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Executive-attention theory proposes a close relationship between working memory capac-
ity (WMC) and cognitive control abilities. However, conflicting results are documented
in the literature, with some studies reporting that individual variations in WMC predict
differences in cognitive control and trial-to-trial control adjustments (operationalized as
the size of the congruency effect and congruency sequence effects, respectively), while
others report no WMC-related differences. We hypothesized that brain network dynamics
might be a more sensitive measure of WMC-related differences in cognitive control
abilities. Thus, in the present study, we measured human EEG during the Simon task
to characterize WMC-related differences in the neural dynamics of conflict processing and
adaptation to conflict. Although high- and low-WMC individuals did not differ behaviorally,
there were substantial WMC-related differences in theta (4–8 Hz) and delta (1–3 Hz)
connectivity in fronto-parietal networks. Group differences in local theta and delta power
were relatively less pronounced.These results suggest that the relationship between WMC
and cognitive control abilities is more strongly reflected in large-scale oscillatory network
dynamics than in spatially localized activity or in behavioral task performance.
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INTRODUCTION
Balancing automatic and controlled behavior is necessary for fast
and accurate performance. Insufficient levels of control can lead
to errors (Rabbitt and Rodgers, 1977), whereas excessive con-
trol slows down responses (Danielmeier and Ullsperger, 2011)
or even impairs skilled performance (e.g., performance anxiety;
Wulf, 2007). Fluctuations in the levels of control are evident
in trial-to-trial changes in reaction time (RT) and accuracy
in response-conflict tasks (Eichele et al., 2010), in which task-
relevant and task-irrelevant stimulus features prime conflicting
responses (Egner, 2008). On congruent trials, in which task-
relevant (e.g., color) and task-irrelevant (e.g., location) stimulus
features elicit the same response, RTs are faster and responses
are more accurate than on incongruent trials, in which task-
relevant and task-irrelevant stimulus features call for different
responses. This difference is typically referred to as the congruency
effect.

The executive-attention theory of working memory capacity
(WMC) proposes that high- compared to low-WMC individu-
als are better at controlling attention, resulting in more stable
representations of stimulus-response mappings and less interfer-
ence from task-irrelevant information (Kane and Engle, 2003;
Kane et al., 2007). This theory has received mixed empirical sup-
port. For example, although congruency effects can be larger
for low- compared to high-WMC individuals (e.g., Kane and
Engle, 2003; Weldon et al., 2013), this effect seems to depend
on the task and contextual factors such as the ratio of congru-
ent and incongruent trials (Kane and Engle, 2003; Heitz and
Engle, 2007; Keye et al., 2009; Morey et al., 2012; Weldon et al.,
2013).

Although the executive-attention theory of WMC does not
make specific predictions about WMC-related differences in
trial-to-trial adjustments in cognitive control (operationalized
as congruency sequence effects), previous studies have demon-
strated that differences between high- and low-WMC individuals
are more pronounced on post-incongruent trials (Hutchison,
2011; Weldon et al., 2013; Gulbinaite and Johnson, 2014), with
modest or no WMC-related differences in post-congruent trial
conflict effects. These findings suggest that not only there are
WMC-related differences in efficiency of conflict resolution –
as proposed by Kane and Engle (2003) – but also differences
in how optimally adjustments to the conflict signal are made.
Theoretically, as illustrated in Figure 1, trial-to-trial adjust-
ments in cognitive control can be: (1) “suboptimal” (influence
of task-irrelevant information is moderate, congruency effect
after incongruent trials is present), (2) “optimal” (the influence
of task-irrelevant information is minimal to none, congruency
effect is absent); or (3) “reactive” (strong active suppression
of responses elicited by task-irrelevant information, congruency
effect is reversed).

In the Simon task, in which incongruence between the task-
relevant stimulus feature (e.g., color) and the task-irrelevant
feature (location) elicits response conflict, congruency effect on
post-incongruent trials is often reversed (responses on incongru-
ent trials are faster than on congruent). Such pattern reflects the
fact that task-irrelevant spatial stimulus features always affect per-
formance either by facilitating or by impeding responding. The
reversal of the Simon effect has been explained by active suppres-
sion of spatially corresponding response, which allows the making
of relatively fast responses on incongruent trials, but slows down
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FIGURE 1 | Hypothetical data show different ways to adapt to previous

trial conflict. Left graph: The influence of task-irrelevant information is
reduced compared to post-congruent trials, but the congruency effect is
present. Middle graph: The influence of task-irrelevant information is
minimal or non-existent, and congruency effect is absent. Right graph:
Task-irrelevant information is actively suppressed, and the congruency
effect is reversed.

responding on congruent trials for which response suppression is
not needed (Ridderinkhof, 2002; van den Wildenberg et al., 2010).

Reversal of the Simon effect after incongruent trials is larger
for low- than for high-WMC individuals (Weldon et al., 2013;
Gulbinaite and Johnson, 2014). Following the executive-attention
theory of WMC (Engle and Kane, 2004), this pattern of results
can be explained by individual differences in the ability to keep
task goals continuously active (proactive cognitive control mode).
If cognitive control is engaged proactively, the influence of task-
irrelevant information is reduced, resulting in a weaker internal
conflict signal to which to react (conflict resolution) and to adjust
(conflict adaptation). Alternatively, cognitive control processes
can be triggered by the stimulus (reactive cognitive control mode),
resulting in a stronger internal conflict signal. Studies by Burgess
and Braver (2010) and Braver (2012) suggest that a proactive con-
trol strategy is more likely to be exercised by those high in fluid
intelligence, a measure that is highly correlated with WMC when
short-term memory span is partialled out (Conway et al., 2002; de
Abreu et al., 2010).

The evidence for the relationship between WMC and cognitive
control abilities seems to be highly task-specific, as the relationship
between the size of congruency effects and WMC are not always
found even in the large-sample behavioral studies (N = 148 in,
Keye et al., 2009; N = 189 in, Meier and Kane, 2012; N = 137
in, Keye et al., 2013; N = 262 in, Wilhelm et al., 2013). On the
other hand, EEG signatures of response selection and performance
monitoring (e.g., error-related negativity) capture WMC-related
differences even when behavioral effects are not significant, and
thus might be more sensitive measures to study WMC-related
differences in cognitive control compared to behavioral measures
(Miller et al., 2012).

