillatory force |~Fieiut causes a response

|d~Ri ¼ G(u)|~Fieiut, (2)

where G(u) is the Green's function, a dN � dN matrix, dened
precisely in Appendix A. As discussed below, all vibrational
properties can be written in terms of G.

The Green's function G(u) appearing in (2) will depend on the
particular realization of the random geometry, for example the
location of absent springs from bond dilution (see Fig. 3b). To
compute average vibrational properties, we seek its disorder
average GðuÞ. Effective medium theory is an approximation
scheme that is well-suited to describing disorder-averaged prop-
erties, such as GðuÞ.22,48–51 In EMT, the random diluted lattice is
approximated by an effective regular lattice with identical effec-
tive stiffnesses, which are functions of u, e and dz. The effective
stiffnesses are chosen uniquely by the following physical
requirement: one considers the lattice where a single bond a,
located at the origin, is assumed to be disordered (in our case, it
is present with probability P) while all the other bonds have the
same effective stiffnesses. We demand that the disorder average
(on the bond at the origin) of the true Green's function, G, should
be equal to the effective Green's function GE. It is clear that this
requirement does not depend on correlations between dilution of
multiple bonds. Details of the EMT are shown in Appendix A.

Because longitudinal and transverse displacements play a
different role in (1), our EMT has both longitudinal and trans-
verse effective spring constants, ~kk and ~kt, respectively. ~kt can
be thought of as a spring orthogonal to the contact, which
captures that orthogonal displacements have a nite stiffness
when contact forces are non-zero. For notational convenience,
we drop the tilde of ~kk and introduce �ekt h ~kt. In EMT, kk

and kt depend on frequency u and in general become complex,
capturing the fact that vibrational modes scatter off disorder
and decay.
‡ For our model p ¼ erzk0s/(2d), with r ¼ N/V the number density. However, in a
Lennard-Jones glass for example, where attraction is weak and long-range in
comparison with repulsion, the relevant microscopic parameter e ¼ hfa/(kasa)i
can be nonzero even at p ¼ 0: in that case the long-range attraction contributes
a tension equal and opposite to the repulsion, but at different typical bond
lengths, say satt and srep. The relative contribution of tension to compression is
smaller by a factor �(srep/satt)

2 � 1 so that e > 0.

5632 | Soft Matter, 2014, 10, 5628–5644
Using standard EMT techniques, discussed in Appendix A,
we derive simple algebraic equations for kk and kt in terms of
G. For simplicity, we neglect the difference between the longi-
tudinal and transverse speed of sound. Since we are interested
in low-frequency behaviour, for the Green's function we
consider

G ~r;uð Þ ¼ z0

d
d̂

ð
BZ

ddq

ð2pÞd
ei~q$~r

ðkk � ektÞq2 �mu2
; (3)

where BZ ¼ {~q: |~q| < L} is an approximate rst Brillouin zone.
This is the continuum Green's function for an elastic medium
with shear modulus kk � ekt, equal longitudinal and transverse
sound velocities, cutoff at a (dimensionless) microscopic
wavenumber L and appropriately renormalized.

Eqn (3) and EMT eqn (A.6), (A.7), and (A.9) in Appendix A
dene a closed system for kk and kt, which we solve numerically
and analytically in the limit dz/ 0, with d¼ 3, z0 ¼ 12, and L¼
p. Below we focus on the case e > 0 and dz $ 0 relevant for
repulsive spheres and colloids, and come back to the case e <
0 when we discuss covalent networks and silica. We take units
with m, s, and the bare stiffness k0 equal to unity.
4 Results

The EMT gives an expression for the complex shear modulus
Dk ¼ kk � ekt, with which we obtain the effective Green's
function G, and all derived quantities.
4.1 Density of states

The density of vibrational states D(u) is determined using the
identity D(u) ¼ (2u/p) Im½tr�Gð0;uÞ�� and plotted in Fig. 4. For
small dz and frequencies u ( dz, we can solve these equations
analytically (see Appendix B), and nd:

DðuÞ ¼

C3

u2�
u* þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2 � u2

q �3=2
if u\u0

C4

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u0

2
p

u2 þ u*
2 � u0

2
if u.u0;

8>>>>>><
>>>>>>:

(4)

where the frequency scales are

u* ¼ c1dz, (5)

u0 ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffi
ec � e

p
; (6)

as announced above. The positive constants ci and Ci are non-
universal:§ in our framework they depend on z0 andL. However,
the exponents associated with u*, u0, and ec are independent of
these microscopic details.

Elastic instability occurs when an eigenvalue u2 becomes
negative. This occurs when u0 ¼ 0, hence ec is the critical strain.
It scales as

ec(dz) ¼ (c1/c2)
2dz2, (7)
§ For d ¼ 3, z0 ¼ 12, and L ¼ p we have c1 ¼ 0.10 and c2 ¼ 0.89.

This journal is © The Royal Society of Chemistry 2014
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Fig. 5 Real (solid) and minus – imaginary (dashed) parts of complex
shear modulus Dk as strain approaches its critical value, at dz ¼ 0.012.
Colours are as in Fig. 4.

Fig. 4 Density of states D(u) as strain approaches its critical value, at
dz ¼ 0.012. From left to right, the distance to instability is 1 � e/ec ¼
0.0005, 0.005, 0.05, 0.5 (blue, green, orange, red online). Inset:
reduced density of states D(u)/u2 vs. u/u*, showing a boson peak at
uBP � ffiffiffiffiffiffiffiffiffiffiffi

u0u*
p

.
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in agreement with Fig. 1a. This implies u0 < u*. As we show in
detail below, in general, there are three regimes: a Debye regime
u < u0 in which the solid behaves like an elastic continuum, a
high-frequency regime u > u* in which D(u) has a plateau, and
an intermediate regime u0 < u < u*. Asymptotically,

DðuÞ �
u2

�
u*

3=2 if u � u0

u2
�
u*

2 if u0 � u � u*

1 if uTu*

8><
>:

The boson peak frequency is conventionally dened by the
maximum of D(u)/u2. We nd

uBP z
1

2

ffiffiffiffiffiffi
u0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3u0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8u*

2 þ u0
2

pq
� ffiffiffiffiffiffiffiffiffiffiffi

u0u*

p
; (8)

which is between u0 and u*: see Fig. 1b and inset to Fig. 4.
When u0 � u*, its amplitude scales as D(uBP)/uBP

2 � 1/u*
2.
{ The inverse Fourier transform can be done with the method of steepest descent
and the residue Theorem. The constant C5 ¼ z0/(12p).
4.2 Elastic modulus

The complex shear modulus Dk ¼ kk � ekt is plotted in Fig. 5.
Its behaviour is captured by the rst terms in an asymptotic
solution,

