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Breakdown of continuum elasticity in amorphous
solids

Edan Lerner,a Eric DeGiuli,a Gustavo Düringb and Matthieu Wyart*a

We show numerically that the response of simple amorphous solids (elastic networks and particle packings)

to a local force dipole is characterized by a lengthscale ‘c that diverges as unjamming is approached as

‘c � (z � 2d)�1/2, where z $ 2d is the mean coordination, and d is the spatial dimension, at odds with

previous numerical claims. We also show how the magnitude of the lengthscale ‘c is amplified by the

presence of internal stresses in the disordered solid. Our data suggests a divergence of ‘c � (pc � p)�1/4

with proximity to a critical internal stress pc at which soft elastic modes become unstable.
1 Introduction

At long wavelength, amorphous solids behave as isotropic
elastic solids. At short wavelength, however, this continuum
description breaks down, and the particle-scale disorder
matters. This fact is well-known in granular materials where the
response to a local perturbation leads to a heterogeneous
response locally, and where the stress propagates along
preferred paths, or force chains.1,2 In molecular glasses, the
breakdown of a hydrodynamic description is visible in the
density of vibrational modes, which departs from the Debye
prediction (valid in the continuum) at frequencies typically
about a tenth of the Debye frequency. At such frequencies the
density of vibrational modes is larger than expected, a
phenomenon referred to as the boson peak.3 Converting the
boson peak frequency to a length scale using the transverse
speed of sound leads to a length scale on the order of ten
particle diameters.4,5 What governs this length scale is
debated.6–8

Understanding amorphous solids at such intermediate
scales is important, because it is the scale at which rearrange-
ments responsible both for thermally activated and for plastic
ows occur. For example, in fragile liquids the boson peak
frequency appears to vanish as the glass is heated past its glass
transition.9,10 This observation suggests that above some
temperature an elastic instability occurs in these liquids, and
that minima of energy disappear. This scenario was initially
proposed by Goldstein,11 occurs in mean-eld models where it
strongly affects the dynamics,12 and has received empirical
support in Lennard-Jones13 and colloidal glasses.14 However,
which length scales are associated with this instability remains
Research, 4 Washington Place, New York,
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unclear. Mode coupling theory predicts that a dynamical length
scale (extractable from a four-point correlation function) should
diverge from both sides of this transition,15–17 but this is not
seen in liquids, where the dynamical length scale continuously
grows under cooling. Here we study the possibility that a length
scale associated with linear elasticity diverges in the solid phase
as the instability is approached.

Elasticity in amorphous materials can be investigated
numerically. Barrat, Tanguy and coworkers have focused in
particular on silica, where they showed that a length scale can
be consistently extracted from several observables: the response
to a point force, the correlation of non-affine displacements, or
the spatial uctuation of elastic moduli.18,19 However, questions
have remained of what controls this length scale, and whether
or not it is already present in the static structure of the system.
Packings of repulsive particles are convenient to study this
question, because length scales characterizing elasticity
become large and even diverge at the unjamming transition
where the pressure vanishes.20–23 In these systems both the
mean number of interactions between the particles (referred to
in the following as the coordination z) and the applied pressure
p play a key role.24 The effect of coordination alone can be
studied in zero-pressure elastic networks of varying z.25–27 Two
length scales appear in such networks at zero pressure. A point-
to-set length scale ‘* � 1/(z � zc) h 1/dz characterizes the
distance below which mechanical stability of the bulk material
is affected by the boundaries,8 as observed numerically.26,28–30

Here zc ¼ 2d is the critical coordination required for stability, as
predicted by Maxwell,31 and d denotes the spatial dimension.
Another length scale can be dened by considering the
response of the system at the boson peak frequency, numeri-
cally one observes a length ‘c � dz�1/2 (ref. 32–34) as explained
using effective medium.35 For oppy networks with z < zc the
response to a zero-frequency force dipole was computed
explicitly,26 and was shown to decay on the length ‘c. The same
lengthscale characterizes the correlation of non-affine
Soft Matter, 2014, 10, 5085–5092 | 5085
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displacements under an imposed global shear.26 These results
supported that ‘* is a point to set length, whereas the response
to a local perturbation, as well as two point correlation func-
tions characterizing the response to a global strain, are both
characterized by ‘c. However, this interpretation contradicts
early numerical ndings supporting that ‘* characterizes the
zero-frequency point response in packings of particles.36,37

Moreover, the role of pressure on both ‘* and ‘c is currently
unclear.