Functional magnetic resonance imaging (fMRI) findings sug-
gest that fronto-parietal network connectivity might be relevant
for individual differences in both WMC and cognitive con-
trol abilities (Edin et al., 2009; Faraco et al., 2011; Cole et al.,
2012). However, changes in functional connectivity at behaviorally
relevant timescales might be missed by fMRI, and cannot be mea-
sured with event-related potentials (Cohen, 2011). In contrast,

synchronous oscillations between neuronal ensembles have been
proposed to be a mechanism for inter-areal communication
(Buzsaki and Draguhn, 2004; Fries, 2005), and can be measured
with M/EEG data using time-frequency analysis techniques.

The purpose of the present study was to test whether WMC-
related differences in cognitive control would be reflected in
oscillatory fronto-parietal network dynamics. We recorded EEG
while high and low-WMC individuals (as measured by com-
plex span tasks; Redick et al., 2012) performed a Simon task.
We focused on theta (4–8 Hz) oscillatory activity over medial
frontal cortex (MFC), which has been associated with cogni-
tive control processes (Hanslmayr et al., 2008; Cavanagh et al.,
2009; Nigbur et al., 2011; Cohen and Donner, 2013; Cohen and
Ridderinkhof, 2013). Both theta power over MFC and phase syn-
chronization with lateral prefrontal sites has been shown to reflect
trial-by-trial cognitive control demands and predict RTs dur-
ing response-conflict tasks (Cohen and Cavanagh, 2011; Cohen
and Donner, 2013; Gulbinaite et al., 2014). Due to the nov-
elty of our approach, we also characterized the basic oscillatory
interactions between MFC and parietal areas during the Simon
task.

MATERIALS AND METHODS
PARTICIPANTS AND WMC SCREENING
Participants were selected from a pool of 618 University of Gronin-
gen students who had been tested in the automated versions of the
Operation span (OSPAN) and the Symmetry span tasks (Redick
et al., 2012) in a separate experimental session at least 5 months
prior to the Simon task. Previous studies showed high test–retest
reliability of complex span tasks, with correlations between ses-
sions ranging from 0.70 to 0.83 (Klein and Fiss, 1999; Unsworth
et al., 2005).

In the OSPAN task (Unsworth et al., 2005), participants were
instructed to memorize 75 consonants that were serially presented
in lists of 3–7 items. Presentation of each letter was followed by a
simple arithmetic problem (e.g., 3 + 5 = ?). Next, a one- or two-
digit number was displayed until participants indicated “true” or
“false” regarding whether the given number was the answer to
the arithmetic problem. In the symmetry span task (Kane et al.,
2004), participants attempted to memorize 42 spatial locations of
serially presented red squares in a 4 × 4 grid, while judging the
vertical symmetry of a pattern made up of black squares presented
in an 8 × 8 grid. On each trial, spatial locations and patterns were
presented in lists of 2–5 items.

Working memory capacity score for each WMC task was com-
puted using the partial-scoring method (Conway et al., 2005),
according to which correctly recalled items are given a partial credit
if they are recalled in the correct serial position even if the full list
is incompletely recalled. All list lengths were weighted equally and
the proportion of correct responses was computed for each list
length separately (e.g., 2 of 5 = 0.4, 3 out of 3 = 1.0). Thus obtained
proportions were averaged across all lists. Individual WMC scores
could range from 0 to 1. The scores between Operation and Sym-
metry span tests correlated significantly [r(616) = 0.39, p < 0.001].
This correlation is within the range of previously reported correla-
tions between the two tasks (0.36–0.55; Morey et al., 2012; Redick
et al., 2012).
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For each individual a composite WMC score was computed
by averaging z-transformed scores from both WM tasks. As
the goal was to characterize a specific dimension of individ-
ual differences rather than to estimate the exact effect size, an
extreme group design was used (Yarkoni and Braver, 2010). Par-
ticipants were invited to an EEG session if a composite WMC
score fell in the lower (low-WMC participants) or the upper
(high-WMC participants) quartiles of the distribution of com-
posite WMC scores in our database (N = 618, Q1 = –0.41,
Q3 = 0.60).

The required sample size was determined based on the pre-
vious EEG study of Miller et al. (2012) using a Simon task, in
which error-related brain activity was compared across high- and
low-WMC participant groups. To achieve the recommended 80%
statistical power at α = 0.05, and an effect size of 0.593 (com-
puted based on the reported η2

p = 0.26 in Miller et al., 2012), 14
participants per WMC group would be required (computed using
G∗PowerVersion 3.1 ANOVA: Repeated measures, within-between
interaction; Faul et al., 2007). We tested 19 high-WMC individu-
als (z-WMC = 0.97, SD = 0.16) and 20 low-WMC individuals
(z-WMC = –1.40, SD = 0.51). Data from three participants were
excluded due to movement artifacts, one due to poor performance,
and one due to technical problems. Thus, 17 high-WMC (eight
females, mean age 21.35, three left handed) and 17 low-WMC (15
females, mean age 21.41, l left handed) were included in the anal-
ysis. The two WMC groups were gender-imbalanced. To examine
whether this may have influenced the results, we conducted sev-
eral ANOVAs on the main EEG findings using congruency and
gender as factors in the high-WMC group (the effects of gen-
der in the low-WMC could not be examined due to the small
number of male participants). None of the tests showed a gen-
der effect (the smallest p-value was 0.136), and we have therefore
not addressed this issue further. All participants had normal or
corrected-to-normal vision. The study was conducted in accor-
dance with the Declaration of Helsinki and approved by the
local ethics committee. Informed consent was obtained from all
participants.

