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Efficient Gradient-Based Inference through
Transformations between Bayes Nets and Neural Nets

Diederik P. Kingma D.P.KINGMA@UVA.NL
Max Welling M.WELLING@UVA.NL

Machine Learning Group, University of Amsterdam

Abstract
Hierarchical Bayesian networks and neural net-
works with stochastic hidden units are commonly
perceived as two separate types of models. We
show that either of these types of models can of-
ten be transformed into an instance of the other,
by switching between centered and differentiable
non-centered parameterizations of the latent vari-
ables. The choice of parameterization greatly in-
fluences the efficiency of gradient-based poste-
rior inference; we show that they are often com-
plementary to eachother, we clarify when each
parameterization is preferred and show how in-
ference can be made robust. In the non-centered
form, a simple Monte Carlo estimator of the
marginal likelihood can be used for learning the
parameters. Theoretical results are supported by
experiments.

1. Introduction
Bayesian networks (also called belief networks) are proba-
bilistic graphical models where the conditional dependen-
cies within a set of random variables are described by a
directed acyclic graph (DAG). Many supervised and un-
supervised models can be considered as special cases of
Bayesian networks.

In this paper we focus on the problem of efficient infer-
ence in Bayesian networks with multiple layers of contin-
uous latent variables, where exact posterior inference is in-
tractable (e.g. the conditional dependencies between vari-
ables are nonlinear) but the joint distribution is differen-
tiable. Algorithms for approximate inference in Bayesian
networks can be roughly divided into two categories: sam-
pling approaches and parametric approaches. Parametric
approaches include Belief Propagation (Pearl, 1982) or the
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more recent Expectation Propagation (EP) (Minka, 2001).
When it is not reasonable or possible to make assumptions
about the posterior (which is often the case), one needs
to resort to sampling approaches such as Markov Chain
Monte Carlo (MCMC) (Neal, 1993). In high-dimensional
spaces, gradient-based samplers such as Hybrid Monte
Carlo (Duane et al., 1987) and the recently proposed no-
U-turn sampler (Hoffman & Gelman, 2011) are known for
their relatively fast mixing properties. When just interested
in finding a mode of the posterior, vanilla gradient-based
optimization methods can be used. The alternative param-
eterizations suggested in this paper can dramatically im-
prove the efficiency of any of these algorithms.

1.1. Outline of the paper

After reviewing background material in 2, we introduce
a generally applicable differentiable reparameterization
of continuous latent variables into a differentiable non-
centered form in section 3. In section 4 we analyze the
posterior dependencies in this reparameterized form. Ex-
perimental results are shown in section 6.

2. Background
Notation. We use bold lower case (e.g. x or y) notation
for random variables and instantiations (values) of random
variables. We write pθ(x|y) and pθ(x) to denote (condi-
tional) probability density (PDF) or mass (PMF) functions
of variables. With θ we denote the vector containing all
parameters; each distribution in the network uses a subset
of θ’s elements. Sets of variables are capitalized and bold,
matrices are capitalized and bold, and vectors are written
in bold and lower case.

2.1. Bayesian networks

A Bayesian network models a set of random variables V
and their conditional dependencies as a directed acyclic
graph, where each variable corresponds to a vertex and
each edge to a conditional dependency. Let the distribu-
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Figure 1. (a) The centered parameterization (CP) of a latent vari-
able zj . (b) The differentiable non-centered parameterization
(DNCP) where we have introduced an auxiliary ’noise’ vari-
able εj ∼ pθ(εj) such that zj becomes deterministic: zj =
gj(paj , εj ,θ). This deterministic variable has an interpretation
of a hidden layer in a neural network, which can be differentiated
efficiently using the backpropagation algorithm.

tion of each variable vj be pθ(vj |paj), where we condi-
tion on vj’s (possibly empty) set of parents paj . Given
the factorization property of Bayesian networks, the joint
distribution over all variables is simply:

pθ(v1, . . . ,vN ) =

N∏
j=1

pθ(vj |paj) (1)

Let the graph consist of one or more (discrete or contin-
uous) observed variables xj and continuous latent vari-
ables zj , with corresponding conditional distributions
pθ(xj |paj) and pθ(zj |paj). We focus on the case where
both the marginal likelihood pθ(x) =

∫
z
pθ(x, z) dz and

the posterior pθ(z|x) are intractable to compute or differ-
entiate directly w.r.t. θ (which is true in general), and where
the joint distribution pθ(x, z) is at least once differentiable,
so it is still possible to efficiently compute first-order partial
derivatives ∇θ log pθ(x, z) and∇z log pθ(x, z).