Dkðu; eÞ ¼C1u* þ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2 � u2
p

� iC2u
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0
2 � u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u* þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2 � u2
pp þ O

	
dz2



;

(9)

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2 � u2
p ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u0

2
p

for u > u0.
The static shear modulus is m ¼ Re Dk (u ¼ 0). We nd

m ¼ C1ðu* þ u0Þ � dz
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e=ec

p �
: (10)

We predict that m remains nite at elastic instability, reduced
by a factor of 2 from its unstressed value.
This journal is © The Royal Society of Chemistry 2014
4.3 Sound dispersion

Sound dispersion at frequency u is determined by the large r
behaviour of Gð~r;uÞ. For r [ 1, we nd{

G ~r;uð Þ � C5

1

Dk

1

r
d̂ eiur=nðuÞ e�r=lsðuÞ; (11)

with scattering length

lsðuÞ ¼ 1

u

jDkj
jIm Dk1=2j (12)

and phonon speed

nðuÞ ¼ jDkj
Re Dk1=2

: (13)

With eqn (9), we can use these equations to determine
explicitly the scaling of the relevant scattering length and
phonon speed at frequency u.

We nd that phonon speed n has a minimum at u0, as shown
in Fig. 6. Asymptotically,

nðuÞ �
ffiffiffiffiffi
u

*

p
if u � u

*�
u2 þ u

*

2
�1=4

if u � u
*

(
(14)

The scattering length ‘s displays Rayleigh scattering for u <
u0, a sudden drop at u0, and anomalous scattering above u0,
shown in Fig. 7. Asymptotically,

‘sðuÞ �

u�4u
*

3 if u\u0�
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � u0

2

q ��1

u
*

3=2 if u0\u � u
*

u�1
�
u2 þ u

*

2
�1=4

if u � u
*

8>>>>><
>>>>>:

(15)
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Fig. 6 Phonon speed n (solid) and resonant wave speed nres (dashed)
as strain approaches its critical value, at dz ¼ 0.012. The curves are
indistinguishable below uIR.

Fig. 8 Energy diffusivity d(u) as strain approaches its critical value, at
dz ¼ 0.012.
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The relevance of the scattering length ‘s for the breakdown of
continuum elasticity is discussed in a companion paper.54

Transport. The identication of physically-relevant length
and velocity scales at frequency u strongly constrains the
frequency dependence of sound dispersion properties. Indeed,
the only dimensionless parameter that can be formed from u,
n(u), and ‘s(u) is n(u) ¼ ‘su/n; physically, 2pn is the number of
wavelengths the response at frequency u travels before
scattering.

Energy transport by phonons is characterized by their energy
diffusivity, d(u).6,7 In Appendix C we use Kubo formulae to
calculate d(u) within the effective medium approximation,
using crucially the asymptotic behaviour of G, eqn (11). The
result is

d(u) z ‘s(u)n(u)f[n(u), ‘s(u)], (16)
Fig. 7 Scattering length ‘s (solid) and resonant phonon scattering
length ‘res (dashed) as strain approaches its critical value, at dz¼ 0.012.
The curves are indistinguishable below uIR.

5634 | Soft Matter, 2014, 10, 5628–5644
where

f ðn; ‘sÞ ¼ C6

4n2

ðn2 þ 1Þ2 þ C7

n2 þ 1

n2 � 1þ pL‘s
: (17)

The factor f[n(u), ‘s(u)] tends to a constant both at large and
small u; in particular, we have fz C7 for u < u0, and fz C6 for u
T u*. In the intermediate regime u0 < u < u*, f exhibits
nontrivial behaviour. These results have a simple physical
interpretation: for u < u0 and u > u*, the diffusivity is accurately
estimated on dimensional grounds as f ‘sn, the natural diffu-
sion constant at frequency u. This gives Rayleigh scattering d �
u�4 in the Debye regime, and a plateau d � 1 for u > u*, as
argued in ref. 50. In the intermediate regime, modes are hybrids
of plane waves and ‘anomalous modes’ that appear above u*,40

and the diffusivity has nontrivial n dependence. Our central new
result is that the diffusivity is predicted to be at all the way
down to u0, as shown in Fig. 8, as observed numerically.6,7
5 Thermal conductivity

Thermal conductivity k(T) can be calculated from energy diffu-
sivity using28

kðTÞf
ð
du DðuÞdðuÞ u

2

T2

eħu=kBT

ðeħu=kBT � 1Þ2
: (18)

In real glasses, as u/ 0, d(u) has a transition from Rayleigh
scattering, d(u) � u�4, to an anharmonic regime where
phonons scatter off two-level systems, not accounted for in our
harmonic expression (16). However, the high T behaviour of k(T)
is expected to be unaffected by this anharmonicity. Here our
aim is simply to prove that the at density of states and diffu-
sivity we predict at high frequency can capture well the high
temperature behaviour of the thermal conductivity, in agree-
ment with an early observation by Kittel. To show this, we cutoff
This journal is © The Royal Society of Chemistry 2014
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Fig. 9 Thermal conductivity k(T) from theory (solid) at indicated values
of e and dz, and data from Freeman and Anderson63 (symbols) on
(polymeric) PMMA (B), polystyrene (PS, ,), and SiO2 (>), in arbitrary
units.

Fig. 10 Sound attenuation G(u) as strain approaches its critical value,
at dz ¼ 0.012.
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the integral in (18) below frequencies u0/2, where the diffusivity
rises from its plateau.

The result is plotted in Fig. 9, where it is compared with data
from Freeman and Anderson63 on vitreous PMMA, polystyrene
(PS) and SiO2. For realistic values of dz and e (expected for silica,
as discussed in the comparison section below) we can quanti-
tatively capture the data above the plateau of thermal conduc-
tivity. Note that our prediction works for a larger range of
temperature for silica than for other materials. In our view, this
reects the fact that silica is nearly isostatic and thus displays a
at diffusivity over a large frequency range.

6 Comparison with scattering
experiments

The Green's function G(u) is not directly accessible in experi-
ments on molecular glasses. However, inelastic neutron and
X-ray scattering experiments measure a derived quantity, the
inelastic dynamic structure factor, Sin(q, u). For harmonic
dynamics,64 Sin(q, u) ¼ (kBT/(dp))Im[q2u�1 tr(G(q, u))]; this
leads to

Sinðq;uÞfkBT
�q4u�1 Im½Dk�

ðu2 � q2 Re½Dk�Þ2 þ ðIm ½Dk�Þ2q4 ; (19)

a form consistent with earlier theory.23,28 A promising avenue to
test the present theory is to use the form (19), with Im[Dk(u)]
and Re[Dk(u)] treated as unknown functions, to t scattering
data. Using eqn (12) and (13), one can then obtain from Dk(u)
the scattering length ‘s and phonon speed n.

