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MetDFBA: incorporating time-resolved
metabolomics measurements into dynamic flux
balance analysis†

A. Marcel Willemsen,‡a Diana M. Hendrickx,‡bc Huub C. J. Hoefsloot,*bc

Margriet M. W. B. Hendriks,d S. Aljoscha Wahl,e Bas Teusink,f Age K. Smildebc and
Antoine H. C. van Kampenab

Understanding cellular adaptation to environmental changes is one of the major challenges in systems

biology. To understand how cellular systems react towards perturbations of their steady state, the

metabolic dynamics have to be described. Dynamic properties can be studied with kinetic models but

development of such models is hampered by limited in vivo information, especially kinetic parameters.

Therefore, there is a need for mathematical frameworks that use a minimal amount of kinetic

information. One of these frameworks is dynamic flux balance analysis (DFBA), a method based on the

assumption that cellular metabolism has evolved towards optimal changes to perturbations. However,

DFBA has some limitations. It is less suitable for larger systems because of the high number of

parameters to estimate and the computational complexity. In this paper, we propose MetDFBA, a

modification of DFBA, that incorporates measured time series of both intracellular and extracellular

metabolite concentrations, in order to reduce both the number of parameters to estimate and the

computational complexity. MetDFBA can be used to estimate dynamic flux profiles and, in addition, test

hypotheses about metabolic regulation. In a first case study, we demonstrate the validity of our method

by comparing our results to flux estimations based on dynamic 13C MFA measurements, which we

considered as experimental reference. For these estimations time-resolved metabolomics data from a

feast-famine experiment with Penicillium chrysogenum was used. In a second case study, we used

time-resolved metabolomics data from glucose pulse experiments during aerobic growth of

Saccharomyces cerevisiae to test various metabolic objectives.

1 Introduction

Organisms are capable of adapting to changing environmental
conditions while maintaining essential functions for survival.1,2

The consequences of these metabolic adaptations are important
to study from an economic perspective but can also play crucial
roles in health and disease. A well-known example of such a

consequence from biotechnology, is the loss of biomass or
product formation due to changes in substrate availability during
fermentation processes.3 Examples of changing conditions related
to health and disease in human include changes in diet or drug.4,5

Understanding the principles of adaptation is therefore one of the
major challenges in systems biology.6–9

One manifestation of adaptation on the molecular level is
the alteration of fluxes in metabolic networks. This occurs
when the availability of substrates changes, which results in
changes in fluxes in the affected metabolic pathways.1,10 The
(change in) flux can provide important information about
cellular physiology, product yield, and response mechanisms
to perturbations. Unfortunately, intracellular fluxes cannot be
measured directly but have to be estimated from concentration
measurements.11,12 Various experimental and associated
computational methods have been developed to estimate
dynamic fluxes through metabolic networks including kinetic
models,13 13C-metabolic flux analysis (MFA),14–16 and dynamic
flux balance analysis (DFBA).17,18 The development of kinetic
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models is hampered by limited availability and accuracy of infor-
mation about condition-specific (in vivo) kinetic parameters,19

13C MFA is expensive and tracer availability is limited.20

Flux balance analysis (FBA) is a constraint-based modelling
approach to determine fluxes in steady state. Mass balance
constraints imposed by the stoichiometry of the metabolic
network define an under-determined system of linear equations
because the network contains more reactions than metabolites.
To reduce the solution space, additional constraints on the
upper and lower bounds of the fluxes, also called capacity
constraints, are imposed. The linear system is solved as an
optimization problem by determining the fluxes that minimize
a pre-specified mathematically described objective function.21

This objective function defines the phenotype (e.g., maximum
growth yield or energetic efficiency) in the form of a biological
objective such as biomass production. The objective function
quantifies the relative contribution of each reaction to the
phenotype.17,22 It has been proposed in the literature that there
are conditions for which the optimality principles cannot be
described by a single objective, but by a combination of multiple
objectives.23

DFBA, developed by Mahadevan and co-workers,18 is a non-
steady state extension of FBA that accounts for dynamic
changes in the cellular metabolism as introduced, for example,
after a perturbation. Although FBA could be used for a perturbed
system to determine fluxes for the different steady state conditions,
this would not describe the transient behavior after a perturbation.
DFBA estimates the transient behavior of the fluxes after a
perturbation by optimizing the objective function over a time
interval of interest. The objective function is subjected to
capacity constraints and dynamic mass balance constraints,
formulated as differential equations, which specify the change
in metabolite concentrations as a function of fluxes, biomass
and other available (kinetic) parameters. If available, constraints
that specify the maximum change rate of the fluxes at any
moment in time can be added. By specifying the stoichiometry,
the initial concentrations, biomass and constraints, the fluxes
and metabolite concentrations as function of time are calculated
for the specified time interval.