2.2. Conditionally deterministic variables

A conditionally deterministic variable vj with parents paj
is a variable whose value is a (possibly nonlinear) deter-
ministic function gj(.) of the parents and the parameters:
vj = gj(paj ,θ). The PDF of a conditionally determinis-
tic variable is a Dirac delta function, which we define as a
Gaussian PDF N (.;µ, σ) with infinitesimal σ:

pθ(vj |paj) = lim
σ→0
N (vj ; gj(paj ,θ), σ) (2)

which equals +∞ when vj = gj(paj ,θ) and equals 0
everywhere else such that

∫
vj
pθ(vj |paj) dvj = 1.

2.3. Inference problem under consideration

We are often interested in performing posterior inference,
which most frequently consists of either optimization (find-
ing a mode argmaxz pθ(z|x)) or sampling from the poste-
rior pθ(z|x). Gradients of the log-posterior w.r.t. the latent

variables can be easily acquired using the equality:

∇z log pθ(z|x) = ∇z log pθ(x, z)

=

N∑
j=1

∇z log pθ(vj |paj) (3)

In words, the gradient of the log-posterior w.r.t. the latent
variables is simply the sum of gradients of individual fac-
tors w.r.t. the latent variables. These gradients can then be
followed to a mode if one is interested in finding a MAP
solution. If one is interested in sampling from the poste-
rior then the gradients can be plugged into a gradient-based
sampler such as Hybrid Monte Carlo (Duane et al., 1987);
if also interested in learning parameters, the resulting sam-
ples can be used for the E-step in Monte Carlo EM (Wei &
Tanner, 1990) (MCEM).

Problems arise when strong posterior dependencies exist
between latent variables. From eq. (3) we can see that the
Hessian H of the posterior is:

H = ∇z∇Tz log pθ(z|x) =
N∑
j=1

∇z∇Tz log pθ(vj |paj)

(4)

Suppose a factor log pθ(zi|zj) connecting two scalar latent
variables zi and zj exists, and zi is strongly dependent on
zj , then the Hessian’s corresponding element ∂

2 log pθ(z|x)
∂zi∂zj

will have a large (positive or negative) value. This is bad
for gradient-based inference since it means that changes
in zj have a large effect on the gradient ∂ log pθ(zi|zj)

∂zi
and changes in zi have a large effect on the gradient
∂ log pθ(zi|zj)

∂zj
. In general, strong conditional dependencies

lead to ill-conditioning of the posterior, resulting in smaller
optimal stepsizes for first-order gradient-based optimiza-
tion or sampling methods, making inference less efficient.

3. The differentiable non-centered
parameterization (DNCP)

In this section we introduce a generally applicable trans-
formation between continuous latent random variables and
deterministic units with auxiliary parent variables. In rest
of the paper we analyze its ramifications for gradient-based
inference.

3.1. Parameterizations of latent variables

Let zj be some continuous latent variable with parents paj ,
and corresponding conditional PDF:

zj |paj ∼ pθ(zj |paj) (5)

This is also known in the statistics literature as the centered
parameterization (CP) of the latent variable zj . Let the
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differentiable non-centered parameterization (DNCP) of
the latent variable zj be:

zj = gj(paj , εj ,θ) where εj ∼ p(εj) (6)

where gj(.) is some differentiable function. Note that in
the DNCP, the value of zj is deterministic given both paj
and the newly introduced auxiliary variable εj which is dis-
tributed as p(εj). See figure 1 for an illustration of the two
parameterizations.