TASK
Stimulus presentation and response registration were controlled
by custom-written Matlab routines using Psychtoolbox (Brainard,
1997). The stimuli were presented on a 17-inch CRT mon-
itor (1024 × 768, 100 Hz) at approximately 90 cm viewing
distance.

Stimuli for the Simon task were four different color circles,
each measuring 2.2 × 2.2 cm (subtending approximately 2◦ visual
angle), presented on a black background 4.5 cm (approximately 5◦
of visual angle) to the left or right of a white fixation cross. Purple
(R: 204 G: 0 B: 204), green (R: 0 G: 104 B: 0), red (R: 204 G: 0 B: 0),
and yellow (R: 200 G: 200 B: 0) colors were used, with two stim-
uli mapped onto each hand. Half of the participants responded
to purple and green circle by pressing the “×” key with the left
index finger, and to the red and yellow circle by pressing the “>”
key with the right index finger; the other half of the participants
used the opposite mapping. Each trial began with the presenta-
tion of a stimulus to the right or to the left of the fixation cross
that remained in view until a response was made or a deadline of

1500 ms was exceeded. After a response was made, a fixation cross
was presented for 1000 ms (Figure 2).

The overall probabilities of congruent and incongruent trials,
trial-to-trial congruency transitions (cC, congruent–congruent;
cI, congruent–incongruent; iC, incongruent–congruent; iI,
incongruent–incongruent), and the proportions of left- and right-
hand responses were kept equal. Due to possible response priming
effects on the size of the congruency sequence effects (Mayr et al.,
2003), a pseudo-random sequence of stimuli was designed to
contain no exact stimulus-response repetitions.

PROCEDURE
Participants were tested individually in a dimly lit room. They were
instructed to respond as quickly as possible while maintaining an
accuracy of at least 90%. This was done to avoid ceiling effects in
performance and minimize the effect of individual differences in
speed-accuracy tradeoff settings. The task consisted of 70 practice
trials and 1024 experimental trials. For the first 10 practice trials,
feedback on performance accuracy was given after each trial; the
remaining 60 practice trials were divided into three blocks of 20
trials each with feedback (mean RT and accuracy) provided after
each block. Experimental trials were divided in eight blocks of 64
trials each, with feedback (mean RT and accuracy) provided at the
end of each block.

EEG RECORDING AND PREPROCESSING
Scalp EEG was recorded using 62 tin electrodes (Electro-cap
International Inc., Eaton, Ohio, USA) positioned according to
a modified version of the international 10-10 system (6 additional
electrodes were placed 10% below standard FT7, PO7, O1, FT8,
PO8, and O2 electrode positions; F1, F2, CP1, CP2, FT7, and
FT8 were not measured). Two additional reference electrodes were
placed on the mastoids. Vertical and horizontal eye movements
were recorded using four additional electrodes, two of which were
placed below and above the left eye and the other two on the
outer eye canthi. The data were recorded using the “REFA 8–72”

FIGURE 2 |Trial structure and stimuli. A four-alternative Simon task, in
which two colors are mapped on the left hand, and two on the right hand
(counterbalanced across participants). On each trial one of the four stimuli
is shown in the location spatially congruent or incongruent with the
response hand. In this example, a congruent stimulus is presented with
1000 ms intertrial interval (ITI).
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amplifier (Twente Medical Systems, Enschede, The Netherlands),
digitally low-pass filtered at 140 Hz and sampled at 500 Hz. All
offline data preprocessing and analysis was done using EEGLAB
toolbox for Matlab (sccn.ucsd.edu/eeglab/) and custom written
Matlab scripts (Cohen, 2014).

The data were re-referenced offline to the average activity
recorded at the mastoids and high-pass filtered at 0.5 Hz. Con-
tinuous EEG recording was epoched from –1500 to 2000 ms
around stimulus onset. Trials containing muscle artifacts or eye
blinks during the stimulus presentation period were visually
identified and removed [on average, 7.97% (SD = 4.35%) of
trials per subject]. The second artifact rejection step included
independent components analysis (Delorme and Makeig, 2004).
Components that did not account for any brain activity, such as
eye-movements or noise, were subtracted from the data [on aver-
age, 2.29 (SD = 1.32) components per subject]. Furthermore,
the first trial of each block, error trials (incorrect or no-response
trials), post-error trials, anticipatory responses (RTs faster than
150 ms), and trials in which participants pressed both right
and left buttons, were excluded from analyses. Error and post-
error trials were excluded to isolate neural processes related to
conflict processing and conflict adaptation from error-related pro-
cessing (Cohen and van Gaal, 2014). The average number of
trials per condition included in the statistical analysis for both
EEG and behavioral data was: 204 (SD = 18), 182 (SD = 22),
185 (SD = 20), and 199 (SD = 19), for cC, cI, iI, iC trials,
respectively.

Artifact-free data were Laplacian transformed prior to analyses.
The surface Laplacian is a spatial filter that attenuates low spa-
tial frequencies that can be attributed to volume conduction, and
is therefore appropriate for use in connectivity analyses (Winter
et al., 2007). Though not a source localization analysis, Lapla-
cian EEG renders the electrodes maximally sensitive to radial
sources directly underlying each electrode (Srinivasan et al., 2007).
Nonetheless, we report results according to electrode locations
rather than putative cortical sources. Topographical locations of
the findings are consistent with previous fMRI (e.g., Fan et al.,
2003; Liu et al., 2004) and M/EEG source localization (Bialystok
et al., 2005; Cohen and Ridderinkhof, 2013; Pastotter et al., 2013)
studies of the Simon task.