The inelastic dynamic structure factor Sin is not usually tted
to the form (19), but instead to a damped harmonic oscillator
form

Sinðq;uÞfkBT
q2GðqÞ	

u2 � U2ðqÞ
2 þ u2G2ðqÞ
: (20)
This journal is © The Royal Society of Chemistry 2014
In this expression, U(q) is the resonant frequency, and G(q) is
the full-width-half-maximum of the peak, known as the sound
attenuation parameter.3,65,66 The phase speed of the resonant
mode is nres(q) ¼ U(q)/q. By evaluating nres at the resonant
wavenumber Q ¼ U�1(u) (where U�1 denotes the inverse func-
tion), one obtains nres(u). Similarly, we let G(u) h G(Q(u)).

To compare with these ts, we can also dene nres and G in
our theory (although in our theory these quantities are not the
natural ones to consider at large frequencies). To do so, we note
that when Im2[Dk]� Re2[Dk], we can identify in (19) a resonant

wavenumber Q ¼ u=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½DkðuÞ�p

; equivalently, the resonant

frequency U satises
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½DkðUÞ�p ¼ U=Q, implying that the

resonant phase velocity is nresðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½DkðuÞ�p

. Its behaviour
is shown in Fig. 6: there is a minimum at u0, and a very small
increase up to u*, the same range where the boson peak
frequency is located.

The sound attenuation parameter G(u) is the full-width-half-
maximum of the peak; in our theory this is

G(u) ¼ �Q2u�1 Im[Dk(u)], (21)

plotted in Fig. 10. We predict a transition from u4 to u2 at u0,
with a jump that increases in magnitude as the critical pressure
is approached.

In experiments on vitreous silica, nres is observed to have a
minimum at the boson peak frequency, and G(u) is observed to
transition from u4 below the boson peak frequency to u2 above
it.3,4 Our theory is fully consistent with these results, if uBP z
u0. Below we will argue that silica corresponds to dz¼ 0, e < 0 for
which this property is satised, as illustrated in Fig. 1b.

The interpretation of Sin in terms of a resonant peak is not
appropriate as soon as the scattering length of phonons is equal
to half their wavelength. This denes the Ioffe–Regel frequency
uIR at which65 pG ¼ U. We predict

uIR z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2 þ u*
2
�
p2

q
(22)
Soft Matter, 2014, 10, 5628–5644 | 5635
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It has been suggested that the boson peak frequency is equal
to uIR. As illustrated in Fig. 1b, we nd that it depends on the
microscopic structure of the glass. For sphere packings e / ec
(see below) and uIR and uBP are predicted to differ. For silica
and well-coordinated covalent networks e < 0 and we predict uIR

z uBP, in agreement with observations.3

Above uIR, modes no longer resemble plane waves. This is
apparent in Fig. 6, which shows that n s nres above uIR: the
phase velocity of the total response is not characterized at all by
nres. Similarly, the scattering length of the resonant wave-
number, ‘res(u) ¼ 2nresG

�1, differs from ‘s above uIR, as shown
in Fig. 7. The difference can be dramatic: we see that for u �
30u*, the total response persists for nearly 2 decades longer
than the contribution from the resonant wavenumber. These
comments underline the relevance of n and ‘s as the physical
velocity and length scales in the entire frequency range (below
the localization transition).
7 Comparison with specific glasses

Our approach predicts that the vibrational properties of amor-
phous solids depend on their excess-coordination dz ¼ z � zc
and compressive strain e (keeping in mind that the presence of
weak interactions can be incorporated by lowering the value of
e). In the (dz, e) plane there is a forbidden region where no
mechanically stable glasses are possible, represented in white
in Fig. 2. Purely repulsive particles such as elastic spheres and
colloidal glasses must lie in the red-blue region, which is stable
despite e > 0. In network glasses at small pressure, such as
chalcogenides, z� zc can bemonitored by changing the valence,
allowing to explore the blue part of the phase diagram of Fig. 2.
In this case e < 0 due to the presence of weak van der Waals
interactions that can stabilize the system even if z � zc < 0. We
shall recall below why silica corresponds to dz ¼ 0 and e < 0. We
now discuss the consequence of this classication in each case.
Fig. 11 Shear modulus m from numerical packings in 2D (symbols) at
dz ¼ 5 � 10�1 to dz ¼ 5 � 10�5/2, for various e(x), as discussed in the
main text, and compared to theoretical prediction (solid). The shear
modulus drops by a factor z2 from e ¼ 0 to e ¼ ec. The constant c ¼
0.11.
7.1 Repulsive short-range particles

In granular materials, emulsions, and hard sphere colloidal
glasses the particle interaction is repulsive and short-range,
implying that e > 0. Thus these systems lie in the upper right
corner of the phase diagram of Fig. 2. Considerable attention
has been given in the “jamming” literature to the case of fric-
tionless spheres interacting via a nite range potential,34

because vibrational properties display critical properties as
compression vanishes. To some extent, this scaling behaviour
can be experimentally observed,34 in particular in emulsions
(see e.g. ref. 67). Numerically, scaling exponents can be extrac-
ted precisely, which enables stringent testing of theories of
elasticity and transport in amorphous materials.

Here we consider particles interacting via a one-sided
harmonic potential (extension to other potentials, e.g.Hertzian,
is straightforward). The contact compression is simply propor-
tional to the increase of packing fraction ef f� fc, where fc is
the point at which pressure vanishes. Another useful system to
consider can be made by replacing particles by points, and
contacts by harmonic springs at rest.41 This essentially removes
5636 | Soft Matter, 2014, 10, 5628–5644
the pre-stress term in the expansion of dE, see eqn (1), and
corresponds to setting e ¼ 0 in our formalism. It was found
previously that (i) the shear modulus satises m � dz indepen-
dently of pre-stress,38,52 and the prefactor of this relation
decreases as the compressive pre-stress increases.68,69 (ii)
dz � ffiffiffi

e
p

, ref. 38. (iii) The vibrational spectrum displays one
frequency scale u* � dz above which D(u) displays a plateau.39,41

This is true independent of the pre-stress, but with pre-stress
D(u) is much larger for u < u*,41 and presents non-plane-wave-
like modes up to very small frequencies. (iv) The diffusivity is
essentially independent of frequency in packings, but presents
a behaviour consistent with Rayleigh scattering below u* when
pre-stress is removed.6,7

All these behaviours follow precisely our predictions, if we
suppose that packings lie very close to the stability boundary in
Fig. 1a. Such marginal stability was proposed in41 to rationalize
the structure of packings; proposed explanations for this
behaviour can be found in ref. 41, 42, 70 and 71. Our prediction
that m does not vanish as e / ec is thus important to under-
stand why the shear modulus of packings is nite and scales as
�dz. Most importantly, being close to marginal stability, ez ec,
implies that 0 z u0 � uBP � u* � dz, as illustrated in Fig. 1.
Since we predict that the diffusivity presents a plateau above u0,
it must be independent of frequency in marginally stable
packings, as indeed observed – a key support to our theory of
transport. When no pre-stress is present, our theory is consis-
tent with the previous result of ref. 50 predicting a cross-over
from Rayleigh scattering to at diffusivity at u* � dz.