In contrast to FBA where the change in metabolite concen-
tration is zero and only the fluxes are unknown, DFBA also needs
to estimate the change (derivatives) of the metabolite concen-
trations as a function of time given the initial conditions. This
results in a system with even more unknown parameters which is
solved as a dynamic optimization problem by parameterizing the
dynamic equations through the use of orthogonal collocation on
finite elements.18 This makes the approach less suitable for larger
metabolic networks or for longer-term extracellular dynamics.

Classical DFBA is used to estimate dynamic flux profiles
when it is known which objective drives an organism under
changing conditions, for example a diauxic shift.18 Due to the
large number of parameters to estimate, it is only used for
small systems, mostly describing the flux between extracellular
metabolites. In this paper, we describe a new approach that
reduces both the computational complexity and the number of
parameters to estimate in DFBA. We discuss two applications of

this approach, that were hampered by the computational burden
of classical DFBA. A first application is the estimation of dynamic
flux profiles for larger systems, describing both internal and
external fluxes over time after a perturbation, given the objective
driving the organism under this particular perturbation. A second
application is the evaluation of objective functions driving the
transient cellular behavior after perturbations.

Metabolite concentration profiles can directly be measured
through, for example, chromatography (liquid or gas) combined
with mass spectrometry (LC/GC-MS). From these profiles the
changes in concentrations over time can be easily calculated.
Hence, instead of estimating time derivatives and metabolite
concentrations in DFBA, these can be derived from experimental
data. Unfortunately, DFBA cannot incorporate measured concen-
tration profiles. Therefore, we developed a new approach (MetDFBA)
which directly uses derivatives calculated from the measured
concentration profiles, which are substituted in the mass balance
equation leading to a system of linear equations. This approach
largely reduces the computational burden of DFBA. The reduced
complexity and the smaller number of unknowns makes this
framework especially suitable for larger systems.24 In this paper
we present our method (MetDFBA) and underlying mathematical
framework to determine flux changes after perturbation of a
biological system. We first demonstrate the validity of our method
by comparing our results to flux estimations based on dynamic 13C
experiments, which we consider as a experimental reference. For
these estimations time-resolved metabolomics data from a feast-
famine experiment with Penicillium chrysogenum was used. We only
used the metabolite concentration measurements to estimate fluxes
based on a single objective function. Subsequently, we compared
our flux estimations to 13C MFA estimates from the 13C mass
isotopomer measurements, which shows that our method approxi-
mates the benchmark estimates. With a second case study we
demonstrate that MetDFBA can be used to generate hypotheses
about cellular objectives by comparing different putative objec-
tive functions.23 For this application we used time-resolved
metabolomics data obtained from glucose pulse experiments
during aerobic growth of Saccharomyces cerevisiae. The results
are compared with known information about physiology and
results from previous kinetic models to determine the most
reasonable objective function.

2 Methods

The mathematical framework for integrating time-resolved
metabolomics data in DFBA is depicted in Fig. 1. Steady state
fluxes are calculated applying FBA on a genome scale model
(right box Fig. 1). These steady state fluxes determine the flux
distribution before the perturbation (t = 0). Furthermore, some
of the objective functions described in this paper (for example
minimization of metabolic adjustment (MOMA)) are dependent
on the steady state flux distribution. Variability (upper and
lower bounds) of the steady state fluxes at the optimal solution
is calculated with flux variability analysis (FVA). Time-resolved
metabolomics data are combined with the (genome-scale)
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metabolic network stoichiometry to formulate an optimization
problem over a period of time, also called a dynamic optimiza-
tion problem, which describes the dynamic behavior after
the perturbation. Solving the optimization problem results in
dynamic reaction rate profiles, together with their upper and
lower bounds (left box Fig. 1).