EEG TIME-FREQUENCY ANALYSES
Time-frequency decomposition was performed by convolving
stimulus-locked single-trial data from all electrodes with complex
Morlet wavelets, defined as:

ei2πft e−t2/(2σ2),

where t is time, f is frequency which ranged from 1 to 40 Hz in 40
logarithmically spaced steps, and σ is the width of each frequency
band defined as n/(2πf), where n is a number of wavelet cycles that
varied from 3 to 6 in logarithmically spaced steps to obtain com-
parable frequency precision at low and high frequencies. Instan-
taneous power was estimated as the square of the complex convo-
lution signal Z (power = real[z(t)]2 + imag[z(t)]2) and averaged
across trials. Power values at each time-frequency point were nor-
malized by converting to the decibel scale to account for power-law

scaling of oscillations in different frequency bands (amplitude
increases when frequency decreases) by using the formula:

10 log10(power/baseline),

where power from –300 to –100 ms pre-stimulus period served as
the frequency band-specific baseline. The phase angle ϕt = arc-
tan (imag[z(t)]/real[z(t)]) of the complex convolution result was
used to compute frequency-band specific inter-site phase cluster-
ing (ISPC), a measure of functional connectivity between the brain
areas (Buzsaki and Draguhn, 2004; Fries, 2005). ISPC is defined as
trial-average phase angle difference between two electrodes j and
k at each time-frequency point:

∣∣∣∣∣
1

n

n∑

t=1

ei(ϕjt −ϕkt )

∣∣∣∣∣ ,

where n is trial count. Baseline normalization of ISPC values
at each time frequency point was performed using percent change
transformation: 100(ISPC-baseline)/baseline, where baseline is the
frequency-specific average of ISPC values over –300 to –100 pre-
stimulus time period. Several previous studies have demonstrated
that applying the Laplacian to scalp EEG data renders them appro-
priate for connectivity analyses (Srinivasan et al., 2007; Cohen and
Cavanagh, 2011; Nigbur et al., 2012).

STATISTICAL ANALYSES
Statistical analyses were based on previous research-informed
and data-driven approaches. Previous studies have consistently
demonstrated that WMC-related differences in cognitive control
are driven by differences on post-incongruent trials (smaller con-
flict effects after incongruent trials; Weldon et al., 2013; Gulbinaite
and Johnson, 2014), with modest or no WMC-related differ-
ences in post-congruent trial conflict effects. Therefore, we tested
WMC-related differences on post-incongruent trials only.

Behavioral data
Two sets of ANOVAs were performed. First, the general task effects
(collapsing over groups) were evaluated by submitting mean RTs
and percentage error to separate repeated-measures ANOVAs with
current trial type (congruent and incongruent) and previous trial
type (congruent and incongruent) as within-subject factors. Sec-
ond, WMC effects on conflict adaptation were evaluated in another
set of mixed ANOVAs with post-incongruent trial type (congruent
iC, and incongruent iI) as within-subject factor, and WMC group
(high and low) as between-subject factor.

To compare behavioral results of the current study with
the results of our previous large-sample study we performed
Pearson’s two-tailed correlation tests between WMC scores and
post-incongruent conflict effect in the current and in the previous
dataset (N = 181; Gulbinaite and Johnson, 2014). Note that in
the previous behavioral-only study a two-choice Simon task was
used, with all the stimulus parameters identical to present study.
We reanalyzed one condition that matched the design of the cur-
rent study (equal proportions of congruency repetitions, i.e., cC, iI
trials, and congruency alternations, i.e., cI, iC trials). Correlations
were re-computed using Spearman’s rho, and the pattern of results
was the same.
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EEG data
Previous studies showed early conflict-related modulations of
activity in parietal areas, followed by the later occurring modu-
lations in fronto-central areas (Sturmer et al., 2007; Schiff et al.,
2011; Cohen and Ridderinkhof, 2013). Based on these findings,
we adopted the following procedure. First, we created topograph-
ical plots for power in the theta (4–8 Hz) frequency band in
early (50–300 ms) and late (300–600 ms) time windows, time-
locked to the stimulus onset and averaged over all trials. Second,
electrodes that showed the largest change in condition- and group-
averaged power in either the early or the late time window were
selected. Third, subject- and condition-averaged time-frequency
power plots were constructed for these electrodes. Fourth, time-
frequency windows with the largest power increase were selected
based on visual inspection (marked in Figures 5–7 as dashed
squares in time-frequency plots), and within this window, the
subject-specific time-frequency point with maximum power was
found. Note that this selection procedure is independent of any
WMC group- or condition-specific differences in power, and
therefore could not have introduced any biases into the results.
Finally, for each subject, the condition-specific power surrounding
100 ms of the peak time-frequency point was used for statistical
analyses. This approach was chosen to preserve subject-specific
peak frequency activity (Haegens et al., 2014), which may be corre-
lated with WMC (Moran et al., 2010). For ISPC analyses, the same
analysis steps were followed. Group-level statistics were performed
using the same procedure used for the behavioral data.

RESULTS
BEHAVIORAL RESULTS
Behavioral results are illustrated in Figure 3. Overall RTs on con-
gruent compared to incongruent trials were faster [477 ms vs.
485 ms; F(1,32) = 20.81, p < 0.001, η2

p = 0.39] and slightly more
accurate [7.6% vs. 8.9% error-rate; F(1,32) = 3.54, p = 0.069,
η2

p = 0.10]. A current by previous trial type interaction reflected
the typical Simon task congruency sequence effects: Positive con-
flict effect (Simon effect) after congruent trials and a reverse Simon
effect after incongruent trials [RTs: F(1,32) = 70.36, p < 0.001,
η2

p = 0.68; error-rate: F(1,32) = 83.76, p < 0.001, η2
p = 0.72;

Figure 3A, right].
Although group differences in the conflict effect following

incongruent trials were numerically in the predicted direction
(larger reverse Simon effect for low- compared to high-WMC
group; Figure 3B), the WMC x Post-incongruent trial type
interaction was not significant [F(1,32) = 2.71, p = 0.110,
η2

p = 0.08]. To evaluate whether this null finding was a result
of small sample size (N = 34) in the context of a small effect size,
we performed follow-up correlation analyses using data from our
previous large-sample study (N = 181; Gulbinaite and Johnson,
2014). Pearson’s two-tailed correlation tests on both datasets were
performed (Figure 4). The analyses indicated that the relationship
between WMC and conflict adjustment was marginally significant
in the previous dataset [r(179) = 0.133, p = 0.074], but failed to
reach significance in the current dataset [r(32) = 0.205, p = 0.245].
According to recommendations by Cohen (1988), the correlation
of 0.1 indicates a small effect size. This implies that a large sample
size is needed to achieve adequate statistical power and statistically

FIGURE 3 | Behavioral results. Left-side panels depict reaction times
(RTs) (A) and error rates (B) as a function of current and previous trial type,
and working memory capacity (WMC) group. Right-side panels depict
post-congruent and post-incongruent trial conflict effects: RT and error rate
differences between incongruent and congruent trials. The error bars reflect
one SEM. Dashed line in (B) denotes 10% error rate (the instructed
minimum performance level).