Both to test our scaling predictions for u0 vs. e, and to
measure precisely how close sphere packings are from an elastic
instability, we construct 4000 bidisperse packings (size ratio ¼
1.4) of 2000 frictionless spheres using the FIRE algorithm,72 at
strains e0 ¼ 10�2, 10�3, and 10�4. From each packing, we then
manually rescale all contact forces by a factor 1 � x < 1 and
compute the resulting density of states Dx(u), shown in Fig. 12a.
This journal is © The Royal Society of Chemistry 2014
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Fig. 12 (a) D(u) from numerical packings in 3D at e0 ¼ 10�3, whose contact forces have then been rescaled by a factor 1 � x, with x ¼ 0, 0.025,
0.05, 0.1, 0.2, 0.4, 0.8 (black, cyan, red, green, purple, yellow); rescaled D(u/u0)/(1 � e(x)/ec) at (b) e0 ¼ 10�3, (c) e0 ¼ 10�2, (d) e0 ¼ 10�4. In all
cases we find collapse of the onset frequency u0 by assuming e0/ec ¼ 0.96. Note that the original packing (black) has been omitted from the
rescaled plots. The predicted slope in the intermediate regime, 2, is shown in (a).

k For example the bending energy of Si–O–Si is roughly 10 times smaller than the
stretching of the contact Si–O.77
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If our packings were exactly at marginal stability with strain e0¼
ec, then we would have e(x) ¼ ec(1 � x), and predict a frequency
scale u0 f x1/2. However, this frequency does not collapse our
data. Instead, as shown in Fig. 12b–d, we nd a satisfactory
collapse of all the data by assuming that packings are very close,
but at a nite distance from an elastic instability, with e0/ec ¼
0.96 for all 3 pressures. We have also rescaled the vertical axis,
which collapses well the density of states in the regime u0 < u�
u* as it should according to eqn (4). The companion paper54

presents further evidence that the distance to marginal stability
in our packings is 4%, and checks that this number is not
system-size-dependent. Finally, the theory further predicts that
the slope of D(u) should be 2 in the intermediate regime u0 < u

� u*, indicated by the triangle in Fig. 12a. We nd reasonable
agreement with this prediction, but larger packings are needed
to test this denitively. Recent simulations73 of a related model
found D(u) � u1.5 when uBP z 0, which is also compatible with
our data. Some earlier theories23 predict a slope 2, while others31

predict 3/2.
To test our prediction for m(e/ec), eqn (10), we repeat the

numerical experiment above, but in 2D. We use 1000 bidisperse
packings of 25 600 disks, constructed with FIRE, at strains from
e0 ¼ 10�2 to 10�4. Rescaling contact forces by a factor 1 � x, we
again explore a range of e(x)/e0 from 0 to 1, and again we nd e0/
ec ¼ 0.96. The measured shear modulus m is shown in Fig. 11. In
agreement with theory, the data collapse when rescaled by dz,
and drop by a factor of 2 between e ¼ 0 and e ¼ ec.

These results are expected to persist at nite but low
temperature. A nice example are colloidal glasses, where parti-
cles are hard spheres. In the glass phase, contacts can be
dened by considering those particles who collide with each
other on a time scale much smaller than the relaxation time sa
where the system is liquid, but much larger than the typical
collision time scale between two neighbours.42,43 The contact
strain is simply the mean distance between two particles. In
such glasses one indeed nds42 marginal stability with a boson
peak frequency uBP � u*.
This journal is © The Royal Society of Chemistry 2014
One aspect of packing that we did not seek to capture is that
the bulk modulus remains nite as dz/ 0. This property is not
a generic feature of weakly-coordinated materials, as generically
in random elastic networks the bulk and shear modulus scale
identically. However, this point is well understood,36 and is due
to the fact that the geometry of packings is such that contact
forces must all be positive. This will thus be true when the
potential is strictly repulsive. To construct an effective medium
theory capturing this fact one could enforce that the bulk
modulus in eqn (3) is constant. However, we expect that this
modication will mostly affect the speed of sound of compres-
sive waves below u*, and we leave this point for further
investigation.
7.2 Silica

Silica is the most common glass, with a very large boson peak.
It has been argued36,74 that this is the case because silica is
marginally connected.75 Indeed in this glass (or more generally
aluminosilicates) the forces within the tetrahedra SiO4 are
much stronger than the forces that act between them:76 it is
easier to rotate two linked tetrahedra than to distort one tet-
rahedron.k This suggests a model of such glass as an assembly
of linked tetrahedra loosely connected at corners: this is the
“rigid unit modes” (RUM) model.78 Such a tetrahedral network
with completely exible joints is marginally connected:75 on
the one hand each tetrahedron has 6 degrees of freedom (3
rotations and 3 translations). On the other hand, the 4 corners
of a tetrahedron each bring 3 constraints shared by 2 tetra-
hedra, leading to 6 constraints per tetrahedron and thus dz ¼
0. Within our approach, the RUM model corresponds to dz ¼ 0,
e ¼ 0 and must thus have a at density of states, and an
innite boson peak amplitude, as is indeed observed
numerically.35
Soft Matter, 2014, 10, 5628–5644 | 5637
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Fig. 13 Density of states D(u) for e ¼ �0.01 at indicated values of dz.
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These predictions do not describe well the spectrum of silica
at low frequencies, where the weak interactions, in particular the
bending of the Si–O–Si bond and the van der Waals interactions
cannot be neglected. These interactions imply that e < 0. For this
case, we predict that the spectrum is characterized by one
frequency scale only, as u0 zu* zuIR zuBPf

ffiffiffiffiffiffi�e
p

, see Fig. 1
and eqn (6). Using the stiffness of the Si–O–Si bending interac-
tion obtained ab initio,77 and the molecular mass to form a
frequency, one obtains a crude estimate u* z 1.4 THz. Our
predictions are in agreement with measurements of the
density of states in silica, which indeed present a plateau
above the boson peak frequency at about 1 THz, see e.g. ref. 75.
Since the bending stiffness of Si–O–Si is roughly 200 times
smaller than the stretching stiffness of the bond Si–O,77 we
estimate u* z 1=

ffiffiffiffiffiffiffiffi
200

p � 0:07 in our units, indicating
e z �(0.07/c2)

2 � �0.01. Concerning transport, we predict that
the Ioffe–Regel frequency and the boson peak are nearly
identical, in agreement with experiments.3 We predict that above
this frequency, the mode diffusivity displays a plateau. This
prediction enables to capture quantitatively the high temperature
behaviour of thermal conductivity of silica using e ¼ �0.007, as
shown in Fig. 9.