In this manuscript, we systematically study numerically the
response to a local dipolar force in harmonic spring networks
and in packings of harmonic so discs. By employing systems
that are up to two orders of magnitude larger than those
considered in previous studies, we are able to robustly observe
the predicted continuum elastic limit at large distances from
the dipolar force. In agreement with effective medium,26,35 we
nd that the lengthscale beyond which a continuum elastic
description captures correctly the zero-frequency response is
actually ‘c, and not ‘*. We demonstrate how the presence of
compressive stress in packings of discs increases ‘c. Finally, we
show data suggesting that ‘c diverges as the pressure is
increased towards the critical pressure pc at which an elastic
instability occurs, as derived in a companion paper.38 The
observed scaling is consistent with ‘c(p) � 1/(pc � p)1/4.
Fig. 1 Displacement response to a dipolar force, as shown in (c), for
spring networks with N ¼ 62500 nodes, and coordinations dz ¼ 0.8 (a)
and dz ¼ 0.05 (b). In this work we extract the lengthscale ‘c that
characterizes this response, and study its dependence on coordination
and pressure.
2 Theoretical framework

In this section we provide a general framework within which
two response functions to a local dipolar force (as depicted in
Fig. 1c) are dened. The rst response function, C(r), measures
the amplitude of the change of contact forces at a distance r
away from the perturbation. The second response function, V(r),
measures the amplitude of the displacements as a function of r.
A formal denition of these quantities is presented in this
section. The numerical results are presented in Section 3.

We consider assemblies of N particles interacting via nite-
range harmonic pair potentials, with a mean number of inter-
actions per particle 2Nb/N ¼ z > 2d, with Nb the total number of
interactions. We denote by U the potential energy, ~Rk is the
position of the kth particle, and the dynamical matrix is

M
4

jkh
v2U

v~Rjv~Rk
: We refer to pairs of interacting particles as bonds.

We next consider a displacement eld d~Rk on the coordi-
nates; to linear order in d~Rk, this displacement eld induces a
change drij in the pairwise distances rij h ||~Rj � ~Ri|| as

drij x ~nij (d~Rj � d~Ri), (1)

where~nij is the unit vector pointing from~Ri to~Rj. Eqn (1) denes
a linear operator that takes vectors from the space of the
particles' coordinates, to vectors in the space of bonds, dened
here as the set of pairs of particles that interact. We denote the
linear operator dened by eqn (1) as S , and re-write eqn (1)
using a bra–ket notation:

|dri x S |dRi. (2)
5086 | Soft Matter, 2014, 10, 5085–5092
We next consider a set of forces fij on each bond hiji, and
compute the net force ~Fk that results from the bond-forces
exerted on the kth particle as

~Fk ¼
X
jðkÞ

~njk fjk; (3)

where j(k) denotes the set of all particles j that interact with
particle k. Similarly to eqn (1), eqn (3) also denes a linear
operator, but this time it takes vectors from the space of bonds,
to vectors in the space of particles' coordinates. It is easy to
show39 that it is, in fact, the transpose of the operator S which is
dened by eqn (3), and we can therefore write eqn (3) in bra–ket
notation as

|Fi ¼ S T|fi. (4)
This journal is © The Royal Society of Chemistry 2014
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We next dene |ai as a vector in the space of bonds that has
zeros in all components, and has one for the a component,
which corresponds to a single bond hiji. The operation of S T on
the vector |ai is a coordinate-space dipole vector that can be
expressed as (djk � dik)~nij, whose squared magnitude is

hajS S T jai ¼
X
k

�
djk � dik

��
djk � dik

�
~nij$~nij ¼ 2: (5)

