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TO GAMMA-RAY BURST BRIGHTNESSES
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ABSTRACT

We present a method to determine whether an observed sample of data is drawn from a parent distribution
that is a pure power law. The method starts from a class of statistics which have zero expectation value under
the null hypothesis, H,, that the distribution is a pure power law: f(x) oc x~* We study one simple member of
the class, named the “bending statistic” B, in detail. It is most effective for detection a type of deviation from
a power law where the power-law slope varies slowly and monotonically as a function of x. Our estimator of
B has a distribution under H, that depends only on the size of the sample, not on the parameters of the
parent population, and is approximated well by a normal distribution even for modest sample sizes. The
bending statistic can therefore be used to test whether a set of numbers is drawn from any power-law parent
population.

Since many measurable quantities in astrophysics have distributions that are approximately power laws,
and since deviations from the ideal power law often provide interesting information about the object of study
(e.g, a “bend” or “break” in a luminosity function, a line in an X- or gamma-ray spectrum), we believe that a
test of this type will be useful in many different contexts. In the present paper, we apply our test to various
subsamples of gamma-ray burst brightnesses from the first-year BATSE catalog and show that we can only

marginally detect the expected steepening of the log N(>C,,,)-log C,,., distribution.
Subject headings: gamma rays: bursts — methods: data analysis — methods: statistical

1. INTRODUCTION

There are many situations in astrophysics where to first
approximation a quantity has a power-law distribution. Exam-
ples are galaxy luminosities, correlation functions, energies of
X-ray photons from hot, optically thin plasmas, fluxes of
gamma-ray bursts as detected by any single instrument, ener-
gies of cosmic rays, and spectra of many types of radio source.
In some cases the reason is known (X-ray bremsstrahlung,
cosmic rays, radio spectra), whereas in others we do not under-
stand why the distribution has this shape. Unfortunately, a
power law is scale-free and one of the most featureless of all
possible distributions, usually revealing little about the under-
lying process.

Because of this, it is often quite helpful to find deviations
from pure power-law behavior, as these define a characteristic
value for the quantity of interest; such a value in turn may
provide clues to the underlying physics. Examples are a break
in an X-ray spectrum indicating the temperature of the emit-
ting medium, a turnover in a radio synchrotron spectrum indi-
cating (among others) a characteristic electron energy or
self-absorption, a “maximum energy” for cosmic rays, slope
changes in the angular correlation function of distant objects,
etc. In cases where the underlying reason for the power-law
distribution is not known, a bend in the distribution may
provide a hint of what the reason is. A case in point, to which
we shall return in § 4, is the distribution of gamma-ray burst
brightnesses. First we introduce the statistics (§ 2) and examine
the properties of one, the bending statistic (§ 3).

! E-mail: rw@astro.princeton.edu.
2 E-mail: Iml@astro.princeton.edu.

2. A CLASS OF SPECIAL STATISTICS

Consider a random variable x that is distributed as a power
law, with a cumulative distribution

X

F(x)=1-— (_>l-a (x=x_), (0]
x

with the restrictions that x_ > 0 and « > 1. Let x, be the loca-
tion of the gth quantile, i.e., F(x,) = g. Then we find

_In(l-g9g)
T In(x,/x-)
Now we write the last relation for a set of ¢’s and multiply each

relation by a weight w;. If the weights sum to zero, it follows
that

1—« =g(x,) . %)

P(g,w)=K 2‘1 w;ig(x,) = (1 — »K .gle =0, 3)

where ¢ = (9, 45, .-, 4,,), and K is an arbitrary statistic. We
have now defined a whole class of quantities that are identi-
cally zero for a power-law distribution but that can only be
computed using exact knowledge of the properties of the
parent population. We can define analogous quantities for a
sample drawn from the parent population by simply replacing
the quantiles x, in equation (3) by estimators %, and K by an
estimator k. Depending on the application, x_ may have to be
estimated from the data as well. We then obtain estimators

pla W) = k 3 w0(5,) @

of P, which will have approximately zero expectation value for
samples drawn from a power-law distribution, and nonzero
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expectation values for samples from other distributions. (Note:
strictly speaking, for any choice of ¢, one could find nonpower-
law distributions that happen to have P(q, w) = 0, but only for
a power-law distribution would this hold regardless of the
choice of g4.) We can now construct tests of this null hypothesis
H,: “this sample is drawn from that power-law parent dis-
tribution.” This is done by investigating the distribution of
some particular p(g, w) assuming that H, is valid. We can then
determine within what range the value of p(q, w) should fall
under H, with some specified confidence. This range can then
be used as a confidence interval for accepting H,, i.e., if and
only if the value of p measured for the real data falls within the
specified range will we accept H,,.