These arguments apply equally to germanium oxide.
However, in amorphous germanium or silicon, a
tetrahedral structure is also formed, but the joints between
tetrahedra are not exible at all. dz is thus large in these
systems, and our analysis predicts that the boson peak should
be small.
Fig. 14 Reduced density of states D(u)/DD(u) for e ¼ �0.01 at indi-
cated values of dz, where DD � u2 is the Debye density of states.
7.3 Covalent networks

Network glasses are very convenient to test our predictions. In
chalcogenides, for example, the connectedness can be changed
continuously by considering compounds of elements of
different valence, such as SexAsyGe1�x�y, whose valence is z¼ 2x
+ 3y + 4(1 � x � y). In these systems, Phillips showed that zc ¼
2.4. When dz < 0, van der Waals interactions stabilize these
materials, and their relative amplitude can be estimated from
measurements of the dependence of the shear modulus with
coordination,44 from which one gets the order of magnitude ez
�0.01.

The normalized boson peak amplitude, ABP, is the maximum
of the reduced density of states, D(u)/DD(u), where DD(u) is the
Debye density of states. The reduced density of states is plotted
in Fig. 14 for e ¼ �0.01, showing a non-monotonic dependence
of ABP on dz: it has a maximum at dz ¼ 0. This is consistent with
simulations on elastic networks.44

For well-coordinated glasses with dz > 0 (lower right part of
our phase diagram), our predictions are as as follows. The
spectrum is characterized by one frequency scale only, very
much like for silica. In particular, the boson peak frequency
scales similarly as the Ioffe–Regel frequency, as observed in
various strong glasses.2 This frequency scale increases with
coordination, such that very well-coordinated glasses have a
small boson peak located at high frequency – e.g. amorphous
silicon, see discussion above. Above this frequency, the mode
diffusivity is at.
5638 | Soft Matter, 2014, 10, 5628–5644
For under-coordinated glasses with dz < 0, if e ¼ 0 effective
medium predicts that the density of states present zero
modes51,61 and a gap up to a frequency51 u* � �dz. In this
regime, our EMT eqn (B.4) apply, and can be solved numeri-
cally; the resulting D(u) is shown in Fig. 13, and in reduced form
in Fig. 14. However, note that the asymptotic solution derived in
Appendix B does not apply; the relevant asymptotic solution will
be discussed elsewhere.

When e < 0, oppy modes get a nite frequency of order
ffiffiffiffiffijejp
,

so that the gap is present at intermediate frequencies only for
dz\ � ffiffiffiffiffijejp

. In the phase diagram of Fig. 2, this occurs to the
le of the red line. When dz. � ffiffiffiffiffijejp

, no gap is present. The
modes above u* are predicted to have a at diffusivity.
8 Discussion and conclusion

Many approaches to understanding the boson peak describe
how an elastic instability is reached as a parameter is changed.
Some features of vibrational properties are expected to be
This journal is © The Royal Society of Chemistry 2014
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universal near such an instability, independent of the realism of
the model.14,15 For example, several predictions of Schirmacher,
where the control parameter is the amplitude of disorder,23,28

are similar to ours, including the transition of sound dispersion
G(u) from u4 to u2, and a shear modulus that drops by a factor
of 2 as the instability is approached,79 in broad agreement with
experiments and simulations.

However, universality implies that such successes do not
guarantee that the key structural aspects controlling the boson
peak have been correctly identied. Several approaches propose
to classify the vibrational properties of glasses by their amount
of structural disorder. As discussed above, this classication
cannot capture the similarity in the boson peak, in some
glasses, to the boson peak in their crystalline counterparts. In
that regard, observing that a dip in the speed of sound occurs at
the boson peak frequency, as was done numerically in a Len-
nard-Jones glass,29 is not a strong support that uctuations in
the shear modulus are responsible for the peak. Predicting how
the latter evolves as a parameter (such as density) may be more
appropriate to distinguish theories, as was done in a Lennard-
Jones in ref. 56. Likewise, observed correlations between the
boson peak amplitude and the presence of large scale elastic
heterogeneities do not imply that vibrational anomalies are
caused by large uctuations in the structure. In a companion
paper we show that the length scale lc beyond which continuum
elasticity breaks down, and at which uctuations in elastic
response are large, follows54 lc � 1=

ffiffiffiffiffiffi
u0

p
. A fundamental point is

that in our model, this length scale does not enter in the static
structure of the glass, but only in its response.

We argue that with two parameters, the connectedness z and
the parameter e that includes compression and the relative
strength of weak interactions, specic non-trivial predictions can
be made, for example on the relationship between different
characteristic frequency scales. This approach captures both the
qualitative features of sound dispersion near the boson peak, as
well as the fact that the latter is similar in some glasses and in their
corresponding crystals. We hope that our phase diagram, aimed at
characterizing emulsions, colloidal glasses (where several experi-
mental measurements of the vibrational spectrum and micro-
scopic structure support our views67,80,81), and covalent glasses will
be a convenient starting point to classify a broader class of
amorphous solids. Our predictions on network glasses could be
tested experimentally by changing the microscopic structure in a
systematic way (e.g. by monitoring the valence in chalcogenides
and measuring transport properties).

With some effort, the simple picture in which z and e are the
only control parameters can be extended to more general
models. For example, it is straightforward to show that
including both shear and bulk moduli in (3) leads to a non-
singular dependence of our results on the bare Poisson ratio:
exponents remain the same, but prefactors are altered. Like-
wise, one can consider explicitly the effect of weak forces, to
show how e gets renormalized,** one can consider a full
distribution of stiffnesses,53 and one can consider how nite
** In a model in which all diluted bonds have a weak stiffness kw, one nds that
e / e � kw/P, to leading order in dz.

This journal is © The Royal Society of Chemistry 2014
temperature chooses z and e.82 These effects should be kept in
mind in quantitative comparisons with experiments.