An example of the vector S T|ai is depicted in Fig. 1c. We
consider now the displacement response |dR(a)i to a dipolar
force S T|ai:

|dR(a)i ¼ M �1S T|ai, (6)

with M the dynamical matrix. Two examples of |dR(a)i for spring
networks (see details below) are shown in Fig. 1a and b. In this
work we consider two response functions extracted from these
displacement responses to dipolar forces in simple amorphous
solids.

Before dening the rst response function, we note that the
displacement response |dR(a)i changes the distance between
particles in the entire system. In particular, the change in
distance between the particles that form the bond b, to rst
order in kdR(a)k, is given by

hdRa|S T|bi ¼ ha|S M �1S T|bi. (7)

Eqn (7) denes a symmetric, positive semi-denite linear
operator of dimension Nb � Nb, which operates on vectors in
the space of bonds. Thematrix elements ha|S M �1S T|bi depend
on the distance r between the bonds a and b, which can be
dened as the distance between the mean position of the
particles that form each bond. We now dene the response
function

C(r) h [ha|S M �1S T|bi2]r, (8)

where the square brackets denoting averaging over all pairs of
bonds a, b that are separated by a distance r. Continuum linear
elasticity predicts C(r) � r�2d, since S M �1S T scales as the
gradient of the displacement response, and the latter decays
away from the perturbation as r1�d.

The second response function we consider in the following is
the square of the displacement response at a distance r away
from the dipolar force, namely

V(r) h [||d~R(a)
k ||2]r, (9)

where this time the square brackets denotes averaging over all
particles k that are located at a distance r from the dipolar force
applied to the bond a. Continuum linear elasticity predicts
V(r) � r2(1�d), as it is the square of the displacement response,
which, as noted above, decays away from the perturbation
as r1�d.

In the following we use the continuum linear elastic
predictions C(r) � r�2d and V(r) � r2(1�d) to extract the length-
scale ‘c.
This journal is © The Royal Society of Chemistry 2014
3 Results

In this work we focus on assemblies of particles interacting via
harmonic pair-potentials: spring networks and disc packings.

The energy is U ¼
X
i\j

fij ;fij ¼ ~kðrij � dijÞ2; with ~k a spring

constant (set in the following to unity), dij ¼ (di + dj)/2 for
harmonic discs with diameters dk, and dij is the rest length of
the hiji spring for the spring networks.
3.1 Spring networks

We consider rst spring networks in which all of the springs are
at their respective rest-lengths, which implies that there are no
internal stresses in the system. Networks of up to N¼ 106 nodes
in two dimensions were prepared following the protocol
described in ref. 25, which results in networks having small
uctuations of the coordination amongst the nodes. The mean
spring length denes our unit of length.

The response functions C(r) are presented in Fig. 2 for
networks of N ¼ 106 nodes and various coordinations as indi-
cated by the legend. In panel (a) we plot the raw functions C(r),
which indeed seem to obey the asymptotic linear-elastic
prediction C(r) � r�2d. The prefactor of this scaling seems to
converge to a constant as dz / 0, as can be seen in panel (b),
where the products r2dC(r) are plotted. The increase at large r is
an effect of the periodic boundary conditions. In Fig. 2c we plot
the products r2dC(r) vs. the rescaled length r

ffiffiffiffiffi
dz

p
: The alignment

of the peaks of the response functions validates that the
lengthscale dominating the response to a local dipolar force is
‘c � 1=

ffiffiffiffiffi
dz

p
: Beyond ‘c we nd a plateau as expected for a

continuous elastic medium. The lack of alignment when r2dC(r)
is plotted against the rescaled length rdz (see panel (d))
supports that ‘c is the relevant lengthscale for this response,
and not ‘* � 1/dz.

