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The postnatal development of the mouse is characterized by a period of hypo-
responsiveness of the hypothalamic–pituitary–adrenal (HPA) axis to mild stressors. Mater-
nal deprivation (MD) during this period can disrupt the quiescence of the HPA-axis. The
present study examined the influence of strain (outbred CD1 vs. inbred C57BL/6J mice)
on some central and peripheral components of the HPA-axis in neonatal mice (5-day-old)
in the presence of their mother or after 24 h MD (on postnatal day 4) under basal or mild
stressful conditions. In the presence of the dam, adrenal corticosterone (CORT) secretion
was low in both mouse strains. Compared to CD1 mice, C57BL/6J had lower CORT levels
associated with higher ACTH levels and ACTH/CORT ratio (i.e., lower adrenal sensitivity
to ACTH), and higher glucocorticoid receptor (GR) mRNA expression in the paraventricular
nucleus. Although MD disinhibited the HPA-axis in both strains as reflected by increased
basal CORT and ACTH, we found a strain-dependent pattern. MD increased CORT more
in C57BL/6J compared to CD1 mice together with a lower ACTH/CORT ratio (i.e., higher
adrenal sensitivity to ACTH), while GR mRNA was no longer different in the two strains.
However, this increased adrenal sensitivity in maternally deprived C57BL/6J mice was
not reflected in their CORT response to a subsequent novelty stressor, possibly due to
an MD-induced ceiling effect in their steroidogenic capacity. In conclusion, the immediate
outcome of MD depends on the genetic background of the mother–infant dyad, suggesting
that maybe also the outcome in later-life cannot be generalized.

Keywords: hypothalamic–pituitary–adrenal axis, corticosterone, ACTH, CRH, GR, neonate, maternal deprivation,
genetic

INTRODUCTION
Maternal stimuli play a central role in the postnatal development
of the hypothalamic–pituitary–adrenal axis (HPA-axis) in rodents
(1, 2) especially during the stress-hyporesponsive period (SHRP).
The SHRP lasts from postnatal day (pnd) 1–12 in mice, (pnd 3–14
in rats) and is characterized by low basal levels of corticosterone
(CORT) and an inability to elicit a CORT response to mild stress
(3, 4). Rodent dams do not leave often their nest for longer than
15–20 min during the SHRP (5). Removal of the mother for pro-
longed time periods (>3–8 to 24 h) has been shown to activate the
HPA-axis, while the axis also becomes responsive to mild stressors,
which may modulate ongoing developmental programs (6, 7).

Large individual variations in the long-term biobehavioral out-
come of early-life traumatic experiences have been reported in
humans (8) and rodents (9, 10). This raised the idea that early-life
trauma might shape pre-existing genetic vulnerability to certain
stressful conditions in later life (11). Maternal deprivation (MD)
is a commonly used animal paradigm to study the consequences

of early-life trauma on adult stress–responses and related behav-
iors (12). The MD paradigm has been applied in various designs
ranging from single 24 h deprivations to repeated daily separations
in time periods ranging between 3 and 8 h (9, 11).

Most of our knowledge on the effects of MD on HPA-axis and
stress-related behaviors is based on research in outbred rodent
strains. Although it is known that genetically selected lines of
rats display differential sensitivity to the long-term effects of
MD (13–15), the aspect of genetic predisposition has been given
little attention. In recent experiments, we showed that respon-
siveness to mild stressors following prolonged maternal absence
is strain-dependent (16). We actually observed that while mater-
nally separated pups (i.e., repeatedly for 8 h) habituate toward
the maternal absence per se by displaying low basal CORT levels
(16–18), their CORT response toward a subsequent heterotypic
stressor sensitizes in a strain-dependent fashion: deprived Long
Evans pups were more re-active to the subsequent stressor than
similarly deprived Wistar rats (16).
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The inbred C57BL/6J mouse strain is most widely used as
genetic background strain for engineering genetic mouse models
for human diseases. A few studies compared C57BL/6J mice with
common outbred mice strains (e.g., CD1 mice) on stress-related
physiology and behavior. C57BL/6J and CD1 mice have differences
in their circadian pattern of the stress–response (19). C57BL/6J
mice have lower stress responsiveness in a light/dark exploration
test for anxiety (20) and display a reduced exploration in a novel
environment (21). Furthermore, CD1 mice showed better avoid-
ance learning in a Y-maze task (22). Interestingly, C57BL/6J and
CD1 mice seem to display differences on the long-term outcome
of maternal separation on the stress–response, cognitive per-
formance, anxiety/depression-like, or schizophrenia-like behav-
iors (23–33). Generally, the reported effects indicate more often
significant effects in C57BL/6J than in CD1 mice.