An essential result of our theory concerns transport. We predict
that the mode diffusivity becomes frequency-independent of the
glass, above the frequency scale u0 where the density of states
departs from Debye behaviour, in agreement with numerical
observations in sphere packings.6,7 For silica or well-coordinated
covalent glasses (for which u0 z u*), this fact results from a
cancellation: above u* the modes' characteristic velocity increases
as

vðuÞ � ffiffiffiffi
u

p

whereas their length scale decreases as

lsðuÞ � 1
� ffiffiffiffi

u
p

;

such that d(u) � ‘(u)n(u) � u0. This prediction could be tested
empirically by extracting the frequency-dependence of ls(u) and
n(u) from scattering data, as discussed above.

Concerning the evolution of the shear modulus m near an
elastic instability, wend that the elasticmoduli do not vanish, but
only drop by a factor of 2 at instability. Our results are supported by
packings of spheres at low pressure, which are close to an elastic
instability, but where m only mildly depends on pre-stress, as dis-
cussed above. Note that the factor 2 that bounds the evolution of m
only holds at xed connectedness z, and can be larger if system is
allowed to change coordination as well. It remains to be seen if the
proximity of an elastic instability is the main cause for the evolu-
tion of m with temperature in fragile liquids.

Appendix
A EMT

The quadratic energy expansion dE ¼
X
a

dEa ¼ hd~R|M |d~Ri
denes the dynamical matrix

M ¼
X
a



ka~na5~na � fa

sa

d̂�~na5~na

� ��
P a; (A.1)

where~na is a unit vector along the bond a, d̂ is the unit tensor,
and fa is the force in the contact a. Here

P a ¼ 1
2
ð|ii � | jiÞðhi|� h j|Þ is a projection operator for the

contact a.45 The Green's function is G(u) ¼ (M � mu2)�1.
To obtain the disorder-averaged Green's function G, we rst

write ka ¼ kk + (ka � kk), where kk is an effective spring constant,
and likewise fa/sa ¼ ekt + e(ka � kt). The effective and uc-
tuating contributions in M ¼ M þ dM are collected into M , and
dM , respectively. M is constructed from M by making replace-
ments ka / kk and fa/sa / kte, and similarly for dM . The
Green's function can then be written as G ¼ G þ GT G, where
G ¼ 	

M �mu2Þ�1 is the effective Green's function, and T is
known as the transfer matrix. The transfer matrix is written as

T ¼ �dM
	
1þ GdM


�1 ¼ �dM
X
n$ 0

	�GdM

n. Since P is a local

operator, T can efficiently be organized by its contributions
from increasing numbers of contacts, viz.,

T ¼
X
a

T a þ
X
a

X
bsa

T aGT b þ. (A.2)
Soft Matter, 2014, 10, 5628–5644 | 5639
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We nd that

T a ¼ P a



kk � ka

1� ðkk � kaÞGk~na5~na

� ekt � eka

1þ ðekt � ekaÞGt
d̂�~na5~na

� ��
; (A.3)

where Gk and Gt are the longitudinal and transverse compo-
nents of the Green's function on a bond, which can be written in
terms of ha| h hi| � hj| as

Gk ¼ 2~na$
�
a
��G��a�$~na

Gt ¼ 2 trð�a��G��a�Þ � Gk (A.4)

where tr is trace. By isotropy and homogeneity of the effective
lattice, Gk and Gt are independent of a. To obtain G, we should
choose effective constants such that T ¼ 0. In EMT this is
approximated by T a ¼ 0.†† This requires

0 ¼ kk � ka

1� ðkk � kaÞGk ¼
ekt � eka

1þ ðekt � ekaÞGt
: (A.5)

As discussed in the main text, random dilution of the lattice
is modelled by setting ka¼ k0 withmean probability P¼ z/z0 and
ka ¼ 0 with probability 1 � z/z0. Since the EMT equations
depend only on what happens at a single bond, whether bonds
are diluted with correlations or not is immaterial. This leads to
EMT equations

Gk ¼ kk � P

kkðkk � 1Þ ; (A.6)

Gt ¼ � kt � P

ektðkt � 1Þ ; (A.7)

where we have taken units such that the bare spring constant
k0 ¼ 1. Using the identity d̂ ¼ hi|G(M � mu2)|ii and homoge-
neity and isotropy of the lattice,45,50 one can derive an exact
identity

z0

2d

	
Gkkk � eGtkt


 ¼ �
1þmu2

d
tr
	
Gð0;uÞ
�: (A.8)

For simplicity, we will neglect the difference between the
longitudinal and transverse speed of sound, the consequences
of which are discussed in the conclusion. Then,
restoring isotropy by averaging (2) over orientation of the
lattice with respect to the laboratory frame, this assumption
implies

Gk ¼ Gt ¼ 2d

z0

1

kk � ekt

�
1þmu2

d
trðGð0;uÞÞ

�
; (A.9)

where G is the disorder-averaged Green's function.
†† When bonds are diluted independently, the leading error is a correlation of the
form45 T a5T a

2ha|G|bi3.

5640 | Soft Matter, 2014, 10, 5628–5644
B Asymptotic solution

Here we derive the asymptotic solution for kk and kt when dz�
1 and u( dz. We expect that there is a critical strain ec(dz) such
that solutions fail to exist for e > ec(dz), so it is natural to look for
solutions in the variables dz and e0 ¼ e/ec(dz).

When e ¼ 0, previous work50 shows that kk � dz, so we look
for a solution

kk ¼ kk0dz + kk1(dz)
g + . (B.1)

kt ¼ kt0 (dz)a + kt1 (dz)b + . (B.2)

ec ¼ e1(dz)
h + e2(dz)

z + . (B.3)

We also rescale u ¼ dzu0. When dz � 1, the transverse
stiffness ekt should be much smaller than the normal stiffness,
so a + h > 1. In fact, simulations indicate that a + h ¼ 2. We
assume this in what follows, and derive it at the end of this
section.

In d ¼ 3 the EMT equations are

Gk ¼ kk � z
�
z0

kkðkk � 1Þ ; Gt ¼ � kt � z=z0
ektðkt � 1Þ ;

Gk ¼ Gt ¼ 6

z0Dk

"
1þ A1u

2

Dk
� A1u

3

LðDkÞ3=2
atanh

�
L

ffiffiffiffiffiffi
Dk

p �
u
�#

;

(B.4)

where Dk ¼ kk � ekt, L is a Debye cutoff, and A1 ¼ Lz0/(6p
2).

With the above scalings,
ffiffiffiffiffiffi
Dk

p
=u � 1=

ffiffiffiffiffi
dz

p
so atanh can be

expanded around innity, giving

z0

6
DkGk � 1 ¼ A1u

2

Dk
þ iA2u

3

ðDkÞ3=2
þ O

	
dz2




¼ dzA1

ðu0Þ2
k0k

� dzgA1

ðu0Þ2k1k
ðk0kÞ2

þ iA2dz
3=2 ðu0Þ3

ðk0kÞ3=2
þ.