In case of estimating dynamic fluxes given an assumed
objective, the results are compared with flux estimations based
on concentration measurements in time and 13C mass isotopomer
measurements. In contrast to 13C MFA, our method only uses
metabolite concentration measurements (and not 13C mass
isotopomer measurements) to estimate the fluxes.

In case of testing hypotheses, different objective functions
are implemented. For each objective function, the resulting
fluxes are plotted and compared with external information
from the literature to decide which hypotheses can be rejected.
The different steps in the mathematical framework are described
below and details can be found in ref. 25.

2.1 MetDFBA mathematical framework

2.1.1 Flux balance analysis (FBA). Using an appropriate
objective function Z, mass balances and reaction rate constraints,
flux balance analysis17 is applied on a genome scale model to
obtain the steady state flux (reaction rate) distribution before the
perturbation. Fluxes of reactions supposed not to occur under the
given experimental conditions (e.g. because a certain substrate
is not in the medium) are set to zero. The fluxes are constrained
by upper and lower bounds, which have the same sign for
irreversible reactions and different sign for reversible reactions.

Solving the optimization problem results in optimal steady
state fluxes and an optimal value for the objective function Zopt.

2.1.2 Flux variability analysis (FVA). Because the optimiza-
tion problem described above is convex the optimal value Zopt is
the global optimum.26 Nevertheless, the optimal fluxes deter-
mined in the FBA solution are not always unique. It is possible
that the same optimal value Zopt is achieved by different flux
distributions satisfying the constraints.27 This variability of
the fluxes at the optimal solutions can be studied with flux
variability analysis (FVA).28 Hereto each flux is minimized and
maximized, given mass balances, reaction rate constraints and
the objective function equal to its optimum. In this way we
obtain lower and upper bounds for each flux.

2.1.3 Calculation of derivatives. To avoid large fluctuations
in the derivatives due to noise of the metabolite concentration
data (C), we used B-splines smoothing.29 Subsequently, the
derivatives (dC/dt) are calculated from the splines at equidistant
(10 s) time points within the window of observation of the
experiments. In the case of multiple metabolite measurements
(e.g. both LC/MS and GC/MS measurements, biological replicates),
the average of the derivatives was calculated. The results are
gathered in an (m� n)-matrix dC/dt (m metabolites, n time points).

2.1.4 Lumping of reactions. Often, not all metabolites in
the genome scale model are measured. Therefore, we need to
construct a lumped model from the genome scale model
that only includes measured metabolites. We use two types
of lumping. Type I is done as follows. If there are two
reactions A �!v1 B and B �!v2 C, and B is not measured, we
lump the reactions by adding them stoichiometrically into
Aþ B �!v3 Cþ B. Now B can be omitted resulting in A �!v3 C.

For type II lumping, two reactions A �!v1 B and C �!v2 B
with A and C not measured are combined to one arrow,
notmeasured �!v3 B. The steady state flux distribution of the
lumped model is calculated from the steady state flux distribu-
tion of the genome scale model using the following rules that
are valid under steady state. When A �!v1 B �!v2 C is lumped to

A �!v3 C, then v3 = v1 = v2. When A �!v1 B and C �!v2 B with A

and C not measured are lumped to notmeasured �!v3 B, then
v3 = v1 + v2. The rule for type I lumping is not valid for the
dynamic situation where the time derivatives of the concentra-
tions are not equal to zero. Considering type I lumping, the
concentration of B is likely to change temporarily after a
perturbation. In this situation fluxes v2 and v1 will be unequal.
Since B was not measured we cannot estimate v1 and v2 but we
can estimate v3 of the lumped reaction. Because we use a least
squares method, v3 will have a value that attempts to estimate
the concentration changes of A and C as good as possible in a
quadratic sense. So, the magnitude of v3 is a compromise
between v1 and v2 and its value will therefore be between the
magnitudes of v2 and v1. In what follows, we will describe a new
method to determine the dynamic behaviour of the fluxes
through the lumped reaction scheme.