Studying the immediate effects of MD on the development of
the stress system responsiveness might give insights on the salient
factors that influence the long-term outcome. This is an approach
proven to be successful using a variety of early-life stress para-
digms (18, 34). In the current study, we compared C57BL/6J with
CD1 mouse pups with regard to the immediate effects of pnd 4
MD on HPA-axis stress reactivity.

MATERIALS AND METHODS
ANIMALS
Offspring of CD1 and C57BL/6J mice were used in this study.
All mice were housed under a 12:12 h light/dark cycle (lights on
at 07:00 hours) and constant temperature (23± 2°C) and humid-
ity (55± 5%) conditions. Food (SRM-A; Hope Farms, Woerden,
The Netherlands) and water (172 ml HCl/200l H2O) was provided
ad libitum. Three females were mated with one male in polycar-
bonate boxes (820 cm3) containing sawdust bedding. Pregnant
females were transferred to clean polycarbonate cages contain-
ing sawdust and two sheets of paper towels for nesting material.
Pregnant females were checked for litters daily between 09:00 and
10:00 hours. If litters were found, the day of birth was defined as
day 0 for that litter. On the day after parturition, day 1, each litter
was culled to eight healthy pups (four males and four females)
for the CD1 strain and to six healthy pups (three males and three
females) for the C57BL/6J strain and then remained undisturbed
until used in the experiment. A total of four CD1 litters and six
C57BL/6J litters were used in the study. Animal experiments were
approved by the Local Committee for Animal Health, Ethics, and
Research of Leiden University and carried out in accordance with
European Communities Council Directive 86/609/EEC.

EXPERIMENTAL DESIGN
At postnatal day 4, mothers from nests randomly selected for
MD (two CD1 and three C57BL/6J nests) were removed from
the home cage. The home cage containing the pups was trans-
ferred to an adjacent room with similar light and temperature
conditions and placed on a heating pad set at 30–33°C. Neither
food nor water was available during MD. At pnd 5, half of the
non-deprived (NON-DEP) and half of the deprived (DEP) pups
were decapitated immediately to provide a basal sample for mea-
surements in blood and brain. The remaining NON-DEP and
DEP pups were placed individually in novel cages containing clean

sawdust bedding on heating pads set at 30–33°C and decapitated
after 30 min to provide a novelty stress sample.

BLOOD PROCESSING AND HORMONE DETERMINATION
Trunk blood from all decapitated pups was collected in
EDTA-coated microcentrifuge tubes; plasma was extracted and
stored frozen at−20°C until hormone determination. ACTH was
measured by radioimmunoassay (RIA; MP Biomedicals, LLC, NY,
USA; sensitivity 10 pg/ml, intra-assay variation 4.1%, inter-assay
variation 4.4%) as described before (16). CORT was measured
by RIA (MP Biomedicals, LLC, NY, USA; sensitivity 1.25 ng/ml,
intra-assay variation, 4.4%, interassay variation 6.5%) as described
before (16). We calculated the ratio of ACTH to CORT as an
indirect measure of adrenal sensitivity to ACTH (18).