FIGURE 4 | Pearson correlations derived from 34 participants in the

current study and 181 participants in the study by (Gulbinaite and

Johnson, 2014). (A) Correlation between post-congruent trial Simon effect
and composite WMC score. (B) Correlation between post-incongruent trial
Simon effect and composite WMC score.
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FIGURE 5 |Task-related changes in theta power. (A) Topographical maps
of power in the theta band (4–8 Hz) averaged over early (50–300 ms) and
late (300–600 ms) intervals, separated for previous and current trial type
(lowercase and uppercase letters, respectively). Left- and right-hemifield
stimulus trials are shown separately to emphasize laterality effects
observed over parietal electrodes. (B1) Condition-averaged changes in
power relative to the baseline (−300 to –100 ms) period over parietal

electrodes contralateral to stimulus presentation hemifield (averaged PO8
and PO7); (C1) and over medial frontal electrode FCz. Dashed squares
represent the time-frequency windows used for the ANOVAs.
Condition-specific changes in theta power over parietal (B2) and medial
frontal areas (C2) as a function of previous and current trial type, and WMC
group. Dashed squares represent conditions used for WMC-related
analyses.

significant results to observe WMC-related differences in behav-
ioral manifestations of conflict adjustment. Specifically, based on
the correlation coefficient observed in our previous behavioral
study (r = 0.133) and that of Weldon et al. (2013; r = 0.22),
and an α level of 0.05, 348, and 126 participants (respectively)
would be needed to obtain statistical power at the recommended
0.80 level (calculated using G∗Power Correlation: Bivariate nor-
mal model). The correlation between post-congruent trial conflict
effect and WMC did not approach significance in either dataset
[r(32) = 0.074, p = 0.678 and r(179) = –0.031, p = 0.680].

EEG RESULTS
In general, task-related increases in theta-band power compared
to the baseline period were observed over stimulus-contralateral
posterior parietal areas (spatial peaks around PO8 and PO7,
Figure 5A) in the earlier time window (50–300 ms post-stimulus),
and over midfrontal areas (centered around FCz) in the later time
window (300–600 ms post-stimulus; Figure 5A). Task-related
changes in the delta-band (1–3 Hz; Figure 7A1) were pro-
nounced in a 200–600 ms time window over stimulus-contralateral
anterior parietal sites (spatial peaks around P3 and P4). We
therefore focused our analyses on these time-frequency-electrode
regions-of-interest in the power analyses.

Parietal theta power
Stimulus-contralateral parietal theta power was stronger for con-
gruency repetitions (cC and iI) than for congruency alternations

(cI and iC), as indicated by a current and previous trial type inter-
action [F(1,32) = 7.37, p = 0.010, η2

p = 0.18; Figure 5B2]. High-
and low-WMC groups differed in post-incongruent conflict effects
[F(1,32) = 4.30, p = 0.046, η2

p = 0.12], such that low-WMC
individuals showed a conflict effect [t(16) = 3.09, p = 0.007],
whereas high-WMC individuals did not [t(16) = 0.48, p = 0.637].
Together these results show that processing of spatial stimulus fea-
tures in posterior parietal areas was modulated by conflict and
by WMC.

Midfrontal theta power
Replicating previous findings (Nigbur et al., 2011; Cohen and
Ridderinkhof, 2013), incongruent trials as compared to con-
gruent trials elicited a stronger increase in theta power at FCz
[F(1,32) = 19.23, p < 0.001, η2

p = 0.37]. There was also a signifi-
cant current and previous trial type interaction [F(1,32) = 79.18,
p < 0.001, η2

p = 0.71; Figure 5C2], reflecting adaptation to the
previous trial conflict. However, there were no significant group
differences in cognitive control adjustments in response to con-
flict, as reflected by non-significant WMC and post-incongruent
trial type interaction [F(1,32) = 1.39, p = 0.248, η2

p = 0.04;

Figure 5C2].

Fronto-parietal theta ISPC
Visual inspection of condition- and group-averaged ISPC data
between FCz (the “seed”) and parietal areas revealed increases in
theta-band connectivity relative to the baseline in: (1) the early
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FIGURE 6 |Task-related changes in theta inter-site phase clustering.

Topographical maps of FCz-seeded ISPC in: (A1) early (50–250 ms),
(B1) later (150–350 ms), and (C1) late (300–600 ms) time windows.
(A2,B2,C2,C4) Condition- and participant-average time-frequency
representation of ISPC between FCz (the “seed”) and stimulus-ipsilateral
parietal sites (PO7, PO8), stimulus-contralateral parietal sites (P3, P4, P5,

P6), bilateral parietal sites (P3, P4, CP5, CP6), and frontal sites (AF3,
AF4, F5, and F6). Dashed squares represent the time-frequency
windows used for the ANOVAs. (A3,B3,C3,C5) Condition-specific changes
in theta-band ISPC as a function of previous and current trial type, and
WMC group. Dashed squares represent conditions used for WMC-related
analyses.

time-frequency window (50–250 ms) over stimulus-ipsilateral
posterior parietal sites (spatial peaks around PO7 and PO8
electrodes; Figure 6A1), (2) the later time-frequency window
(150–350 ms) over stimulus-contralateral anterior parietal sites
(spatial peaks around P3, P4, P5, P6 electrodes; Figure 6B1), (3)
and the late time-frequency window (300–600 ms) in anterior
parietal sites bilaterally (spatial peaks around P3, CP5, P4, CP6;

Figure 6C1). These time-frequency-electrode windows were used
as regions-of-interest in the ISPC analyses.

