

UvA-DARE (Digital Academic Repository)

A comment on "A note on distance transformation in digital images"

Beckers, A.L.D.; Smeulders, A.W.M.

DOI 10.1016/0734-189X(89)90056-X

Publication date 1989

Published in Computer Vision, Graphics, and Image Processing

Link to publication

Citation for published version (APA): Beckers, A. L. D., & Smeulders, A. W. M. (1989). A comment on "A note on distance transformation in digital images". *Computer Vision, Graphics, and Image Processing, 47*, 89-91. https://doi.org/10.1016/0734-189X(89)90056-X

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

NOTE

A Comment on "A Note on Distance Transformations in Digital Images"

A. L. D. BECKERS AND A. W. M. SMEULDERS

Department of Medical Informatics, Erasmus University Rotterdam, Dr. Molewaterplein 50, 3000 DR Rotterdam, The Netherlands

Received October 13, 1988; accepted November 28, 1988

Recently, in a communication by Vossepoel [2] on optimal coefficients a, b (and c) for distance transformations [1], distance weights are assigned according to the following schemes:

b	а	Ь	2 <i>b</i>	с	2 <i>a</i>	С	2 <i>b</i>
а	0	а	С	Ь	а	b	С
b	а	b	2 <i>a</i>	а	0	а	2 <i>a</i>
			С	b	а	b	С
			2 <i>b</i>	С	2 <i>a</i>	С	2 <i>b</i>

The optimal parameter values for distance transformations are equal to the optimal parameter values for linear length estimates of type $l = a \cdot \Delta x + (b - a) \cdot \Delta y$. Therefore, to compute optimal values for (a, b) it is sufficient to evaluate the integrals for line length estimation [3, 4]:

$$\operatorname{Bias}(l) = \int \int_{D} (l - l_e(r, \varphi)) \cdot p(r, \varphi) \, dr \, d\varphi \tag{1}$$

and

$$MSE(l) = \int \int_{D} (l - l_e(r, \varphi))^2 \cdot p(r, \varphi) \, dr \, d\varphi \tag{2}$$

where l_e is the Euclidean distance, $p(r, \varphi)$ is the probability of straight lines parameterized as indicated in Fig. 1, and D is the ensemble of all continuous straight lines in 2-dimensional space.

For the estimate $l = n \cdot (a + (b - a) \cdot \tan(\varphi))$, $0 < \varphi < \pi/4$, in [2] the author effectively evaluates the following set of integrals:

$$\operatorname{Bias}/n = \int_0^{\pi/4} (a + (b - a) \cdot \tan(\varphi) - \sec(\varphi)) \, d\varphi \tag{3}$$

89

0734-189X/89 \$3.00 Copyright © 1989 by Academic Press, Inc. All rights of reproduction in any form reserved.

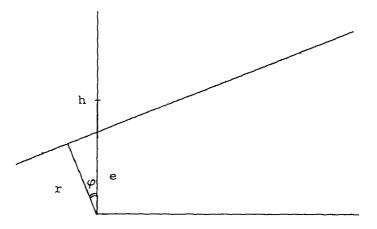


FIG. 1. The normal representation of a straight line.

and

$$MSE/n^{2} = \int_{0}^{\pi/4} (a + (b - a) \cdot \tan(\varphi) - \sec(\varphi))^{2} d\varphi, \qquad (4)$$

integrating over two columns of the grid separated by n pixels (see Eqs. (2)-(8) in [2]). To establish isotropy in the ensemble D of straight lines, a uniform distribution is assumed for φ . Minimizing (4) under the constraint that (3) equals zero, the author then finds the following optimal values for a and b:

$$a = \frac{(4-\pi) \cdot \ln(1+\sqrt{2}) - (\sqrt{2}-1) \cdot \ln 4}{\pi \cdot (1-\pi/4) - \ln^2 2} = 0.9413$$
(5)

and

$$b = \frac{(4 - \pi - \ln 4) \cdot \ln(1 + \sqrt{2}) + (\sqrt{2} - 1) \cdot (\pi - \ln 4)}{\pi \cdot (1 - \pi/4) - \ln^2 2} = 1.3513.$$

Similarly for the (5×5) distance transformation, are found:

$$a = 0.9813, \quad b = 1.4031, \quad \text{and} \quad c = 2.1953.$$
 (6)

Both sets of values (5) and (6), however, are not optimal values for isotropic distance transformations. To appreciate this consider in Fig. 1 the entrance height e in the first column. Implicitly, when integrating over n columns in [2] it is assumed that $p(e, \varphi) = 4/\pi$ is uniform. The isotropic distribution of random lines, however, is equivalent with a uniform distribution of $p(r, \varphi)$. Hence $p(e, \varphi)$ is not uniform, but $p(e, \varphi) = p(r, \varphi)$. |J| is, where J is the Jacobian of the coordinate transition from (r, φ) to (e, φ) . From Fig. 1 it is seen that $r = e \cdot \cos(\varphi)$, hence $|J| = |d(r, \varphi)/d(e, \varphi)| = \cos(\varphi)$ and $p(e, \varphi) = \sqrt{2} \cdot \cos(\varphi)$ over the first octant.

In [3, 4] the integrals (1) and (2) are calculated for a variety of length estimators (and distance transforms), using the proper $p(r, \varphi)$ to establish isotropy. For the two parameter length estimator the following optimal coefficients are found:

$$a = \frac{\pi/2 \cdot \left\{\sqrt{2} \cdot \ln(\sqrt{2} + 1) - 1\right\} - (\sqrt{2} - 1) \cdot \ln 2}{2 \cdot \ln(\sqrt{2} + 1) - 4 \cdot (\sqrt{2} - 1)} = 0.9445$$

$$b = \frac{\pi/\sqrt{2} \cdot \left\{\ln(\sqrt{2} + 1) - 1\right\} + (2 - \sqrt{2}) \cdot \ln 2}{2 \cdot \ln(\sqrt{2} + 1) - 4 \cdot (\sqrt{2} - 1)} = 1.3459$$
(7)

and for the three parameter estimates:

$$a = 0.980, \quad b = 1.406, \quad c = 2.204.$$
 (8)

The differences between (7) and (5) and between (8) and (6) are small. Since it is claimed in [2] that (5) and (6) are optimal values they have a theoretical meaning. For practical purposes the conclusions in [2] still hold.

REFERENCES

- G. Borgefors, Distance transformations in digital images, Comput. Vision Graphics Image Process. 34, 1986, 344-371.
- A. M. Vossepoel, A note on "Distance Transformations in Digital Images," Comput. Vision Graphics Image Process. 43, 1988, 88-97.
- 3. L. Dorst, Discrete Straight Line Segments: Parameters, Primitives and Properties, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, June 10, 1986.
- L. Dorst and A. W. M. Smeulders, Length estimators for digitized contours, Comput. Vision Graphics Image Process. 40, 1987, 311-333.