2.1.5 MetDFBA. MetDFBA is an extension of DFBA.18,30–32

The dynamic mass balance constraints are of the form dC/dt = S�v.
When using both external and internal metabolite balances, it has
to be taken into account that the balance space is different

Fig. 1 The MetDFBA framework for estimating dynamic flux profiles. The
blue boxes indicate input, orange boxes indicate the result. LB and UB are
lower and upper bounds for the fluxes v, FBA = flux balance analysis,
S = stoichiometry matrix of the genome scale metabolic network,
A = stoichiometry matrix used in MetDFBA (explained in text), dC/dt =
vector with time derivatives of the concentrations of the metabolites,
(D)FVA = (dynamic) flux variability analysis. The right part of the figure
(static FBA) shows how to obtain steady state flux distributions and bounds
necessary to calculate the flux before the perturbation, needed to calculate
the flux at t = 0 and in certain objective functions (e.g. MOMA = minimization
of metabolic adjustment).
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(bioreactor and intracellular volume).33 Therefore, the left-hand
side of the mass balances for the external metabolites is multi-
plied by a factor Vext/Vint,

34 where Vint and Vext are the intracellular
and extracellular volume respectively.

In DFBA, the differential equations are rewritten as linear
equations using a finite collocation method.18 For larger systems
DFBA takes an unreasonable amount of computational time.
When metabolite concentration measurements are available, the
time derivatives dC/dt in the mass balances can be substituted by
time derivatives calculated from the data. In this way the differ-
ential equation constraints become linear constraints. This makes
MetDFBA a computational much simpler problem than DFBA.
Consider

A ¼

Sl 0 � � � 0 0

0 Sl � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � Sl 0

0 0 � � � 0 Sl

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and b ¼ vecðdC=dtÞ;

where Sl is the stoichiometric matrix of the lumped model and
dC/dt are the time derivatives calculated from the measured data.
For n time points, r reactions and m metabolites, A is an (n�m� n�r)-
matrix and b an (n�m � 1)-vector. A linear optimization problem of
the following form is solved:

minimize or maximize F

subject to

A�vt = b

vmin r vt r vmax

where F is the objective function after the perturbation;
vt = (v1(t1),. . .,vr(tn))T is the (n�r � 1)-vector of r reactions rates
in the lumped model at each of the n time points; vmin and vmax

are vectors of lower and upper bounds for the fluxes respec-
tively. An optimum Fopt for the objective function and optimal
reaction rate profiles are obtained.

In DFBA with the Dynamic Optimization Approach (DOA),18

an objective function has the form
Ð tf
t0
f ðtÞdt where t0 and tf are

the start (steady state) and the end time of the experiment
respectively. The integral is approximated with the finite collo-
cation method. In MetDFBA, we write the integral as a sum
of integrals over intervals between subsequent time points

t0; t1; . . . ; tn ¼ tf :
Ð tf
t0
f ðtÞdt ¼

Ð t1
t0
f ðtÞdtþ

Ð t2
t1
f ðtÞdtþ

Ð tn¼tf
tn�1

f ðtÞdt.
We apply the trapezoidal rule on each integral, which means
that we approximate the integral (area under the curve) of f (t)
by the area of a trapezoid in order to reduce computational
complexity.

2.1.6 Dynamic FVA. To study the variability of the optimal
fluxes leading to the same optimal value Fopt, a variant of FVA
taking into account the non steady state condition is performed.

In this variant, the constraints on the fluxes are: A�vt = b and
vmin r vt r vmax. Furthermore, dynamic FVA is the same as FVA.

3 Results
3.1 Adaptation of Penicillium chrysogenum during
feast-famine cycles

The physiology, growth and product formation of a cellular
system is the result of a complex interaction between the
extracellular environment and the cellular metabolic and
regulatory mechanisms. The production capacity of an organism
thus strongly depends on the environmental conditions which
might be a reason for unexpected scale-up behaviour observed
in large-scale fermentation processes and which can lead to
reduced biomass yield and reduced product formation.3,35–39

Estimations of fluxes from intermittent glucose feeding cycles
during Penicillium chrysogenum cultivation may lead to new
hypotheses on the regulation of metabolism to cope with
dynamic environmental conditions and lead to the development
of metabolic engineering strategies to improve the product yield.