FCz-stimulus-ipsilateral parietal ISPC in the early time-
frequency window (50–300 ms; Figure 6A2) was not modulated by
current or previous trial congruency (p’s from 0.182 to 0.283), nor
were there group differences on post-incongruent conflict effects
[F(1,32) = 2.53, p = 0.122, η2

p = 0.07; Figure 6A3].
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FIGURE 7 |Task-related changes in delta power and inter-site phase

clustering. (A1) Topographical maps of delta band (1–3 Hz) power and
(B1) FCz-seeded ISPC averaged over a 200–600 ms time window. Plotted
separately for left- and right-hemifield stimulus trials. (A2,B2)

Time-frequency representation of condition-averaged changes in power
and ISPC relative to the baseline period (−300 to −100 ms) over

stimulus-contralateral parietal electrodes that showed a maximum peak
activity (see A1,B1). Dashed squares represent the time-frequency
windows used for the ANOVAs. (A3,B3) Condition-specific changes in
power and ISPC as a function of previous and current trial type, and
WMC group. Dashed squares represent conditions used for WMC-related
analyses.

Analysis of FCz-stimulus-contralateral parietal ISPC in the
later time-frequency window (150–350 ms; Figure 6B2) revealed
WMC-related differences in adaptation to the previous trial con-
flict as indicated by a significant WMC group x Post-incongruent
trial type interaction [F(1,32) = 7.85, p = 0.009, η2

p = 0.20].
Decomposition of this interaction revealed stronger ISPC on
incongruent (iI) vs. congruent (iC) trials for the low-WMC group
[t(16) = 3.01, p = 0.008], with no effect of trial type for the
high-WMC group [t(16) = 1.24, p = 0.235].

Finally, ISPC between FCz and anterior parietal areas in the
late time-frequency window (300–600 ms; Figure 6C2) was
stronger for incongruent than for congruent trials [F(1,32) = 9.69,
p = 0.004, η2

p = 0.23], replicating similar findings in the Eriksen
flanker task (Nigbur et al., 2012). The Current trial type x Previ-
ous trial type interaction was also significant [F(1, 32) = 21.69,
p < 0.001, η2

p = 0.40], reflecting typical congruency sequence

effects (Figure 6C3). No other effects or interactions reached
criteria for statistical significance.

Midfrontal-to-lateral-frontal theta ISPC
Based on visual inspection, ISPC between FCz and lateral pre-
frontal sites (electrodes AF3, AF4, F6, and F5) was evaluated in a
300–550 ms time window (Figure 6C4). For consistency with the
power analyses, statistics were also performed using a 300–600 ms
time window; the pattern of results was the same. There was a main

effect of current trial type, with stronger connectivity between FCz
and lateral prefrontal areas during incongruent vs. congruent trials
[F(1,32) = 14.37, p < 0.001, η2

p = 0.30]. The significant interac-
tion between current and previous trial type indicated that ISPC
between FCz and lateral prefrontal sites was modulated by the
level of conflict on the previous trial [F(1,32) = 46.29, p < 0.001,
η2

p = 0.58].
There was also a significant interaction between WMC group

and post-incongruent trial type [F(1,32) = 5.13, p = 0.03,
η2

p = 0.14]. Follow-up analyses showed that ISPC was stronger on
congruent (iC) than on incongruent (iI) trials for the low-WMC
group [t(16) = 3.58, p = 0.002], whereas for the high-WMC group
the effect of trial type was not significant [t(16) = 0.45, p = 0.663;
Figure 6C5].

Taken together, these ISPC analyses revealed that the configura-
tion of conflict-related fronto-parietal networks shifted over time:
First, ISPC was increased between frontal and stimulus-ipsilateral
posterior parietal areas, then between frontal and stimulus-
contralateral anterior parietal areas, and finally settled into a
bilateral broad fronto-parietal configuration (Figures 6A1–C1).
Post-conflict adaptation effects in these fronto-parietal network
activity patterns were different between the WMC groups already
during the early stimulus-processing stage (line plots; Figure 6B3)
and continued into the later response-selection stage (line plots;
Figure 6C5).
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Parietal delta power and fronto-parietal ISPC
Stimulus-contralateral parietal delta power (Figure 7) showed
a significant current and previous trial type interaction
[F(1,32) = 4.95, p = 0.033, η2

p = 0.13], with a stronger increase in
delta power on congruency repetitions (cC, iI) than on congruency
alternations (cI, iC; Figure 7A3). There were no group differences
on post-incongruent trial conflict effects [F(1,32) = 1.38, p = 0.25,
η2

p = 0.04].
Analysis of FCz-seeded ISPC revealed increases in stimulus-

contralateral posterior parietal electrodes (spatial peaks around
PO7, P08, PO4, PO3; Figure 7B1). There was a significant WMC
group x Post-incongruent trial type interaction [F(1,32) = 6.51,
p = 0.016, η2

p = 0.17; Figure 7B3]. Decomposition of this
interaction showed stronger ISPC on iI vs. iC trials for the low-
WMC individuals [t(16) = 2.22, p = 0.041], and no effect
of the trial type for the high-WMC individuals [t(16) = 1.63,
p = 0.123].

DISCUSSION
The most striking finding of this study is that the functioning
of large-scale networks grouped by oscillatory phase synchro-
nization in theta and delta frequency bands are sensitive mark-
ers of WMC-related differences in cognitive control, whereas
behavioral task performance did not show statistically signifi-
cant group differences. These results were further corroborated
by comparing effect sizes (quantified as η2

p) of WMC-related
differences across EEG and behavioral measures, which are sum-
marized in Figure 8. The largest effect sizes for connectivity,
power, and behavioral measures were 0.20, 0.12, and 0.04,
respectively. This implies that task-related changes in fronto-
parietal network connectivity are more sensitive in capturing

WMC-related differences than measures of behavior or spatially
localized brain activity, and thus smaller sample sizes are sufficient
to obtain adequate statistical power and statistically significant
results.