By the change of variables, the relationship between the
original PDF pθ(zj |paj), the function gj(paj , εj) and the
PDF p(εj) is:

p(εj) = pθ(zj = gj(paj , εj ,θ)|paj) |det(J)| (7)

where det(J) is the determinant of Jacobian of gj(.) w.r.t.
εj . If zj is a scalar variable, then εj is also scalar and
|det(J)| = |∂zj∂εj

|.
In the DNCP, the original latent variable zj has become
deterministic, and its PDF pθ(zj |paj , εj) can be described
as a Dirac delta function (see section 2.2).

The joint PDF over the random and deterministic variables
can be integrated w.r.t. the determinstic variables. If for
simplicity we assume that observed variables are always
leaf nodes of the network, and that all latent variables are
reparameterized such that the only random variables left
are the observed and auxiliary variables x and ε, then the
marginal joint pθ(x, ε) is obtained as follows:

pθ(x, ε) =

∫
z

pθ(x, z, ε) dz

=

∫
z

∏
j

pθ(xj |paj)
∏
j

pθ(zj |paj , εj)
∏
j

p(εj) dz

=
∏
j

pθ(xj |paj)
∏
j

p(εj)

∫
z

∏
j

pθ(zj |paj , εj) dz

=
∏
j

pθ(xj |paj)
∏
j

p(εj)

where zk = gk(pak, εk,θ)

(8)

In the last step of eq. (8), the inputs paj to the factors of ob-
served variables pθ(xj |paj) are defined in terms of func-
tions zk = gk(.), whose values are all recursively com-
puted from auxiliary variables ε.

3.2. Approaches to DNCPs

There are a few basic approaches to transforming CP of a
latent variable zj to a DNCP:

1. Tractable and differentiable inverse CDF. In this
case, let εj ∼ U(0, 1), and let gj(zj ,paj ,θ) =

F−1(zj |paj ;θ) be the inverse CDF of the conditional
distribution. Examples: Exponential, Cauchy, Logis-
tic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz,
Gumbel and Erlang distributions.

2. For any ”location-scale” family of distributions (with
differentiable log-PDF) we can choose the standard
distribution (with location = 0, scale = 1) as the aux-
iliary variable εj , and let gj(.) = location+ scale · εj .
Examples: Gaussian, Uniform, Laplace, Elliptical,
Student’s t, Logistic and Triangular distributions.

3. Composition: It is often possible to express variables
as functions of component variables with different
distributions. Examples: Log-Normal (exponentia-
tion of normally distributed variable), Gamma (a sum
over exponentially distributed variables), Beta distri-
bution, Chi-Squared, F distribution and Dirichlet dis-
tributions.

When the distribution is not in the families above, accu-
rate differentiable approximations to the inverse CDF can
be constructed, e.g. based on polynomials, with time com-
plexity comparable to the CP (see e.g. (Devroye, 1986) for
some methods).

For the exact approaches above, the CP and DNCP forms
have equal time complexities. In practice, the difference in
CPU time depends on the relative complexity of computing
derivatives of log pθ(zj |paj) versus computing gj(.) and
derivatives of log p(εj), which can be easily verified to be
similar in most cases below. Iterations with the DNCP form
were slightly faster in our experiments.

3.3. DNCP and neural networks

It is instructive to interpret the DNCP form of latent vari-
ables as ”hidden units” of a neural network. The network
of hidden units together form a neural network with in-
serted noise ε, which we can differentiate efficiently using
the backpropagation algorithm (Rumelhart et al., 1986).

There has been recent increase in popularity of deep neu-
ral networks with stochastic hidden units (e.g. (Krizhevsky
et al., 2012; Goodfellow et al., 2013; Bengio, 2013)). Of-
ten, the parameters θ of such neural networks are opti-
mized towards maximum-likelihood objectives. In that
case, the neural network can be interpreted as a probabilis-
tic model log pθ(t|x, ε) computing a conditional distribu-
tion over some target variable t (e.g. classes) given some
input x. In (Bengio & Thibodeau-Laufer, 2013), stochas-
tic hidden units are used for learning the parameters of
a Markov chain transition operator that samples from the
data distribution.