We compared our estimated fluxes from MetDFBA to fluxes
based on isotopomer measurements from de Jonge et al.3

to validate our method, using an assumed objective: the
minimization of the sum of squared fluxes. We believe that
minimizing the cells total enzyme usage is a reasonable objective
during constantly changing environmental conditions (e.g. inter-
mittent feeding). We focused on the upper glycolysis, the
pentose phosphate pathway (PPP) and storage metabolism. See
Tables S1 and S2 (ESI†) for an overview of the metabolic
network and used abbreviations. Intracellular and extracellular
metabolite concentrations were measured over time during one
feast-famine cycle. Time-series of 17 metabolites, participating
in 22 reactions were used to apply our method. The dataset is
described in more detail in the ESI,† Section S1. Since xylitol
5-phosphate was not measured we lumped four reactions. We
constrained the optimization problem by assuming that most
reactions are irreversible (Table S2, ESI†). The feed rate was set
experimentally. We aim to test whether MetDFBA, with only
concentration measurements in time as input, is capable of
estimating dynamic fluxes.

3.1.1 Estimating dynamic flux profiles. The green lines in
Fig. 2 show the estimated dynamic fluxes through the upper
glycolysis during one feast-famine cycle. Most estimated fluxes
through the upper glycolysis approximated the profiles
obtained by 13C MFA3 (black line Fig. 2) except for the second
reaction, the conversion of glucose-6-phosphate (G6P) into
fructose-6-phosphate (F6P). Although the shapes of the
MetDFBA and 13C MFA profiles were similar for this reaction,
the MetDFBA flux was significantly lower. This was caused
by a too high estimation of flux going into the PPP via the
conversion reaction of G6P into 6-phospho-gluconate (P6G, see
Fig. S1, ESI†) which was roughly 25 times higher for MetDFBA
compared to the 13C MFA based flux estimation. Also when
considering the distribution of the average fluxes during one
feast-famine cycle (See Fig. S3–S6, ESI†) it became obvious that
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the reduction in flux going through the conversion reaction of
G6P into F6P, was caused by the high flux through the oxidative
PPP. Because this pathway is more or less circular this flux is
going back to the upper glycolysis at nodes F6P and PG3, which
explains the better estimations for the fluxes of the upper
glycolysis after node F6P. The MetDFBA and 13C MFA based fluxes
for storage metabolism (See Fig. S2, ESI†) were also comparable
except for the conversion reaction of uridine diphosphate glucose
(UDP_Glc) into glycogen (Glyc), and the degradation of Glyc into
G6P and glucose-1-phosphate (G1P), which had the same order of
magnitude but different shapes.

3.1.2 Using prior knowledge to improve flux estimation.
MetDFBA overestimated the flux through the PPP. The results
showed that the chosen objective has the property to divide the
flux too equal, within the solution space, between the PPP and
the rest of the glycolysis. If prior knowledge like kinetic para-
meters are available the distribution of fluxes at split nodes
could be forced towards more realistic ratios. This could be
done by calculating the flux for one reaction for which kinetic
parameters are available and fix this flux by setting upper and
lower bounds of this flux according to the calculated values. To
illustrate this we added an additional constraint to the con-
version reaction of G6P into 6PG (reaction r2_1). The flux
through this reaction was constrained by setting the upper
and lower flux bounds for the entire feast-famine cycle to the
estimation obtained with the 13C MFA approach for this
reaction. Subsequently, we recalculated the fluxes. As expected,
this resulted in a significant decrease of the fluxes of the entire

PPP (red bars in Fig. 3 and red lines in Fig. S1, ESI†). The magnitude
and shape of the flux profiles of the conversion reaction of 6PG into
Rib5P, and the conversion of 3PG and Sed7P into F6P and E4P, now
were comparable to results of the 13C estimations.3 In addition, the
conversion reaction of G6P into F6P, the first reaction of the
glycolysis after the G6P-node, where the flux branches towards the
PPP, was now in the same order of magnitude (red line in Fig. 2).
The remaining reactions of the PPP were lumped and therefore they
could not be compared (Fig. S7, ESI†). Fluxes through storage
metabolism were unaffected by the additional constraints. The
average fluxes during one feast-famine cycle confirm this observa-
tion (Fig. S3–S6, ESI†).

3.2 Response of Saccharomyces cerevisiae to a glucose pulse

To demonstrate how MetDFBA could be used to test hypotheses
about optimality principles we applied our method to time-
resolved metabolomics data of the central carbon metabolism
in S. cerevisiae grown under aerobic conditions. Short-term
perturbation-response experiments were carried out by an
extracellular glucose pulse.24,40,41 Extracellular and intracellular
metabolite concentration levels were measured over time. The
dataset is described in more detail in the ESI,† Section S2.