IN SITU HYBRIDIZATION
Frozen brains and pituitaries were sectioned at −20°C in a cryo-
stat microtome at 16 µm in the coronal plane. Sections were
thaw-mounted on poly-l-lysine coated slides, air-dried, and kept
at −80°C. In situ hybridization using 35S-UTP labeled ribonu-
cleotide probes [CRH and glucocorticoid receptor (GR)] was per-
formed as described previously (17, 18). The slides were opposed
to Kodak Biomax MR film (Eastman Kodak Co., Rochester, NY,
USA) and developed. Autoradiographs were digitized, and rel-
ative expression of CRH and GR mRNA was determined by
computer-assisted optical densitometry (analysis 3.1, Soft Imag-
ing System GmbH, Münster, Germany). The mean of four to six
measurements was calculated for each mouse.

STATISTICS
Data were analyzed by analysis of variance (ANOVA) using strain
(CD1 or C57BL/6J), treatment (NON-DEP or DEP), and time
(basal or novelty) as fixed factors. When appropriate, post hoc
Tukey test was performed. The initial analysis included sex as a fac-
tor; once it was determined that sex was not a significant factor, the
data were collapsed across this variable. The level of significance
was set at P < 0.05. Data are presented as mean± SEM.

RESULTS
WEIGHT
Two-way ANOVA revealed main effects of strain (F 1,64= 141.34;
p < 0.001) and treatment (F 1,64= 141.34; p < 0.001). C57BL/6J
were lighter than CD1 mice (p < 0.001) in both treatment con-
ditions (Table 1). DEP pups were lighter than NON-DEP pups
(p < 0.001 for both strains).

Table 1 | Body weight (grams) of non-deprived (NON-DEP) and 24 h

deprived (DEP) pups in CD1 and C57BL/6J mice at postnatal day 5.

Strain NON-DEP DEP % Change

Mean N SEM Mean N SEM

CD1 3.15 16 0.06 2.51# 16 0.08 ↓20

C57BL/6J 2.51$ 16 0.10 1.78#$ 17 0.11 ↓29

Data represent mean±SEM. # vs. NON-DEP, $ vs. CD1.

Significance level was set at p=0.05.
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FIGURE 1 | ACTH [(A); picogram/milliliter], corticosterone [(B); CORT in
nanogram/milliliter] blood plasma levels, and their ratio [(C);
ACTH/CORT] of non-deprived (NON-DEP) and 24 h deprived (DEP) pups
measured at basal conditions (basal; white bars) or after 30 min of
novelty exposure (novelty; black bars) at postnatal day (pnd) 5. Data
represent mean±SEM. * vs. basal, # vs. NON-DEP, $ vs. CD1. Significance
level was set at p=0.05.

ACTH
Three-way ANOVA revealed main effects of strain (F 1,42= 10.79;
p < 0.001), treatment (F 1,42= 53.65; p < 0.001), and interaction
of treatment and time (F 1,42= 4.41; p= 0.043) (Figure 1A). Strain
differences were found at NON-DEP basal levels (p= 0.005).
Novelty exposure increased ACTH levels in CD1 (↑41%,
p= 0.025) but not in C57BL/6J mice. After 24 h MD, ACTH basal
levels were elevated (↑156%, p= 0.001 for CD1;↑100%, p= 0.006
for C57BL/6J). Subsequent novelty exposure did not produce fur-
ther increase in ACTH in either CD1 or C57BL/6J mice, while
in both strains ACTH levels were higher than the respective
NON-DEP levels (p= 0.010 for CD1, p= 0.040 for C57BL/6J).