For example, in (Hinton et al., 2012) a ’dropout’ reg-
ularization method is introduced where (in its basic ver-
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sion) the activation of hidden units zj is computed as zj =
εj · f(paj) with εj ∼ p(εj) = Bernoulli(0.5), and where
the parameters are learned by following the gradient of the
log-likelihood lower bound: ∇θEε

[
log pθ(t

(i)|x(i), ε)
]
;

this gradient can sometimes be computed exactly (Maaten
et al., 2013) and can otherwise be approximated with a
Monte Carlo estimate (Hinton et al., 2012). The two pa-
rameterizations explained in section 3.1 offer us a useful
new perspective on ’dropout’. A ’dropout’ hidden unit
(together with its injected noise ε) can be seen as the
DNCP of latent random variables, whose CP is zj |paj ∼
pθ(zj = εj · f(paj)|paj)). A practical implication is that
’dropout’-type neural networks can therefore be interpreted
and treated as hierarchical Bayes nets, which opens the
door to alternative approaches to learning the parameters,
such as Monte Carlo EM or variational methods.

While ’dropout’ is designed as a regularization method,
other work on stochastic neural networks exploit the
power of stochastic hidden units for generative modeling,
e.g. (Frey & Hinton, 1999; Rezende et al., 2014; Tang &
Salakhutdinov, 2013) applying (partially) MCMC or (par-
tically) factorized variational approaches to modelling the
posterior. As we will see in sections 4 and 6, the choice
of parameterization has a large impact on the posterior de-
pendencies and the efficiency of posterior inference. How-
ever, current publications lack a good justification for their
choice of parameterization. The analysis in section 4 of-
fers some important insight in where the centered or non-
centered parameterizations of such networks are more ap-
propriate.

3.4. A differentiable MC likelihood estimator

We showed that many hierarchical continuous latent-
variable models can be transformed into a DNCP pθ(x, ε),
where all latent variables (the introduced auxiliary vari-
ables ε) are root nodes (see eq. (8)). This has an important
implication for learning since (contrary to a CP) the DNCP
can be used to form a differentiable Monte Carlo estimator
of the marginal likelihood:

log pθ(x) ' log
1

L

L∑
l=1

∏
j

pθ(xj |pa(l)j )

where the parents pa
(l)
j of the observed variables are ei-

ther root nodes or functions of root nodes whose values
are sampled from their marginal: ε(l) ∼ p(ε). This MC
estimator can be differentiated w.r.t. θ to obtain an MC es-
timate of the log-likelihood gradient ∇θ log pθ(x), which
can be plugged into stochastic optimization methods such
as Adagrad for approximate ML or MAP. When performed
one datapoint at a time, we arrive at our on-line Maximum
Monte Carlo Likelihood (MMCL) algorithm.

x1 x2 x3

z1 z2 z3

x1 x2 x3

z1 z2 z3

ε1 ε2 ε3

(a) (b)

Figure 2. (a) An illustrative hierarchical model in its centered pa-
rameterization (CP). (b) The differentiable non-centered parame-
terization (DNCP), where z1 = g1(ε1,θ), z2 = g2(z1, ε2,θ)
and z3 = g3(z2, ε3,θ), with auxiliary latent variables εk ∼
pθ(εk). The DNCP exposes a neural network within the hier-
archical model, which we can differentiate efficiently using back-
propagation.

Table 1. Limiting behaviour of squared correlations between z
and its parent yi when z is in the centered (CP) and non-centered
(DNCP) parameterizaton.

ρ2yi,z (CP) ρ2yi,e (DNCP)

limσ→0 1 0

limσ→+∞ 0 βw2
i

βw2
i +α

limβ→0
w2

i

w2
i−ασ

2 0
limβ→−∞ 0 1
limα→0

1
1−βσ2

βσ2

βσ2−1

limα→−∞ 0 0

4. Effects of parameterizations on posterior
dependencies

What is the effect of the proposed reparameterization on the
efficiency of inference? If the latent variables have linear-
Gaussian conditional distributions, we can use the metric
of squared correlation between the latent variable and any
of its children in their posterior distribution. If after repa-
rameterization the squared correlation is decreased, then in
general this will also result in more efficient inference.

For non-linear Gaussian conditional distributions, the log-
PDF can be locally approximated as a linear-Gaussian us-
ing a second-order Taylor expansion. Results derived for
the linear case can therefore also be applied to the non-
linear case; the correlation computed using this approxi-
mation is a local dependency between the two variables.