In Fig. 3a we plot the products r4C(r) for coordinations dz¼ 0.8
and dz ¼ 0.2, measured in networks of N ¼ 2502, N ¼ 5002 and N
¼ 10002 nodes in two dimensions. We nd that the system size
has no effect on the response functions at lengths smaller than
half the linear size of the system r < L/2. This result demonstrates
the validity of our procedure to extract the lengthscale ‘c from the
positions of the peaks of the response functions.

In Fig. 4 we plot the response functions V(r) measured in
spring networks. Panel (a) of Fig. 4 displays the raw functions,
which appear to obey the continuum linear elastic prediction
V(r) � r2(1�d) at sufficiently large r. In panel (b) of Fig. 4 the
products r2V(r) are plotted vs. the rescaled length r

ffiffiffiffiffi
dz

p
: The

alignment of the peaks demonstrates that the lengthscale
characterizing this response function is also ‘c � 1=

ffiffiffiffiffi
dz

p
:

To rationalize these ndings, we estimate the sum of squares
of the displacement response to a local dipolar force (see
eqn (6)), kdR(a)k2, as

kdR(a)k2 ¼ hdR(a)|dR(a)i ¼ ha|S M �2S T|ai. (10)

We denote by |Jui the eigenmode of M with the associated
eigenvalue u2. For our unstressed elastic networks with ~k ¼ 1,
Soft Matter, 2014, 10, 5085–5092 | 5087
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Fig. 2 (a) Response functions C(r) for spring networks in two dimensions at coordinations as indicated by the legend. (b) Plotting r4C(r) reveals
the continuum linear elastic behvior at large r, and indicates that as dz/ 0,C(r)� c/r�2dwith c independent of z. (c) Plotting r4C(r) vs. r

ffiffiffiffiffi
dz

p
results

in the alignment of the peaks of r4C(r) which indicates that the lengthscale dominating this response is ‘c � 1=
ffiffiffiffiffi
dz

p
. (d) Plotting r4C(r) vs. the

rescaled length r/‘* � rdz does not lead to the alignment of the peaks, reinforcing that ‘c � 1=
ffiffiffiffiffi
dz

p
is the relevant lengthscale.

Fig. 3 (a) The products r4C(r) measured in two-dimensional spring
networks of various sizes and coordinations as indicated by the legend.
(b) The products r4C(r) (squares) and r4~C(r) (circles) measured in
packings of harmonic discs at the pressure p ¼ 10�1. Both functions
plateau at the same lengthscale; however, it is apparent that ~C(r)
smooths out the noise seen in C(r).

Fig. 4 (a) The response functions V(r) for spring networks in two
dimensions at coordinations as indicated by the legend. (b) The
products r2V(r) are plotted vs. the rescaled length r

ffiffiffiffiffi
dz

p
: The vertical

dashed line demonstrates that the peaks of the response functions for
different coordinations align when plotted against the rescaled length.
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M ¼ S TS ,21 and we dene u|jui h S |Jui. The bond-space
vectors |jui are normalized:

hjujjui ¼
hJujS TS jJui

u2
¼ hJujM jJui

u2
¼ 1: (11)

We can thus write eqn (10) as

kdRðaÞk2 ¼
X
u

hajS jjui2
u4

¼
X
u

hajjui2
u2

: (12)
5088 | Soft Matter, 2014, 10, 5085–5092
The normalization of the vectors |jui implies that, upon
averaging over contacts a, ha|jui2 � N�1, and we can approxi-
mate the sum over eigen frequencies by an integral over the
density of states D(u):

kdRðaÞk2 z
ð
DðuÞdu

u2
: (13)
This journal is © The Royal Society of Chemistry 2014
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In our unstressed elastic networks theory predicts8,35