CORTICOSTERONE
Three-way ANOVA revealed main effects of strain (F 1,59= 59.86;
p < 0.001), treatment (F 1,59= 248.76; p < 0.001), interaction

strain and treatment (F 1,59= 83.52; p < 0.001), interaction strain
and time (F 1,59= 6.38; p= 0.015), and interaction of strain, treat-
ment, and time (F 1,59= 4.50; p= 0.039) (Figure 1B). Novelty
exposure increased CORT levels in CD1 (↑50%, p= 0.002) but
not in C57BL/6J mice. After 24 h MD, CORT basal levels were
elevated in both strains (↑191%, p < 0.001 for CD1; ↑4099%,
p < 0.001 for C57BL/6J). Subsequent novelty exposure further
increased CORT only in CD1 mice (additional↑167%, p < 0.001),
while in both strains CORT levels were higher than the respective
NON-DEP levels (p < 0.001). Strain differences were found at all
four conditions: C57BL/6J CORT levels being lower than in CD1
at NON-DEP conditions (p < 0.001 for both basal and novelty),
and higher at DEP conditions (for basal: p < 0.001, for novelty:
p= 0.003).

ACTH/CORT RATIO
Three-way ANOVA revealed main effects of strain (F 1,40= 126.05;
p < 0.001), treatment (F 1,40= 290.46; p < 0.001), time
(F 1,40= 6.24; p= 0.018), interaction strain and treatment
(F 1,40= 196.03; p < 0.001), and interaction of strain, treatment,
and time (F 1,40= 6.12; p= 0.019) (Figure 1C). At NON-DEP
basal conditions, C57BL/6J displayed much higher ACTH/CORT
than CD1 mice (↑393%, p < 0.001). Novelty exposure decreased
the ratio in C57BL/6J (↓19%, p= 0.048) but not in CD1 mice.
After 24 h MD, ACTH/CORT ratio decreased in C57BL/6J (↓96%,
p < 0.001) but not in CD1 mice in such an extent that the C57BL/6J
displayed even less ratio than CD1 mice (p= 0.029). For both
strains, ACTH/CORT ratios after subsequent novelty exposure
were lower than the respective NON-DEP levels (CD1: p= 0.004,
C57BL/6J: p < 0.001).

CRH mRNA EXPRESSION IN THE PVN
Two-way ANOVA revealed main effects of treatment (F 1,30= 5.41;
p= 0.028) (Figure 2A). Twenty-four hours of MD downregulated
CRH mRNA (p= 0.036) in CD1 mice but not in C57BL/6J.

GR mRNA EXPRESSION IN THE PVN
Two-way ANOVA revealed main effects strain (F 1,27= 10.77;
p= 0.003), treatment (F 1,27= 17.97; p < 0.001), and interaction
of strain and treatment (F 1,27= 5.02; p= 0.035) (Figure 2B).
At basal conditions, C57BL/6J displayed higher levels of GR
mRNA than CD1 mice (p= 0.002). Twenty-four hours of MD
downregulated GR mRNA in C57BL/6J (p < 0.001).

GR mRNA EXPRESSION IN PITUITARY (DATA NOT SHOWN)
There were no main effects of strain or treatment on GR mRNA
in pituitary.

DISCUSSION
Our data show that the two mouse strains, CD1 and C57BL/6J
mice, differ in the neonatal HPA-axis activity at basal conditions
as well as after a 24 h MD period.

Regarding basal HPA-axis activity, C57BL/6J displayed higher
ACTH and lower CORT than CD1 mice, indicating lower basal
adrenal sensitivity to ACTH as reflected by a higher ACTH/CORT
ratio. Additionally, basal GR mRNA expression in the PVN is
higher than in CD1 mice. We propose that this increased GR
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FIGURE 2 | CRH (A) and GR (B) mRNA expression in the
paraventricular nucleus of the hypothalamus measured in
non-deprived (NON-DEP) and deprived (DEP) mice at postnatal day
(pnd) 5. Data represent mean±SEM. # vs. NON-DEP, $ vs. CD1.
Significance level was set at p=0.05.

mRNA expression might be a result of the lower CORT produc-
tion. The higher GR mRNA is not likely to be an indication of
stronger negative feedback capacity because there was no strain
difference in basal CRH mRNA expression in the PVN or GR
mRNA expression in the pituitary. Exposure of NON-DEP pups
to novelty resulted in a subtle statistically significant rise in both
ACTH and CORT in CD1 mice only. This finding underlines
strain-dependent effects and confirms that the SHRP is a period
of stress-hypo-responsiveness (3).