Denote by z a scalar latent variable we are going to repa-
rameterize, and by y its parents, where yi is one of the
parents. The log-PDF of the corresponding conditional dis-
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z1

z 2
σz = 50 (ρ ≈ 0.00)

e1

e 2

σz = 50 (ρ ≈ −0.58)

z1
z 2

σz = 1 (ρ ≈ 0.41)

e1

e 2

σz = 1 (ρ ≈ −0.41)

z1

z 2

σz = 0.02 (ρ ≈ 1.00)

e1

e 2

σz = 0.02 (ρ ≈ −0.01)

Figure 3. Plots of the log-posteriors of the illustrative linear-
Gaussian model discussed in sec. 4.4. Columns: different choices
of σz , ranging from a low prior dependency (σz = 50) to a high
prior dependency (σz = 0.02). First row: CP form. Second row:
DNCP form. The posterior correlation ρ between the variables
is also displayed. In the original form a larger prior dependency
leads to a larger posterior dependency (see top row). The de-
pendency in the DNCP posterior is inversely related to the prior
dependency between z1 and z2 (bottom row).

tribution is

log pθ(z|y) = logN (z|wTy + b, σ2)

= −(z −wTy − b)2/(2σ2) + constant

A reparameterization of z using an auxiliary variable ε is
z = g(.) = (wTy + b) + σε where ε ∼ N (0, 1). With (7)
it can be confirmed that this change of variables is correct:

pθ(z|y) ·
∣∣∣∣∂z∂ε

∣∣∣∣ = pθ(z = g(.)|y) ·
∣∣∣∣∂z∂ε

∣∣∣∣
= N (wTy + b+ σε|wTy + b, σ2) · σz
= − exp(ε2/2)/

√
2π = N (0, 1)

= p(ε) (9)

First we will derive expressions for the squared correlations
between z and its parents, for the CP and DNCP case, and
subsequently show how they relate.

The covarianceC between two jointly Gaussian distributed
variables A and B equals the negative inverse of the Hes-
sian matrix of the log-joint PDF:

C =

(
σ2
A σ2

AB

σ2
AB σ2

B

)
= −H−1 =

1

det(H)

(
−HB HAB

HAB −HA

)
The correlation ρ between two jointly Gaussian distributed
variables A and B is given by: ρ = σ2

AB/(σAσB). Using

the equation above, the squared correlation can be com-
puted from the elements of the Hessian matrix:

ρ2 = (σ2
AB)

2/(σ2
Aσ

2
B)

= (HAB/det(H))2/((−HA/det(H))(−HB/det(H))

= H2
AB/(HAHB) (10)

Important to note is that derivatives of the log-posterior
w.r.t. the latent variables are equal to the derivatives of log-
joint w.r.t. the latent variables, therefore,

H = ∇z∇Tz log pθ(z|x) = ∇z∇Tz log pθ(x, z)

The following shorthand notation is used in this section:

L = log pθ(x, z) (sum of all factors)
z = the variable to be reparameterized
y = z’s parents

L(z) = log pθ(z|y) (z’s factor)

L(\z) = L− L(z) (all factors minus z’s factor)

L(z→) = the factors of z’s children

α =
∂2L(\z)

∂yi∂yi

β =
∂2L(z→)

∂z∂z

4.1. Squared Correlations

4.1.1. CENTERED CASE

In the CP case, the relevant Hessian elements are as fol-
lows:

Hyiyi =
∂2L

∂yi∂yi
= α+

∂2L(z)

∂yi∂yi
= α− w2

i /σ
2

Hzz =
∂2L

∂z∂z
= β +

∂2L(z)

∂z∂z
= β − 1/σ2

Hyiz =
∂2L

∂yi∂z
=
∂2L(z)

∂yi∂z
= wi/σ

2 (11)

Therefore, using eq. (10), the squared correlation between
yi and z is:

ρ2yi,z =
(Hyiz)

2

HyiyiHzz
=

w2
i /σ

4

(α− w2
i /σ

2)(β − 1/σ2)
(12)
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4.1.2. NON-CENTERED CASE