(B.5)

with A2 ¼ pA1/(2L). This must be equated to

z0

6
DkGk � 1 ¼ dz

�
� ak0

k � e1e
0kt

0

k0k
þ 1

2d

�

þ dzgk1
k
�
� aþ e1e

0kt
0

ðk0kÞ2
�
þ.; (B.6)

with a ¼ z0/(2d) � 1, assuming b � a > g � 1 and z � h > g � 1,
veried below. The O (dz) equation gives

k0
k ¼ C1u

0
* � C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0

0Þ2 � ðu0Þ2
q

; (B.7)

with C1 ¼
ffiffiffiffiffiffiffiffiffiffi
A1=a

p
, u

0
* ¼ 1/(4daC1), and

u0
0ðe0Þ ¼ u0

*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16ad2e1e0kt0

p
. The next order must be g ¼ 3/2,

giving

k1
k ¼ HiC2ðu0Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu0
0Þ2 � ðu0Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

* �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0

0Þ2 � ðu0Þ2
qr ; (B.8)
This journal is © The Royal Society of Chemistry 2014
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with C2 ¼ A2/(2aC1
3/2). The transverse term is

z0

6
DkGt ¼ z0

6

�
1� kk

ekt

�
kt � z=z0
kt � 1

(B.9)

To match with the above, the RHS must be 1 + O (dz). This
implies a ¼ 0, h ¼ 2, and kt0 ¼ 2d/z0. We nd

z0

6
DkGt ¼ z0

6
dz� k0

k

e1e0kt
0

� �
2d=z0 � dzb�1kt

1

2da=z0
þ.;

implying b ¼ 1 and kt1 ¼ 1/z0 + ae1k
k
0/(1 + a)3. Hence we have

Dk ¼ dzkk0 + dz3/2kk1 + O (dz2) (B.10)

The density of states is

DðuÞ ¼ ð2u=pÞIm
h
tr
�
Gð0;uÞ�i ¼ z0

pu
Im

�
DkGk� (B.11)

In order to have a non-negative density of statesD(u) asu/ 0,
we must have Im[kk1] < 0 as u / 0, indicating that we must take
the positive root in (B.7). Finally, to determine e1, we must use the
fact that ec(dz) corresponds to the critical pressure. Instability is
signalled by movement of an eigenvalue l¼ u2 to negative values,
hence as u/ 0, D(l)¼ D(u)/(2u)/ 0 at the critical pressure e0 ¼
1, and D(l) > 0 when e0 > 1. This leads to Im[1/kk0(0)] ¼ 0, to order
O (dz). This implies u

0
0(e0 ¼ 1) ¼ 0, or e1 ¼ z0/(4a(2d)

3). It can be
seen that the O (dz3/2) term does not require a corresponding term
in ec, verifying that z > h + g � 1 ¼ 5/2, assumed above. Rewriting
frequencies in unscaled variables, u ¼ dzu0, and keeping only the
leading terms for D(u), these expressions then reproduce what is
given in the main text in eqn (4), with c1 ¼ (4daC1)

�1 and

c2 ¼ c1=
ffiffiffiffi
e1

p
:

It is notable that these rst terms in an asymptotic solution,
which reproduces all of the scaling behaviour discussed in the
main text, only used the u ¼ 0 and singular parts of the Green's
function (3); this partially justies the simple continuum
expression used.

In this derivation, we assumed a + h ¼ 2. To see why this
must be true, consider (B.1) but with

Case 1: a + h ¼ 1.
From the expansion of atanh, we will again have (z0/6)DkG

k �
1 � dz. But

(z0/6)DkG
k � 1 ¼ � e1e

0kt0 /kk0 + O (dz) + O (dzg�1) + O (dzb�a),

(B.12)

so that equating these will lead to e1k
t
0 ¼ 0. Hence a + h ¼ 1 is

the wrong scaling. This argument also excludes a + h < 1.
Case 2: a + h > 1.
For a general a + h > 1, we will have (z0/6)DkG

k � 1 � dz, and
eqn (B.9) still holds, implying that a ¼ 0 and kt0 ¼ 2d/z0. Then

DkGt � dz� dz2�h k0
k

e1e0kt
0

� �	
2d=z0 � dzb�1kt

1



:

Since h > 1, the leading terms are O (dz2�h) and O (dz1+b�h),
which must be O (1) to match with the other equations. If h ¼ 2,
This journal is © The Royal Society of Chemistry 2014
we're done, so consider b ¼ h � 1. The leading terms are then
O (dz2�h) and O (dz0). If these are not equal, the system is over-
determined, so h ¼ 2.
C Diffusivity

Energy diffusivity d(u) can be calculated with the Kubo–
Greenwood formula for the thermal conductivity.6,7 For a nite
system, this leads to

dðuÞ ¼ p

12m2u2

X
u0su

ðuþ u0Þ2
4uu0

��~Suu0
��2~dðu� u0Þ; (C.1)

where the sum is over eigenvalues u02 of M . Here the vector
heat-ux elements are

~Suu0 ¼
X
i;j

~ri �~rj
	 


~ju

i
$M ij$~ju0

j
; (C.2)

with~ri the center of particle i, ~ju
i the (vector) eigenvector of M

associated to u, and ~d is a smoothed d-function, whose width
should be taken to zero at the end of the calculation.6,7 We write

the expression for M , eqn (A.1), as M ¼
X
a

maP a, where ma is

the contribution from contact a, a symmetric 3 � 3 matrix.
Then

~Suu0 ¼ 1

2

X
a

~ri �~rj
	 
h

~ju

i
5~ju0

j �~ju

j
5~ju0

i
i
: ma; (C.3)

where ‘:’ indicates two tensor contractions, and a ¼ hiji. It is
clear from this expression that Suu0 is zero when u0 ¼ u, but the
~d(u � u0) factor in (C.1) implies that modes with any
nite frequency difference do not contribute to d(u). Hence, in
the thermodynamic limit, only modes which are
innitesimally close in frequency can contribute to d(u).
Making the replacement~ri �~rj ¼~na, the squared magnitude of
~Suu0 is ���~Suu0