A steady state flux distribution required for MetDFBA with
minimal glucose uptake as objective, was obtained from FBA
applied on a genome scale model of S. Cerevisiae.42 When glucose
is limited it is realistic to suppose that the glucose uptake is
minimal, which was used as objective to obtain the optimal steady
state flux distribution. The lower bound of the growth rate was set
equal to the dilution rate. The lower and upper bounds of the
remaining fluxes were taken from the genome scale model.
After lumping and removing reactions that did not occur under
the given experimental conditions, the model consisted of 33
metabolites and 62 reactions. The reaction scheme and a detailed
list of the reactions are given in Fig. S11 and Table S5 (ESI†).

We applied MetDFBA in conjunction with seven objective
functions to establish the most likely response of the organism.
Results from MetDFBA were evaluated against the following
five criteria:

1. The solution space of optimal flux estimates should be
significantly reduced (compared to the solution space defined
by the capacity constraints);

Fig. 2 Estimated dynamic fluxes in nmol gDW�1 s�1 through the upper
glycolysis in Penicillium. Black indicates the experimental reference (13C
MFA), green indicates MetDFA estimations, red indicates the MetDFBA
fixing the conversion of G6P into 6PG (reaction r2_1).

Fig. 3 Estimations of the average fluxes through the considered metabolic
network in nmol gDW�1 s�1 including upper glycolysis (r1_2:r1_5), pentose
phosphate pathway (r2_1:r2_7) and storage metabolism (trehalose, glycogen
and mannitol) in Penicillium. See caption Fig. 2 for a description of the legend.

Molecular BioSystems Paper

Pu
bl

is
he

d 
on

 1
0 

O
ct

ob
er

 2
01

4.
 D

ow
nl

oa
de

d 
on

 0
8/

05
/2

01
5 

08
:3

9:
57

. 
View Article Online

http://dx.doi.org/10.1039/c4mb00510d


142 | Mol. BioSyst., 2015, 11, 137--145 This journal is©The Royal Society of Chemistry 2015

2. The directionality of the metabolic reactions should be in
agreement with literature;43

3. After a glucose pulse, S. cerevisiae switches from respira-
tory to respiro-fermentative conditions.44 The activity of the
TCA cycle, crucial for ATP production under respiratory condi-
tions, becomes low when switching to fermentation;45

4. The fluxes for the upper glycolysis (G6P - F6P - FBP -

GAP + DHAP) are lower than for the lower glycolysis (GAP -

3PG - PEP - PYR);45

5. The qualitative behavior of the fluxes corresponds with
the kinetic model simulations of Vaseghi et al. of the pentose
phosphate pathway (PPP) in which the reactions rates show a
fast increase immediately after the pulse, followed by a very
slow decrease.46

Objective functions are rejected if the flux profiles do not fit
cell physiology.

3.2.1 Optimizing a single objective function. We compared
seven objective functions (Table S7, ESI†) on their ability to give
biologically meaningful estimates of the flux profiles. These
seven functions have the following objectives: maximize bio-
mass production, maximize ATP production, maximize the
ATP production in the cytosol, maximize the glucose uptake,
maximize the ethanol production, minimize the sum of absolute
fluxes and minimize the squared difference of the reaction rates
with steady state (MOMA). Each of the seven objective functions
is further explained in the ESI,† Section S2.1.

Table S8 (ESI†) shows the results of the evaluation of the five
conditions for each of the seven optimization problems shown
in Table S7 (ESI†). None of the objectives satisfied all the five
criteria mentioned in the previous section.

3.2.2 Multi-objective optimization. It has been proposed
that flux changes after a perturbation occur as a result of a
combination of maximal metabolic or energetic efficiency under
the given conditions, and minimization of adjustment47,48 or
minimization of the sum of absolute fluxes.49

Previous studies showed that objective functions compete
against each other.27,47,50 This means that one objective function
can only be improved if another is worsened. Optimal solutions
for competing objectives are called Pareto optimal.47 The set of
Pareto optimal solutions is called the Pareto front.51 A method to
calculate Pareto optima is optimizing a weighted sum of the
objectives.52 The following multi-objective optimization problem
is solved:

minimize F = F1 � w�F2

subject to

A�vt = b

vmin r vt r vmax

where F1 is MOMA or the sum of absolute fluxes and F2 is one of
the other objective functions of Table S7 (ESI†). An overview of
the multi-objective optimization problems solved in this study
is given in Table S9 (ESI†). Each value of w determines a point

on the Pareto front51 (Fig. S12, ESI†). In this study, the results of
the optimization are shown for w = 10p (p = �3,. . .,6).