In the DNCP case, the Hessian elements are:

Hyiyi =
∂2L

∂yi∂yi
= α+

∂

∂yi

∂L(z→)

∂yi

= α+
∂

∂yi

(
wi
∂L(z→)

∂z

)
= α+ w2

i β

Hεε =
∂2L

∂ε∂ε
=
∂2L(z→)

∂ε∂ε
+
∂2 log p(ε)

∂ε∂ε
= σ2β − 1

Hyiε =
∂2L

∂yi∂ε
= σwiβ (13)

The squared correlation between yi and ε is therefore:

ρ2yi,ε =
(Hyiε)

2

HyiyiHεε
=

σ2w2
i β

2

(α+ w2
i β)(σ

2β − 1)
(14)

4.2. Correlation inequality

We can now compare the squared correlation, between z
and some parent yi, before and after the reparameterization.
Assuming α < 0 and β < 0 (i.e. L(\z) and L(z→) are
concave, e.g. exponential families):

ρ2yi,z > ρ2yi,ε

w2
i /σ

4

(α− w2
i /σ

2)(β − 1/σ2)
>

σ2w2
i β

2

(α+ w2
i β)(σ

2β − 1)

w2
i /σ

4

(α− w2
i /σ

2)(β − 1/σ2)
>

w2
i β

2

(α+ w2
i β)(β − 1/σ2)

1/σ4

(α− w2
i /σ

2)
>

β2

(α+ w2
i β)

σ−2 > −β
(15)

Thus we have shown the surprising fact that the correla-
tion inequality takes on an extremely simple form where
the parent-dependent values α and wi play no role; the in-
equality only depends on two properties of z: the relative
strenghts of σ (its noisiness) and β (its influence on chil-
dren’s factors). Informally speaking, if the noisiness of z’s
conditional distribution is large enough compared to other
factors’ dependencies on z, then the reparameterized form
is beneficial for inference.

4.3. A beauty-and-beast pair

Additional insight into the properties of the CP and DNCP
can be gained by taking the limits of the squared correla-
tions (12) and (14). Limiting behaviour of these correla-
tions is shown in table 1. As becomes clear in these lim-
its, the CP and DNCP often form a beauty-and-beast pair:
when posterior correlations are high in one parameteriza-
tion, they are low in the other. This is especially true in the

Table 2. Effective Sample Size (ESS) for different choices of
latent-variable variance σz , and for different samplers, after tak-
ing 4000 samples. Shown are the results for HMC samplers using
the CP and DNCP parameterizations, as well as a robust HMC
sampler.

log σz CP DNCP ROBUST

-5 2 305 640
-4.5 26 348 498
-4 10 570 686
-3.5 225 417 624
-3 386 569 596
-2.5 542 608 900
-2 406 972 935
-1.5 672 1078 918
-1 1460 1600 1082

limits of σ → 0 and β → −∞, where squared correlations
converge to either 0 or 1, such that posterior inference will
be extremely inefficient in either CP or DNCP, but efficient
in the other. This difference in shapes of the log-posterior
is illustrated in figure 3.

4.4. Example: Simple Linear Dynamical System

Take a simple model with scalar latent variables z1
and z2, and scalar observed variables x1 and x2.
The joint PDF is defined as p(x1, x2, z1, z2) =
p(z1)p(x1|z1)p(z2|z1)p(x2|z2), where p(z1) = N (0, 1),
p(x1|z1) = N (z1, σ

2
x), p(z2|z1) = N (z1, σ

2
z) and

p(x2|z2) = N (z2, σ
2
x). Note that the parameter σz de-

termines the dependency between the latent variables, and
σx determines the dependency between latent and observed
variables.

We reparameterize z2 such that it is conditionally deter-
ministic given a new auxiliary variable ε2. Let p(ε2) =
N (0, 1). let z2 = g2(z1, ε2, σz) = z1 + σz · ε2 and let
ε1 = z1. See figure 3 for plots of the original and auxiliary
posterior log-PDFs, for different choices of σz , along with
the resulting posterior correlation ρ.