���2¼ 1

4

X
a;b

~na$~nb

h
~ju

i
5~ju0

j �~ju

j
5~ju0

i
i
: ma

�
h
~ju

k
5~ju0

‘ �~ju

‘
5~ju0

k
i†
: m†

b; (C.4)

where b ¼ hk‘i, and † denotes complex conjugate. We are
interested in the disorder average of this quantity. It was
previously established in numerical simulations that modes of
close but unequal frequency are uncorrelated.6 We can then

obtain an EMT estimate of
��~Suu0

��2 using (i) the identityD
~j
j
u5

~j
k†
u

E
¼ �2 Im

�
Gð~rj �~rk;uÞ

�
u=ð3pNDðuÞÞ, and (ii)

replacing G andma by their EMT values Gand �ma. Using the fact

that Gf d̂, we nd

��~Suu0
��2 z 1

p2N2

u

DðuÞ
u0

Dðu0Þ
X
a;b

~na$~nb trðma$mb
†Þ

�
h
Iik

uIj‘
u0 � Ii‘

uIjk
u0 � Ijk

uIi‘
u0 þ Ij‘

uIik
u0
i
; (C.5)

where Iik
u ¼ tr(Im[G(~ri �~rk, u)]). It is now possible to let u /

u0. Then
X
u0

~dðu� u0Þ/3NDðuÞ. We nd
Soft Matter, 2014, 10, 5628–5644 | 5641
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dðuÞz ð2pÞ�1

NDðuÞ
X
a;b

~na$~nb tr
	
ma$mb

†

h
Iik

uIj‘
u � Ii‘

uIjk
u
i
: (C.6)

This has both ‘diagonal’ a ¼ b and ‘off-diagonal’ a s b

contributions, denoted dd(u) and dod(u), respectively. Using

tr
	
ma$ma

†

 ¼ ��kk��2 þ 2e2jktj2 z jDkj2, we nd the diagonal

contribution to be

ddðuÞz jDkðuÞj2
2pNDðuÞ

X
a

h
Iii

uIjj
u � Iij

uIji
u
i

(C.7)

The quantity in parentheses is

Iii
uIjj

u � Iij
uIji

u ¼ 	
Iii

u � Iij
u

	
Iii

u þ Iji
u



¼ 32

42
Im

�
Gk�Im


8

3
tr
	
Gð0;uÞ
� Gk

�
(C.8)

Using the asymptotic solution and keeping only leading
terms, we nd

Iii
uIjj

u � Iij
uIji

u z� 3

2

p

2u

Im½Dk�Re½Gk�
Re½Dk� DðuÞ

z� 9p

2u

Im½Dk�
jDkj2 DðuÞ

(C.9)

and hence

ddðuÞz� 9z

8

Im½Dk�
u

: (C.10)

This can be written in terms of the macroscopic scales
introduced in the main text. For brevity we omit writing the
dependence on u. Using

Re½Dk� ¼ n2
n2ðn2 � 1Þ
ðn2 þ 1Þ2 (C.11)

�Im½Dk� ¼ n2
2n3

ðn2 þ 1Þ2 ; (C.12)

we nd

ddðuÞzC6‘sn
4n2

ðn2 þ 1Þ2 ; (C.13)

with C6 ¼ 9z/(16z0). The off-diagonal contribution is more
involved; here we look only for the dominant terms. Summing
over contacts in (C.6), the only terms which survive are those
which are symmetric both in i and j, and in k and ‘; i.e., the
orientation of the contacts a and b does not matter. By gradient
expansion, the leading term involves the factor

Iik
uIj‘

u � Ii‘
uIjk

u ¼ ~na$VIik
u~nb$VIik

u + . (C.14)

The Green's function needed for Iik
u is taken from its

asymptotic large rik behaviour, eqn (11). Since this depends only
on r, we nd, using tr

	
ma$mb

†

 ¼ jDkj2	~na$~nb
2 þ O

	
dz3



,

5642 | Soft Matter, 2014, 10, 5628–5644
dodðuÞz ð2pÞ�1jDkj2
NDðuÞ

X
a;b

~na$~nbð Þ3~na$r̂ik~nb$r̂ik


vIik

u

vrik

�2
(C.15)

Assuming contact orientations are uncorrelated with ~rik,
this is

dodðuÞz ð2pÞ�1jDkj2
VNDðuÞ

�ðN
1

dr r2


vIr

u

vr

�2�

�
�ð4p

0

dU r̂5r̂

�
:
X
a;b

~na5~nb
	
~na$~nb


3
; (C.16)

where V is the domain volume, and we integrate from r¼ 1. Now
we use

ð4p

0

dU r̂5r̂ ¼ 4p

3
d̂ (C.17)

and, for an isotropic material,

X
a;b

~na$~nbð Þ4 ¼


Nz

2

�2
1

p

ðp
0

cos4ðqÞdq ¼ 3N2z2

32
: (C.18)

Using (11), the nontrivial integral is

ðN

1

dr r2


vIr

u

vr

�2
¼ 9C5

2

ðN
1

dr r2 Im2



1

rDk

�
gðuÞ � 1

r

�
egðuÞr

�
;

(C.19)

with g(u) ¼ iu/n(u) � 1/‘s(u). Expanding Im2, only one term
does not have rapid oscillations. Keeping only leading terms, we
nally nd

ðN
1

dr r2


vIr

u

vr

�2
z

9C5
2

8jDkj2 jgðuÞj
2‘s (C.20)

and hence

dodðuÞz 9C5
2rz2

128

u2‘s
n2DðuÞ

�
1þ 1

n2

�
: (C.21)

The density of states can be written

DðuÞ ¼ 12A1

p2

1

‘sn



pþ n2 � 1

L‘s

�
; (C.22)

so that

dodðuÞzC7‘sn

�
1þ pL‘s � 1

n2

��1�
1þ 1

n2

�
; (C.23)

with C7 ¼ 3p2LC5
2rz2/(A12

9). Assembling results into
d(u) z dd(u) + dod(u), we reproduce (16) in the main text. We
have assumed that (i) modes of unequal frequency are
uncorrelated, (ii) the disorder average of a product (in partic-
ular, of G and ma) is equal to the product of their effective
medium expressions, and (iii) we have kept only leading terms
in dz.
This journal is © The Royal Society of Chemistry 2014
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T. Asthalter, R. Rüffer, O. Leupold and W. Petry, Phys. Rev.
Lett., 2004, 92, 245508.

14 T. S. Grigera, A. Cavagna, I. Giardina and G. Parisi, Phys. Rev.
Lett., 2002, 88, 055502.

15 G. Parisi, J. Phys.: Condens. Matter, 2003, 15, S765.
16 M. Goldstein, J. Chem. Phys., 1969, 51, 3728.
17 J. C. Dyre, Rev. Mod. Phys., 2006, 78, 953–972.
18 D. H. Torchinsky, J. A. Johnson and K. A. Nelson, J. Chem.

Phys., 2009, 130, 064502.
19 M. Wyart, Phys. Rev. Lett., 2010, 104, 095901.
20 Dynamical heterogeneities in glasses, colloids, and granular

media, ed. L. Berthier, G. Biroli, J.-P. Bouchaud, L.
Cipelletti and W. van Saarloos, Oxford University Press,
2011.
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