D(u) � dz�d/2ud�1 for u < u* � dz, and D(u) � constant for
u > u*. The lowest mode is expected to be a plane-wave with a
frequency of order

ffiffiffi
m

p
=L with shear modulus m � dz, and L

the linear size of the system. We decompose the integral of
eqn (13) as

kdRðaÞk2 z
ð
DðuÞdu

u2

� dz�d=2

ðu*
ffiffi
m

p
=L

ud�3duþ
ð1
u*

u�2du

�

8>>><
>>>:

1

dz
; d$ 3

1

dz
ð1þ B logðL=‘cÞÞ ; d ¼ 2

:

(14)

We nd that kdR(a)k2 is dominated by the modes at u*

(in d $ 3, with logarithmic corrections in d ¼ 2), which are
correlated on the correlation length ‘c according to effective
medium.35,38 We therefore expect observables derived from the
response to a local dipolar force, such as V(r) or C(r), to be
characterized by that scale, as we indeed nd.
Fig. 5 (a) The products r4~C(r) measured in packings of N ¼ 360, 000
harmonic discs in two dimensions. (b) Raw response functions for
packings, which scale as ~C(r) � r�2d at large r. (c) The products r2d~C(r)
plotted against the rescaled variable rp�1/4 reveal the lengthscale ‘c �
dz�1/2. (d) dz vs. p measured in our packings.
3.2 Packings of harmonic discs

We next show results of a similar analysis performed on two
dimensional packings of so discs. Packings of N ¼ 360 000 bi-
disperse harmonic discs with a diameter ratio 1.4 of were
created by quenching a high-temperature uid to zero temper-
ature using the FIRE algorithm,40 and applying compressive or
expansive strains followed by additional quenches to obtain the
target pressures. The diameter of the small discs d0 are taken as
our units of length, so that forces and pressure are measured in
units of ~kd0 and ~kd0

2�d respectively.
Unlike unstressed spring networks, in packings particles

exert contact forces on each other. These forces are known to
destabilize packings,24 and indeed they give rise to much noisier
responses compared to the unstressed networks. To deal
effectively with this noise, we dene the response function ~C(r):

~C(r) h medianr(ha|S M �1S T|bi2) , (15)

where the median is taken over all pairs of contacts a, b that are
separated by a distance r from each other. In Fig. 3b both
response functions C(r) and ~C(r) measured in packings at the
pressure p ¼ 10�1 are compared.

In Fig. 5 we plot the response functions ~C(r) measured in our
two-dimensional packings at pressures indicated by the legend.
We nd that although the shape of the response function ~C(r)
slightly differs from C(r) measured in spring networks, the main
features are similar, and in particular a crossover to ~C(r) � r�2d

occurs on the scale ‘c � p�1/4 � dz�1/2 (the coordination in
harmonic packings scales as dz � ffiffiffi

p
p 20,24 veried in the data of

panel d of Fig. 5). Surprisingly, we nd that the uctuations in
~C(r) are largest for the highest pressure ( p ¼ 10�1); we leave the
investigation of the nature of these uctuations for future work.
This journal is © The Royal Society of Chemistry 2014
3.3 Effect of internal stresses

To directly probe the effect of internal stresses on the response
to a local dipolar force, we prepared packings of N ¼ 106

harmonic discs at the packing fraction f ¼ 0.86, which have a
mean coordination of zz 4.4 and mean pressure of p0 z 7.6 �
10�3. We then consider the response function ~C(x)(r) to a local
dipolar force, which is calculated with a dynamical matrix in
which the contact forces are multiplied by a factor 1� x, namely

M
4 ðxÞ

mq ¼
X
hiji

�
dmj � dmi

��
dqj � dqi

�

� ~k~nij~nij � ð1� xÞ� I4 �~nij~nij
�
fij
�
rij

� �
; (16)

where I
4

is the unit tensor, and the sum is over all contacts hiji.
The original dynamical matrix (and hence the original response
function ~C(r)) is recovered for x ¼ 0. This rescaling of the forces
leads to the rescaling of the pressure p ¼ (1 � x)p0 where p0 is
the pressure of the original packing.