The findings documented here extend the executive-attention
theory of WMC (Engle and Kane, 2004; Kane et al., 2007),
and elaborate on the possible neural mechanisms underlying
WMC-related differences in cognitive control. Theta-band oscilla-
tory activity previously has been shown to play a central role within
fronto-parietal network communication during attention and
cognitive control tasks (Green and McDonald, 2008; Cohen and
Ridderinkhof, 2013; Pastotter et al., 2013), and has additionally
been associated with working memory (Kahana et al., 2001; Hsieh
and Ranganath, 2014).

NOVEL EEG CHARACTERISTICS OF THE SIMON TASK
In addition to replicating the conflict modulation of mid-
frontal theta (Nigbur et al., 2011; Cohen and Donner, 2013;
Cohen and Ridderinkhof, 2013), we also found an increase in
theta activity over stimulus-contralateral posterior areas, likely
reflecting processing of the spatial stimulus features (Rusconi
et al., 2007; Sturmer et al., 2007; Schiff et al., 2011). Of nov-
elty is the modulation of early parietal theta-band power by
preceding trial context, suggesting that cognitive control mech-
anisms affect processing of task-relevant and task-irrelevant
stimulus features already during the early stimulus process-
ing stages (Scerif et al., 2006; Appelbaum et al., 2011; Walsh
et al., 2011; Pastotter et al., 2013). Opposite to the behavioral
results, congruency repetitions were associated with high, and
congruency alternations with low parietal theta power, espe-
cially in the low-WMC group (Figure 5B2). A similar pattern

FIGURE 8 | Summary of results depicting effect sizes of different

measures. Effect sizes are expressed as η2
p. For RT data, η2

p was
calculated as SSeffect/(SSeffect + SSerror) using results from regression
analyses. The color of the circles represents small (gray), medium (blue),

and medium-large (purple) effect sizes in the context of the current
study. Asterisks indicate analyses in which the effect of WMC was
significant. Symbols θ and δ refer to the results in theta- and
delta-band, respectively.
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in the BOLD signal in the fusiform face area in the face-
word Stroop task (Egner and Hirsch, 2005), and in ERPs over
parieto-central areas in the Eriksen flanker task (Wendt et al.,
2007).

This pattern of results can be interpreted considering the
proportions of stimulus-response transitions (repetitions and
alternations) from one trial to the next. In the Simon task, three
types of trial sequences are possible: (1) complete repetitions
(stimuli and responses from one trial to the next are the same),
(2) complete alternations (stimuli and responses are different),
and (3) partial repetitions (stimuli or responses are the same).
In the current study, in which only partial repetitions and com-
plete alternations were presented, 2/3 of cC and iI trials were
complete alternations, whereas only 1/3 of all cI and iC trials
were complete alternations. Because on complete alternation trials,
stimulus location always changed with respect to the previous trial,
an increase in theta power over parietal areas involved in spatial
attention can be expected. Moreover, increased theta power over
central areas has been previously reported for stimulus alterna-
tions compared to stimulus repetitions (Summerfield et al., 2011).
Given that our results are similar to two previous findings
(Egner and Hirsch, 2005; Wendt et al., 2007), it is clear that
posterior modulation by congruency repetition is observed con-
sistently in a variety of cognitive control paradigms and brain
measurements. Additional research, however, is necessary to deter-
mine the precise contribution of this pattern to conflict task
performance.

Theta connectivity revealed task-related shifts in fronto-
parietal networks along a posterior-anterior axis: From
stimulus-ipsilateral posterior parietal areas (50–250 ms) to
stimulus-contralateral anterior parietal areas (150–350 ms), and
finally to a broad bilateral fronto-parietal network configuration
(300–600 ms; Figures 6A1–C1). The early stimulus-ipsilateral
increase in fronto-parietal connectivity may reflect a fast stimulus-
driven involuntary orienting of attention, whereas the later
changes in stimulus-contralateral and bilateral connectivity may
reflect voluntary reorienting of spatial attention (Corbetta and
Shulman, 2002; Sawaki et al., 2012). Indeed, there are two critical
time periods (130–160 ms and 210–240 ms) for spatial attention
orienting (Chambers et al., 2004), during which transcranial mag-
netic stimulation of parietal cortex attenuates or abolishes the
Simon effect (Schiff et al., 2011).

Although little is known about attention-related lateraliza-
tion effects in the theta band (Green and McDonald, 2008;
Thorpe et al., 2012), phase synchronization in the alpha band
between lower- and higher-level visual regions is increased con-
tralateral to the attended location, whereas alpha amplitude is
decreased, reflecting long-range inter-areal communication and
inhibitory processes respectively, (Doesburg et al., 2009; Palva and
Palva, 2011). Thus, the observed increase in theta power over
stimulus-contralateral parietal areas and early theta synchroniza-
tion between FCz and stimulus-ispilateral parietal areas, followed
by later synchronization between FCz and contralateral-parietal
areas, seem to reflect functionally distinct processes.

The novel findings of conflict-related modulation of stimulus-
contralateral delta-band power and connectivity highlight that
conflict-related processes occur in frequencies and brain networks

beyond midfrontal theta (Nigbur et al., 2011; Cohen and Don-
ner, 2013; Cohen and Ridderinkhof, 2013; Pastotter et al., 2013).
Both delta (waking and sleep; Harmony, 2013) and conflict-
related theta oscillations originate from medial frontal regions
(Agam et al., 2011; Cohen and Ridderinkhof, 2013). Previously,
increased frontal delta-band activity in cognitive control tasks was
reported only during errors (Yordanova et al., 2004; Cohen and
van Gaal, 2014). Conflict-modulated delta activity in the present
study might be related to delta-band synchronization in the dor-
sal fronto-parietal network during goal-driven (re)orienting of
attention (Daitch et al., 2013).