Maternal deprivation elicited in both strains the expected
increase of ACTH (35) and CORT (35, 36). ACTH rose at a similar
extent in both strains. CORT levels were dramatically increased in
C57BL/6J compared to a more moderate increase in CD1 pups.
Previous findings in rats showed that during the time-course of
24 h maternal separation, adrenal sensitivity to stress increased
(37) through increases in melanocortin type 2 receptors for ACTH
(16) or other mechanisms (38) in a strain-dependent manner
(16). The decrease in ACTH/CORT ratio in C57BL/6J compared
to CD1 pups (from higher ACTH/lower CORT to comparable
ACTH/higher CORT) indicates that, C57BL/6J after MD are no
longer less sensitive to ACTH than CD1 mice at the adrenal level,
but actually they display increased adrenal sensitivity compared
to CD1 mice. In that, CORT secretion may be influenced also by
factors other than ACTH, direct measures of neonatal adrenal sen-
sitivity to ACTH need to be undertaken in future experiments.
Only CD1 mice displayed a CORT response to novelty stress
after MD. The absence of an additional novelty-induced CORT
increase in C57BL/6J might be related to a ceiling effect in their
steroidogenic capacity.

It is interesting that C57BL/6J do not show the expected reduc-
tion in CRH mRNA expression following MD (35, 39) that was
seen in the CD1 pups. This might be associated with the reduction
in GR mRNA expression in the PVN and, thus, with potentially
less efficient negative feedback actions of CORT at the cells that
produce and release CRH. This might be an indication that, in
C57BL/6J, MD causes a greater disruption of SHRP, which is
characterized by enhanced negative feedback (40).

Another contributing factor to the strain differences here might
be the transcortin levels and ultimately the free (biologically active)
CORT, which is the HPA-axis feedback signal. RIA does not dis-
tinguish between free and transcortin-bound cortisol. Transcortin
levels are low during SHRP (41) and strain differences are possible.
Peripheral and central metabolic factors (e.g., blood glucose, arcu-
ate nucleus NPY) can also mediate the activation of the HPA-axis
induced by maternal separation (42, 43). Indeed, in terms of body
weight changes, MD caused the greatest metabolic challenge in
C57BL/6J pups, which also displayed the highest activation of the
HPA-axis expressed by CORT. Other factors not related to feeding
might be also involved. Actually feeding is more related with the
adrenal CORT secretion and tactile stimulation more related to
pituitary ACTH release (1).

We have to acknowledge some limitations of the study. Pre-
weaning pups from small litters (<5 pups) have higher body
weight and higher basal CORT levels than pups from large lit-
ters (>15 pups) (44). The C57BL/6J litters are naturally smaller in
size than the CD1 litters. This has created an unavoidable, with-
out cross-fostering, confound that might have interfered with the
strain differences reported. We opted for an equal sex-ratio (1:1)
that removed the sex-ratio bias. Nevertheless, the litter-size dif-
ference between the strains was small (two pups) and did not
seem to have a noticeable effect; in this experiment, the pups of
the C57BL/6J strain (with the smaller litter size of six pups) dis-
played lower body weight and lower basal CORT than the pups of
the CD1 strain (with the larger litter size of eight pups). Future
studies could illuminate the role of litter-size, but also of the
basal mother–pup interactions and other related epigenetically
mediated mechanisms (45) on the neonatal basal and post-MD
HPA-axis activity.

Specific genetic contributions could be clarified in the future
with the use of transgenic mice, but the strain differences in imme-
diate effects of MD observed, here, in mice and, previously, in
rats (16) emphasize the importance of genetic background on the
effects of early maternal environment on the development of the
stress system. Late-life consequences may also depend on genetic
background, but this remains to be tested.
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