For what choice of parameters does the reparameterization
yield smaller posterior correlation? We use equation (15)
and plug in σ ← σz and −β ← σ−2x , which results in:

ρ2ε1,ε2 > ρ2z1,z2 ⇒ σ2
z < σ2

x

i.e. the posterior correlation in DNCP form ρ2ε1,ε2 is smaller
when the latent-variable noise parameter σ2

z is smaller than
the oberved-variable noise parameter σ2

x. Less formally,
this means that the DNCP is preferred when the latent vari-
able is more strongly coupled to the data (likelihood) then
to its parents.
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(a) Centered Parameterization (CP)
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(b) Differentiable Non-Centered Parameterization
(DNCP)

Figure 4. Auto-correlation of HMC samples of the latent variables
for a DBN in two different parameterizations. Left on each fig-
ure are shown 2000 subsequent HMC samples of three randomly
chosen variables in the dynamic Bayesian network model. On the
right are shown the corresponding HMC sample auto-correlation
graphs. The DNCP resulted in much lower posterior dependen-
cies and a dramatic drop in HMC sample auto-correlation.

5. Related work
This is, to the best of our knowledge, the first work to inves-
tigate the implications of the different differentiable non-
centered parameterizations on the efficiency of gradient-
based inference. However, the topic of centered vs non-
centered parameterizations has been investigated for effi-
cient (non-gradient based) Gibbs Sampling in work by Pa-
paspiliopoulos et al. (2003; 2007), which also discusses
some strategies for constructing parameterization for those
cases. There have been some publications for parameteri-
zations of specific models; (Gelfand et al., 1995), for ex-
ample, discusses parameterizations of mixed models, and
(Meng & Van Dyk, 1998) investigate several rules for
choosing an appropriate parameterization for mixed-effects
models for faster EM. In the special case where Gibbs sam-

pling is tractable, efficient sampling is possible by inter-
leaving between centered and non-centered parameteriza-
tions, as was shown in (Yu & Meng, 2011).

Auxiliary variables are used for data augmentation (see
(Van Dyk & Meng, 2001) or slice sampling (Neal, 2003))
where, in contrast with our method, sampling is performed
in a higher-dimensional augmented space. Auxiliary vari-
ables are used in a similar form under the name exoge-
nous variables in Structural Causal Models (SCMs) (Pearl,
2000). In SCMs the functional form of exogenous variables
is more restricted than our auxiliary variables. The concept
of conditionally deterministic variables has been used ear-
lier in e.g. (Cobb & Shenoy, 2005), although not as a tool
for efficient inference in general Bayesian networks with
continuous latent variables. Recently, (Raiko et al., 2012)
analyzed the elements of the Hessian w.r.t. the parameters
in neural network context.

The differentiable reparameterization of latent variables in
this paper was introduced earlier in (Kingma & Welling,
2013) and independently in (Bengio, 2013), but these pub-
lications lacked a theoretic analysis of the impact on the
efficiency of inference. In (Kingma & Welling, 2013), the
reparameterization trick was used in an efficient algorithm
for stochastic variational inference and learning.

6. Experiments
6.1. Nonlinear DBN

From the derived posterior correlations in the previous sec-
tions we can conclude that depending on the parameters of
the model, posterior sampling can be extremely inefficient
in one parameterization while it is efficient in the other.
When the parameters are known, one can choose the best
parameterization (w.r.t. posterior correlations) based on the
correlation inequality (15).

In practice, model parameters are often subject to change,
e.g. when optimizing the parameters with Monte Carlo
EM; in these situations where there is uncertainty over the
value of the model parameters, it is impossible to choose
the best parameterization in advance. The ”beauty-beast”
duality from section 4.3 suggests a solution in the form of
a very simple sampling strategy: mix the two parameteri-
zations. Let QCP (z′|z) be the MCMC/HMC proposal dis-
tribution based on pθ(z|x) (the CP), and let QDNCP (z′|z)
be the proposal distribution based on pθ(ε|x) (the DNCP).
Then the new MCMC proposal distribution based on the
mixture is:

Q(z′|z) = ρ ·QCP (z′|z) + (1− ρ) ·QDNCP (z′|z)
(16)

where we use ρ = 0.5 in experiments. The mixing effi-
ciency might be half that of the oracle solution (where the
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optimal parameterization is known), nonetheless when tak-
ing into account the uncertainty over the parameters, the
expected efficiency of the mixture proposal can be better
than a single parameterization chosen ad hoc.