The products r2d~C(x)(r) are plotted in Fig. 6 for various values
of x as indicated by the legend. Here we nd that the response is
governed by an x-dependent lengthscale ‘(x)c , which is extracted
by rescaling the axes by the appropriate lengths and amplitudes
(plotted in panel (d) of Fig. 6) such that the curves collapse. For
Soft Matter, 2014, 10, 5085–5092 | 5089
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Fig. 6 (a) The products r2d~C(x)(r) measured in packings of N ¼ 106

harmonic discs at the packing fraction f ¼ 0.86, for various factors x,
see text for details. (b) Plotting the rescaled products r2d~C(x)(r)/b(x) vs.
r/‘(x)c leads to a collapse for all x, from which we extract the length-
scales ‘(x)c and the amplitudes b(x), which are plotted in panel (d) on a
semi-log scale. (e) The lengthscale ‘(x)c vs. the relative proximity to the
critical pressure pc, see text for details. (c) The products r2d~C(r)
measured for packings at f ¼ 0.86 and various system sizes.
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distances r > ‘(x)c , ~C(x)(r) � b(x)r�2d, with an x-dependent
prefactor b(x).

Our results indicate clearly that the lengthscale ‘c that
governs the response to a local dipolar force is sensitive to the
presence of internal stresses in the solid, and, in particular, it
decreases as the pressure is decreased by rescaling the contact
forces. However, the question remains whether ‘c exhibits
singular behavior as the internal stresses are increased. We
clarify this issue by considering again the dynamical matrixM (x)

given by eqn (16), and denoting the density of states associated
to M (x) by D(x)(u). In the companion paper38 it is shown that
D(x)(u) displays an x-dependent frequency scale u0(x), which
characterizes the destabilizing effect of internal stresses. It is
shown that for xc z �0.04, u0(xc) vanishes, which corresponds
to an elastic instability.24,38 xc denes a critical pressure pc ¼
(1 � xc)p0 at which this elastic instability occurs. The relative
distance of the pressure p ¼ (1 � x)p0 from the critical pressure
pc, given x, is thus

p
c
� p

p
c

¼ x� xc

1� xc

: (17)
5090 | Soft Matter, 2014, 10, 5085–5092
When we plot the extracted lengthscale ‘(x)c vs. the relative
distance to the critical pressure (pc � p)/pc, we nd

‘
ðxÞ
c �

�
pc�p
pc

	�0:27
; using xc ¼ �0.04, see panel (e) of Fig. 6. This

result suggests that (i) our original harmonic disc packings
dwell at a pressure p0 that is a fraction (1 � xc)

�1 z 96% of the
critical pressure pc, i.e. very close to marginal stability,21,24 and
(ii) the lengthscale ‘(x)c diverges at the critical pressure pc.
Although our variation of ‘(x)c is mild due to the smallness of the
exponent, there is no tting involved once xc is independently
determined, supporting that the power-law is genuine.

We nally discuss the possibility that the critical pressure pc
approaches the pressure p0 at which our packings dwell in the
thermodynamic limit. If indeed ‘(x)c diverges with proximity to
the critical pressure pc, assuming that pc / p0 as N/N would
imply that ‘(x)c should increase as N is increased. To rule out this
possibility, we plot in panel (c) of Fig. 6 the products r4~C(r)
measured in packings of N ¼ 2502, N ¼ 5002, and N ¼ 10002, at
the packing fraction f ¼ 0.86. We nd that the lengthscale ‘c ¼
‘(x¼0)
c which characterizes these response functions does not
change with increasing the system size N.
4 Discussion

