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Sporopollenin is the primary component of the outer walls of pollen and spores. The
chemical composition of sporopollenin is responsive to levels of ultraviolet (UV) radiation
exposure, via a concomitant change in the concentration of phenolic compounds. This
relationship offers the possibility of using fossil pollen and spore chemistry as a novel proxy
for past UV flux. Phenolic compounds in sporopollenin can be quantified using Fourier
Transform infrared spectroscopy. The high potential for preservation of pollen and spores
in the geologic record, and the conservative nature of sporopollenin chemistry across
the land plant phylogeny, means that this new proxy has the potential to reconstruct UV
flux over much longer timescales than has previously been possible. This new tool has
important implications for understanding the relationship between UV flux, solar insolation
and climate in the past, as well as providing a possible means of assessing paleoaltitude,
and ozone thickness.
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INTRODUCTION
Sporopollenin is a recalcitrant biopolymer with resistance to
all but the harshest chemical, physical, and biological attacks
(Ariizumi and Toriyama, 2011). This highly resistant organic
network is the primary constituent of the outer walls (exine)
of spores and pollen. Recent research into the composition of
sporopollenin has revealed measurable changes in response to
exposure to ultraviolet (UV) radiation that occur during the
process of spore generation (Lomax et al., 2008; Fraser et al.,
2011). The chemical sensitivity of sporopollenin to UV exposure
raises the exciting prospect of reconstructing past UV radia-
tion flux using fossil sporomorphs (preserved pollen and spores)
(Rozema et al., 1997, 1999, 2001; Watson et al., 2007, 2012; Fraser
et al., 2012). Calibration of natural UV-stimulated chemical
responses in sporopollenin during growth provides the possibil-
ity to use fossil palynomorphs as passive monitors of past UV
conditions. Thus the opportunity exists to generate data on UV
flux beyond the instrument-monitoring era (beginning in 1924
Farman, 1977) and back into geological time.

THE CHEMICAL BASIS OF A UV PROXY
Gas chromatography-mass spectrometry (GC/MS) revealed that
the structural components liberated from sporopollenin dur-
ing thermally-assisted chemical degradation (thermochemolysis)
fall into two groups; unbranched aliphatic acids (fatty acids),
and phenolic compounds (Blokker et al., 2005; Watson et al.,
2007) (Figure 1). While GC/MS techniques provide a compre-
hensive analysis of sporopollenin components, it remains time-
consuming and relatively expensive. The phenolic components
within sporopollenin have been shown to readily absorb UV
radiation in the UV-B (280–315 nm) and UV-A (315–400 nm)

wavebands (Rozema et al., 2001; Fraser et al., 2011). UV-
absorbing properties provide biochemically-essential internal cell
components (i.e., DNA) within sporomorphs some protection
against UV damage. Plants apparently regulate production of the
phenolic sporopollenin components proportional to UV expo-
sure (Rozema et al., 1997, 1999, 2001; Rozema, 2002).

The two key components of sporopollenin chemsitry are char-
acterized by different functional groups. This means that Fourier
Transform infrared (FTIR) spectroscopy can be used to identify
the relative abundance of fatty acid and phenolic units within
sporopollenin to provide a fast and economical means of access-
ing biochemical information (e.g., guided by GC/MS data) from
sporomorphs (Watson et al., 2007). In comparison with other
biogeochemical methods, FTIR also has considerable advantages
in terms of sample size required for analysis, preparation time
and reduced costs on a per sample basis. FTIR detection of C=C
bonds within phenolic units results in absorbance of infrared
radiation by the spore/pollen samples at ∼1510 cm−1 wavenum-
ber (Fraser et al., 2011). Once calibrated, the infrared absorbance
band intensity is proportional to the abundance of phenolic com-
ponents, where it has been shown that the phenolic components
of sporopollenin absorb in the UV region of the electromagnetic
spectrum (Fraser et al., 2011). Quantification of the intensity of
absorbance bands provides a method of tracking of UV-absorbing
components within sporopollenin across known UV gradients.

Given the annual production of pollen and spores by plants on
a global scale, the chemical response to UV radiation can pro-
vide an annual record of incoming solar radiation. In modern
and recent samples that are either collected by hand direct from
the growing plant, or extracted from herbaria sample this poses
no challenge to the temporal position of the sample; the date of
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FIGURE 1 | (A) Relative UV-B absorption of chemical standards thought
to be constituents of sporopollenin (adapted from Fraser et al., 2011)
(B) FTIR trace generated from a Lycopodium clavatum spore; inset,

S.E.M. of a lycopodium spore (∼30 µm in diameter). Shaded box
identifies the aromatic-based components responsible for protection
against UV-B radiation.

growth/collection is known. Samples obtained from sedimentary
records may possibly have a wider range in temporal position
due to the potential for reworking of sediments at the point of
deposition (Traverse, 2007). When considering longer time scales
from millennia (Willis et al., 2011) to millions of years (Fraser
et al., 2012) it is reasonable to assume that the same time frame of
annual production and incorporation into sediments takes place.