GROUP DIFFERENCES IN PARIETAL THETA- AND DELTA-BAND ACTIVITY
Before discussing the main findings of the current study, it is
important to note that behavioral and neural indices of conflict
task performance are characterized by good to excellent test–
retest reliability (Clayson and Larson, 2013; Wostmann et al.,
2013). Given that high test–retest reliability indicates that a cer-
tain measure captures trait-like characteristics (Segalowitz and
Barnes, 1993), we consider the relationship between WMC and
cognitive control abilities observed in the current study to reflect
stable cognitive traits. Nonetheless, situational factors, such as
task context and mental state of the participant (e.g., mental
fatigue, stress, sleep deprivation) can influence both WMC mea-
sures and cognitive control abilities (Ilkowska and Engle, 2010;
Braver, 2012).

Consistent with previous reports that kept the proportions of
congruent and incongruent trials equal, WMC was related nei-
ther to the size of the conflict effect (Keye et al., 2009, 2013;
Weldon et al., 2013; Wilhelm et al., 2013; Gulbinaite and Johnson,
2014) nor to the adaptation to the previous trial conflict (Keye
et al., 2009, 2013). However, WMC-related differences in cognitive
control adjustments to the previous trial conflict were evident in
theta/delta functional connectivity in fronto-parietal networks.

Group differences in conflict adaption were apparent early in
the trial during processing of to-be-ignored location of the stimu-
lus. Following incongruent trials, stimulus-contralateral posterior
parietal power and fronto-parietal connectivity showed a conflict
effect (iI > iC) only in the low- but not in the high-WMC group.
Increases in theta power over contralateral posterior areas has been
suggested to indicate involuntary shifts of attention (Kawasaki and
Yamaguchi, 2012; Ahveninen et al., 2013). Applied to our findings,
these group differences could indicate that low-WMC individu-
als actively suppressed the task-irrelevant stimulus location on iC
trials, and thus experienced less attentional capture.

Reactivity of the low-WMC participants to the previous trial
conflict was further dissociated in the response-selection stage, as
reflected by differences in midfrontal-to-lateral-frontal theta-band
synchronization. Previously, enhanced and prolonged synchro-
nization between MFC and lateral frontal sites has been observed
in high conflict situations (cI trials and errors) and was sug-
gested to reflect increased cognitive control demands (Hanslmayr
et al., 2008; Cavanagh et al., 2009; Cohen and Cavanagh, 2011).
Here, we observed significantly stronger theta-band synchroniza-
tion between MFC and lateral frontal sites on iC than iI trials
in the low-WMC group, with no differences in the high-WMC
group. It appears that iC trials were associated with higher response
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conflict in the low-WMC group. Given that spatial stimulus infor-
mation in the Simon task either facilities (on congruent trials)
or impedes (on incongruent trials) response selection process, it
is likely that low-WMC individuals had difficulty exploiting the
facilitatory stimulus location on congruent trials after incongru-
ent trials. This result again indicates that low-WMC individuals
are more influenced by the task-irrelevant stimulus location than
high-WMC individuals after encountering the conflict on the
previous trial. This interpretation is further supported by the
delta-band results, which showed that the post-incongruent con-
flict effect in fronto-parietal ISPC was present only for the low-
and not for the high-WMC group. Although the role of delta-
band activity in attention control is not well understood (Daitch
et al., 2013), weaker fronto-parietal ISPC on iC trials may reflect
disrupted reorienting of attention to the spatial stimulus dimen-
sion in the low- vs. high WMC group following incongruent
trials.

Taken together, these findings suggest that WMC-related differ-
ences in conflict-task performance result not only from differences
in conflict resolution – as suggested by Kane and Engle (2003) – but
also from differences in cognitive control adjustments in response
to conflict. More generally, it points to the differences in cognitive
flexibility as being a key difference between high- and low-WMC
participants. It appears that low-WMC individuals were less prone
to use the task-irrelevant (albeit facilitatory) stimulus location on
congruent trials after incongruent trials. This is similar to previ-
ous work (Kane et al., 2001; Unsworth et al., 2004; Gulbinaite and
Johnson, 2014) showing that low-WMC individuals are slower
and make more errors when switching from high-conflict to low-
conflict trials, particularly when switches are frequent (Gulbinaite
and Johnson, 2014).

Our findings indicate that, overall, low-WMC individuals are
more reactive to the contextual effects of the previous trial conflict
(Figure 1, right). This is generally consistent with the idea that
low-WMC individuals are more prone to resolve conflict reactively,
whereas high-WMC individuals rely more on proactive cognitive
control strategies (Braver et al., 2007; Burgess et al., 2011).

Given the relatively strong association between EEG connec-
tivity and WMC as it relates to conflict processing strategies, EEG
connectivity might be a fruitful approach for investigating proac-
tive vs. reactive control mechanisms per se. It remains an open
question whether reactive and proactive cognitive mechanisms are
supported by the same neural networks (Braver, 2012; Irlbacher
et al., 2014), and whether the structures in MFC are involved exclu-
sively in reactive initiation of cognitive control (Ullsperger and
King, 2010) or it could also facilitate utilization of proactive con-
trol (Braver, 2012). Therefore, exploiting trait-like preferences for
reactive or proactive control (i.e., WMC), in combination with
EEG connectivity measures, and measures of MFC morphology –
variations in which are related to working memory and conflict
task performance (Fornito et al., 2004; Huster et al., 2009, 2014) –
might provide novel insights in proactive and reactive control
mechanisms.

CONCLUSION
By using EEG and employing time-frequency analysis techniques,
we provide novel neural evidence for the proposed relationship

between individual differences in WMC and attentional control
(Kane et al., 2007). The parietal theta power and fronto-parietal
connectivity indicate that WMC-related differences in attention
control occur early in the trial, and are modulated by the previous
trial context. Later changes in theta- and delta-band fronto-
parietal connectivity further highlighted group differences in
flexibility to adjust top-down control in response to the previous
trial conflict. These findings reveal that individual differences in
cognitive control abilities are related to WMC, and that measures
more sensitive than RT and error rates are required to uncover this
relationship.
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