In elastic networks at zero pressure, our results support our
earlier claim26 that ‘* � 1/dz is a point-to-set length associated
with the dependence of mechanical stability on pinning or
cutting boundaries, whereas the length ‘c � 1=

ffiffiffiffiffi
dz

p
character-

izes the zero-frequency point response and two-point correla-
tion functions, as justied here based on former results from
effective medium. Note that the presence of two length scales is
not related to the fact that in particle packings the longitudinal
and transverse speed of sound scale differently, as proposed in
ref. 29. Indeed in elastic networks both the shear and bulk
moduli can be made to scale identically,21,27 and these two
length scales still differ. More work is needed to understand
which of these length scales characterize certain nite size
effects.26,29,41

In ref. 36 and 37 it was claimed that the lengthscale that
characterizes the response to a local perturbation in harmonic
disc packings is ‘* � dz�1. This claim was based on measure-
ments of the standard deviation of uctuations in the normal-
ized differences in the radial component of the contact forces
that arise from inating a single particle, as a function of the
distance to the inated particle. We note that inating a particle
is equivalent to imposing a set of dipolar forces on a particle
and all its interacting neighbors. In the data reported in Fig. 3d
of ref. 36 and Fig. 8d of ref. 37 it appears that the ratio of the
standard deviation to the mean of the force response is of order
10/dz2 [ 1, suggesting that uctuations are dominating the
response. We therefore expect our response function C(r) to
display the same lengthscale, as it incorporates both the uc-
tuations and the mean of the force response. We note that
uctuations were also found to dominate the point response of
oppy spring networks.26 We tested directly the particle ina-
tion protocol in our spring networks of N¼ 106 nodes; we found
that both the displacement and force responses display a
This journal is © The Royal Society of Chemistry 2014
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crossover to the same scaling at large distances r as found for
the dipolar protocol presented in this work, at the same
lengthscale ‘c � 1=

ffiffiffiffiffi
dz

p
: The discrepancy between our results

and those of ref. 36 and 37 might stem from nite size effects,
which were suggested to be present by the authors of ref. 37.
Indeed, we estimate that in networks of coordination z the
crossover to continuum linear-elastic force response occurs at
the scale ‘c z 20=

ffiffiffiffiffiffiffiffiffiffiffiffi
z � zc

p
in units of the particles' size

(see Fig. 2b and c). In packings, this lengthscale is enhanced by
the internal pressure (by a factor of z2), as demonstrated in
Section 3.3 above. We therefore use our estimation of ‘c in
networks as a lower bound, and estimate that reliably
measuring ‘c in packings of coordination dz # 0.2 requires
systems in which the response at distances r [ ‘c(dz ¼ 0.2) z
44 can be observed. The lowest pressure for which the crossover
lengthscale is reported in ref. 36 and 37 is 5 � 10�5, which
corresponds to dz z 0.2 (in Hertzian packings), whereas the
maximal distance reported is r z 25.

When pressure is increased toward a critical value pc at
which the system becomes elastically unstable, we expect both
‘* and ‘c to grow. Our results are consistent with a divergence of
‘c � 1/(pc � p)1/4. Our results (see also ref. 38) suggest that
sphere packings are very close to, but at a nite distance from,
an elastic instability with (pc � p)/pc z 0.05% independent of
coordination, implying that ‘c in elastic networks at rest and in
packings are proportional, depending on coordination as
‘c � 1=

ffiffiffiffiffi
dz

p
in both cases. Our prediction of a diverging length

scale near an elastic instability could be tested in various
contexts, for example near an amorphization transition where
the distance to the instability can be controlled by monitoring
disorder,42 and experimentally in shaken grains43 or colloidal
systems.44

These results resemble predictions of Mode Coupling
Theory (MCT), believed to describe some kind of elastic insta-
bility.15–17 MCT predicts a dynamical length scale x diverging as
x� |T� Tc|

�1/4. This is the same exponent as in our observation
of a length ‘c � (pc � p)�1/4 characterizing the zero-frequency
response, since pressure and temperature should be linearly
related. More work is needed to understand the connection
between heterogeneities in elasticity reported here, and those
observed in the dynamics of supercooled liquids.
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