LONG-TERM PROXY STABILITY AND VIABILITY
Recent work demonstrates modern (Fraser et al., 2011) and his-
torical spores ranging from 1907 to 2010 collected from herbaria
(Watson et al., 2007; Lomax et al., 2008; Willis et al., 2011)
yield clear phenolic signals. In addition, geochemical analy-
ses of fossilized palynomorphs suggest the presence of different
types of sporopollenin that are distinct along broad phyloge-
netic groups within the geological record (Hemsley et al., 1995;
Vandenbroucke and Largeau, 2007). It has recently become
apparent that the recognized phylogenetic variation in sporopol-
lenin form may be due simply to higher-grade, post-deposition,
maturation (Watson et al., 2012; Fraser et al., 2014). Maturation
experiments under laboratory-simulated conditions, show that
modern sporopollenin, in a closed system, undergoes defunction-
alisation and repolymerisation to generate a biogeopolymer that
closely resembles fossil sporopollenin (Watson et al., 2012; Fraser
et al., 2014). As with all laboratory simulations of post-burial
maturation certain inherent limitations exist. Specifically whether
an increase in temperature appropriately represents an increase in
time, and whether the use of a closed system (i.e., no, or limited
chemical exchange with surroundings) adequately represents nat-
ural open systems where the transfer of chemicals is possible. It is
likely, however, that an open system will have limited influence on
the final matured sporopollenin material (Gupta et al., 2007). An
assertion supported by evidence from laboratory studies which

showed that the biogeochemical fingerprint of artificially matured
sporopollenin was similar to that of fossil material (Watson et al.,
2012; Fraser et al., 2014).

Exquisitely preserved Carboniferous megaspores (c. 310 Ma)
in a cave deposit showed that megaspore sporopollenin bears a
strong resemblance to its nearest living relatives (Fraser et al.,
2012). These data suggest: (1) that lineages may conserve a
single type of sporopollenin across geological time, and (2) dif-
ferences in the biogeochemistry of spores of minimal mat-
uration may reflect environmental conditions in which the
plant grew. Such findings suggest limited changes, if any, in
sporopollenin chemistry since the invasion of land by plants c.
473–471 Ma (Rubenstein et al., 2010). The geological longevity of
the sporopollenin aromatic signal holds great potential for future
applications to long-term palynological attempts reconstruction
of past UV climatology.

APPLICATIONS OF THE PROXY
Reconstructions of past UV-B irradiance can provide a more
fundamental understanding of controls and feedbacks acting in
Earth’s systems. Recent work has identified a strong link between
solar irradiance and climate. Model simulations linking solar
forcing and winter climate variability in the northern hemisphere
(Ineson et al., 2011), and paleoclimate data have directly cou-
pled changes in solar activity and atmospheric circulation at
the onset of the Homeric grand solar minimum 2800 years ago
(Martin-Puertas et al., 2012).

Other environmental parameters covary with UV-B flux, and
can therefore be inferred with the new UV-B proxy. For exam-
ple, UV-B radiation increases with altitude, and this increase
has been detected in pollen and spore chemistry. An elevation
gradient spanning 650–1980 m above sea level revealed a dou-
bling in aromatic content within sporopollenin with altitude
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(Watson et al., 2007). UV-B radiation is known to increase by
c. 15% per 1000 m increase in elevation (Lomax et al., 2012),
suggesting a change of 0.150 in the sporopollenin phenolic/OH
ratio per 1000 m in SE Asia (Watson et al., 2007). These findings
open up the potential of spore and pollen chemistry to be used
as a proxy for past land surface elevation (Lomax et al., 2012).
Conversely, UV-B flux decreases with the thickness of the ozone
layer (Lomax et al., 2008), which is itself determined by a com-
bination of solar cycles, volcanic aerosols, climate change and
anthropogenic depletion (Rozema, 2002). The analysis of pollen
and spore chemistry, in combination with other proxy records,
therefore offers the opportunity to reveal these forcing mecha-
nisms in the recent geological past (Rozema, 2002; Lomax et al.,
2008).
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