In Table S10 (ESI†), the results of checking the five criteria
for the solutions of the multi-objective optimization problems
(Table S9, ESI†) are shown. The MetDFBA fluxes satisfy all five
criteria if MOMA is combined with maximization of ethanol
production, and if the weight (w) is in the range of 104–106 (the
orders of F1, F2 and w�F2 are 107, 105 and 109–1011 respectively;
See Fig. 4 and Fig. S13–S15, ESI†). For weights lower than 104,
the solution is in contradiction with criterion 5. This implies
that maximizing ethanol production (F2) is more important
than MOMA (F1). However, only maximizing ethanol did not
lead to results satisfying the five evaluation criteria (see Table S7,
ESI†). There is no significant difference among the optimal
solutions for w = 104, 105 and 106. However, the solution space
becomes larger when increasing w.

4 Implementation details

Optimization problems were solved using the CPLEX53 for MATLAB
Toolbox. Smoothing was performed using the splinefit code54

for MATLAB.55 Pictures of average fluxes through the metabolic
network were made with the FluxViz56 plugin for Cytoscape.57

5 Discussion

We presented MetDFBA, a mathematical framework that directly
incorporates time-resolved metabolomics data to perform dynamic

Fig. 4 S. cerevisiae study. Results of combining maximize ethanol yield
with MOMA. (a) Average fluxes through glycolysis (in mmol gDW�1 h�1)
during the first two minutes after the glucose pulse. The flux through lower
glycolysis is higher than the flux through upper glycolysis. (b) The fluxes
through the TCA cycle remain low compared with the fluxes through the
rest of the network (figures a and c). (c) The flux from G6P - 6PG shows a
large increase after the pulse, followed by a slow decrease. Similar profiles
for the other PPP fluxes are shown in Fig. S16 (ESI†). Legend: optimum =
optimal solution found by MetDFBA for the given weight; min and max are
lower and upper bounds found by dynamic FVA for the given weight.

Paper Molecular BioSystems

Pu
bl

is
he

d 
on

 1
0 

O
ct

ob
er

 2
01

4.
 D

ow
nl

oa
de

d 
on

 0
8/

05
/2

01
5 

08
:3

9:
57

. 
View Article Online

http://dx.doi.org/10.1039/c4mb00510d


This journal is©The Royal Society of Chemistry 2015 Mol. BioSyst., 2015, 11, 137--145 | 143

flux balance analysis. In comparison to the DFBA method
developed by Mahadevan,18 we could significantly reduce both
the number of parameters to estimate and the mathematical
complexity. We validated the method by comparing MetDFBA
flux estimations to a previous study using 13C labeling to identify
intracellular fluxes.

In the Penicillium study, it was observed, that a series of
intracellular fluxes was estimated comparable to the more
complex 13C tracer method, except those of the pentose
phosphate pathway (PPP). The flux through the PPP was over-
estimated significantly. This overestimation indicated a property
of the applied objective function: the minimal total enzyme
usage is obtained by equally distributing the flux at split nodes.
Therefore we decided to constrain the entrance reaction of the
PPP according to the values obtained in the reference study
which indeed improved the results. The choice to fix this flux in
particular, was based on the comparison between results and
experimental reference, which of course could not be used
in situations where this method is applied to predict unknown
fluxes. However the split ratios could be further constraint by
expert knowledge like kinetic parameters from the literature to
calculate particular fluxes. The fluxes should be selected based
on the network topology, especially highly connected nodes will
require additional constraints.

Additionally we demonstrated how the MetDFBA framework
could be used to elucidate the biological objective of a yeast cell
through the comparison of different objective functions that
represent phenotypes.