We applied a Hybrid Monte Carlo (HMC) sampler to a
Dynamic Bayesian Network (DBN) with nonlinear transi-
tion probabilities with the same structure as the illustrative
model in figure 2. The prior and conditional probabili-
ties are: z1 ∼ N (0, I), zt|zt−1 ∼ N (tanh(Wzzt−1 +
bz), σ

2
zI) and xt|zt ∼ Bernoulli(sigmoid(Wxzt−1)).

The parameters were intialized randomly by sampling from
N (0, I). Based on the derived limiting behaviour (see ta-
ble 1, we can expect that such a network in CP can have
very large posterior correlations if the variance of the latent
variables σ2

z is very small, resulting in slow sampling.

To validate this result, we performed HMC inference with
different values of σ2

z , sampling the latent variables while
holding the parameters fixed. For HMC we used 10
leapfrog steps per sample, and the stepsize was automati-
cally adjusted while sampling to obtain a HMC acceptance
rate of around 0.9. At each sampling run, the first 1000
HMC samples were thrown away (burn-in); the subsequent
4000 HMC samples were kept. To estimate the efficiency
of sampling, we computed the effective sample size (ESS);
see e.g. (Kass et al., 1998) for a discussion on ESS.

Results. See table 2 and figure 4 for results. It is clear that
the choice of parameterization has a large effect on poste-
rior dependencies and the efficiency of inference. Sampling
was very inefficient for small values of σz in the CP, which
can be understood from the limiting behaviour in table 1.

6.2. Generative multilayer neural net

As explained in section 3.4, a hierarchical model in DNCP
form can be learned using a MC likelihood estimator which
can be differentiated and optimized w.r.t. the parameters
θ. We compare this Maximum Monte Carlo Likelihood
(MMCL) method with the MCEM method for learning the
parameters of a 4-layer hierarchical model of the MNIST
dataset, where x|z3 ∼ Bernoulli(sigmoid(Wxz3 + bx))
and zt|zt−1 ∼ N (tanh(Wizt−1+bi), σ

2
ztI). For MCEM,

we used HMC with 10 leapfrog steps followed by a weight
update using Adagrad (Duchi et al., 2010). For MMCL,
we used L ∈ {10, 100, 500}. We observed that DNCP
was a better parameterization than CP in this case, in terms
of fast mixing. However, even in the DNCP, HMC mixed
very slowly when the dimensionality of latent space be-
come too high. For this reason, z1 and z2 were given
a dimensionality of 3, while z3 was 100-dimensional but
noiseless (σ2

z1 = 0) such that only z3 and z2 are random
variables that require posterior inference by sampling. The
model was trained on a small (1000 datapoints) and large
(50000 datapoints) version of the MNIST dataset.
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Figure 5. Performance of MMCL versus MCEM in terms of the
marginal likelihood, when learning the parameters of a generative
multilayer neural network (see section 6.2).

Results. We compared train- and testset marginal likeli-
hood. See figure 5 for experimental results. As was ex-
pected, MCEM attains asymptotically better results. How-
ever, despite its simplicity, the on-line nature of MMCL
means it scales better to large datasets, and (contrary to
MCEM) is trivial to implement.

7. Conclusion
We have shown how Bayesian networks with continuous
latent variables and generative neural networks are related
through two different parameterizations of the latent vari-
ables: CP and DNCP. A key result is that the differentiable
non-centered parameterization (DNCP) of a latent variable
is preferred, in terms of its effect on decreased posterior
correlations, when the variable is more strongly linked to
the data (likelihood) then to its parents. Through theoreti-
cal analysis we have also shown that the two parameteriza-
tions are complementary to each other: when posterior cor-
relations are large in one form, they are small in the other.
We have also illustrated that this theoretical result can be
exploited in practice by designing a MCMC strategy that
mixes between both parameterizations, making it robust to
situations where MCMC can otherwise be inefficient.
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