For Saccharomyces cerevisiae we showed that minimization
of the overall flux and MOMA resulted in a significantly reduced
solution space for the fluxes, as determined by dynamic FVA.
These results can be explained by the fact that both these
objectives constrain all fluxes while the other objectives only
constrain flux(es) corresponding to a specific metabolite. The
MOMA solution for glycolysis and the TCA cycle was in accordance
with the physiological information in the literature, but the
qualitative behaviour of the estimated fluxes for the pentose
phosphate pathway did not correspond to the model simulations
of Vaseghi.46 However, when combining MOMA with maximiza-
tion of the ethanol yield, the five evaluation criteria (see Section
3.2.) were fulfilled. These results show that maximizing ethanol
yield is very important compared to MOMA, but only maximizing
ethanol did not lead to results satisfying all five evaluation criteria
(see Table S7, ESI†). The results of this case study show that
optimizing the yield or uptake of a single compound was insuffi-
cient to significantly reduce the solution space of reaction rate
profiles determined by the capacity constraints. A reduced solution
space could only be obtained from at least two objectives or from
one objective that is a function of all the fluxes. From this case
study it can be concluded that both the objectives MOMA and
ethanol production are important. In biological terms this means
that yeast converts the glucose to ethanol with as little as possible
adaptations to the steady state fluxes.

MetDFBA requires the measurement of (all) extracellular
and intracellular metabolite concentrations in response to
perturbations. Because of the low intracellular amounts and

high flux, methods for rapid sampling and quenching are
required. With current, quantitative metabolomics approaches
using MS technologies about 100–150 metabolites, especially of
central carbon metabolism can be obtained. Computationally,
MetDFBA is a linear programming problem with can easily
scale to genome scale models. For dynamic 13C flux identifi-
cation, the microorganism is supplied with labeled substrate.
Next to the metabolite concentrations, the labeling enrichment
of the metabolites is measured. This results in the double
amount of samples and mass isotopomer measurements.
Generally, if the concentration can be measured, also the mass
isotopomer enrichments can be measured. Computationally,
flux identification using 13C metabolic flux analysis requires to
balance metabolites as well as labeling states. In contrast to
metabolite balances, the labeling balances lead to non-linear
differential equation systems that require advanced computation,
even at metabolic steady-state.58,59 The parameter identification,
and especially obtaining the global optimum are challenging
already for medium sized networks (order of 100 metabolites).
In general dynamic 13C metabolic flux analysis is experimentally
and computationally more intensive than MetDFBA.

We presented the incorporation of time-resolved metabolo-
mics data into DFBA. Considering the upcoming availability
of high-throughput expression data of the last decade, it is
probably a logical next step to further develop MetDFBA to
make it also suitable for the integration of expression data.
Several methods that combined expression data with FBA were
recently published.60–62 They all have in common that they try
to further reduce the flux distribution solution space. Some use
an arbitrary threshold above which corresponding reactions are
assumed to be inactive and excluded. For MetDFBA the ones
that constrain the maximum possible flux through the reaction,
according to the expression levels of the corresponding
enzymes, are probably most suitable because MetDFBA uses a
predefined network. More tight constraints will probably result
in more accurate solutions and with a smaller solution space, a
smaller (more lumped) network might be satisfactory and thus
fewer metabolite measurements might be needed. Another
potentially interesting approach to further reduce the solution
space is the addition of extra energy balance constraints, as
described by Beard et al.,63 which ensures that all estimated
fluxes are thermodynamically feasible. Finally, when available,
kinetic descriptions about metabolic regulation (e.g. allosteric
activation or inhibition) can be easily incorporated into the
constraints in a similar way as described by Chowdhury et al.64

for classical FBA.

6 Conclusion

Studying dynamic fluxes and optimization principles is important
to understand cellular functioning and adaptation to changing
environments. In this study, we proposed a new method,
MetDFBA, that combines DFBA with time-resolved metabolomics
experiments to overcome the limitations of classical DFBA. In
this paper, we discussed two applications of MetDFBA. When it is
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known which objective drives an organism under certain pertur-
bations, MetDFBA can be used to estimate dynamic flux profiles.
A second application of MetDFBA is testing hypotheses about
objectives driving cellular behaviour under perturbations.
MetDFBA does not require detailed kinetics but, when available,
kinetic information can be easily incorporated in the constraints.
MetDFBA can include multiple objective functions by using a
weighted sum of the objective functions. Method validation with
13C mass isotopomer measurements confirmed that MetDFBA
can accurately estimate dynamic flux profiles using a minimal
amount of kinetic information, given the objective driving the
organism under the conditions in the experiment. Evaluation with
prior information from the literature confirmed that MetDFBA is
also suitable for testing hypotheses about objectives driving
cellular behaviour under changing environments.
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