Which of the infinite number of possible P’s is the best test
statistic clearly depends on the circumstances. For example, if
we have a specific alternative hypothesis H,, the obvious cri-
terion for choosing (g, w) is to maximize the power of the test,
i.e, to minimize the probability of accepting H,, if H, is true
(while keeping the probability of unjustly rejecting H,, fixed, of
course).

3. A SPECIFIC CASE: THE BENDING STATISTIC B

3.1. Properties

In the present paper we have no well-defined H,. We expect
that the deviation of the brightness distribution of gamma-ray
bursts from a power law (if any) will be smooth, i.e., it will take
the form of an « that varies montonically with brightness. We
should therefore choose values of g that are wide apart in order
to sample as much as possible of the slowly accumulating cur-
vature. But in absence of a definite H,, we want to minimize
the variance of p to improve our chances of any deviation of p
from 0 being signficant. This implies that the ¢’s should not be
close to 0 or 1 because the corresponding X, would have a large
variance (Lupton 1993, p. 43).

As a compromise between the requirements, we choose
m=2 and ¢=(1/3, 2/3). For two elements, we can set
w = (—1, 1), since a multiplicative factor in p is of no conse-
quence. We choose K = In(x,,3/x_)/In(1/3) and thus define the
bending statistic to be

In(x,,3/x_) _ In(2/3)
In(x3/x-) In(1/3)°

A more intuitive (and our initial) way for arriving at this result
is to consider equation (1) for x = x,,; and solve for 1 — a. This
means that « is fixed once the location of x,,; (and x_) is
known. We can now use this a with equation (1) to predict the
location of x,,;. Requiring this prediction to coincide with the
actual value of x,,; amounts to requiring B = 0 after a little
rewriting. In this way, it is also easily seen that B > 0 corre-
sponds to a steepening of the power law with x, because in that
case the predicted value of x,,; exceeds the actual value. It is
also clear from this reasoning that two is the minimum number
of quantiles needed to test the hypothesis, H,, that a data set is
distributed as a power law.

To compute b, the estimator of B, we must derive estimators
for x,,3, x3/3, and x_ from a sample {x;}7- ;. We estimate X,
and X,; by interpolating linearly between the two elements in
the sample that bracket them. The quantity X _ is estimated by
solving the relation g(x,,,) — g(x,;3) = 0 for x_ and then repla-
cing all quantities by their estimators in the resulting expres-
sion. The estimator for x,,, is x;,, the smallest element in the
sample, and X _ is essentially equal to x;, with a small correc-

B =

G

tion (of order 1/n) because one expects the smallest element in
the sample to be slightly greater than the minimum possible
value, x _.

It is clear that we can scale all the values in the sample by a
constant factor without affecting the value of b. Therefore, the
distribution of b will not be affected by the value of x_ except
that the use of an estimator X_ will increase the variance some-
what relative to the case where the exact value is known and
possibly affect the bias. We will therefore concentrate on inves-
tigating the dependence of b on a and n. We chose the 13
a-values 1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75, 1.8, 1.9, 2.0, 2.25,
and 2.5 and the five n-values 30, 100, 300, 1000, and 3000, and
set x_ = 1. For each combination («, n) we generated 10°
Monte Carlo samples of n elements from a power-law distribu-
tion with exponent o and then computed the value of b for each
sample in the above manner.

In Figure 1 we show the estimated mean m, and standard
deviation s, of the f(n, «; b) as a function of n. The expectation
value of b indeed tends to zero for large samples, but for finite
samples there is a small bias that decreases with sample size
roughly as 1/n; it varies in magnitude from 8% to 1% of the
standard deviation as n runs from 30 to 3000 and is therefore
negligible. The standard deviation decreases with sample size
as n'/?, as expected, except that there are small deviations
from that trend for sample sizes n < 100. If we include all » in
the fit to s,(n), we find almost the same slope (¢, = —0.5013
+ 0.0002, see Fig. 1) but the fit is poor (y2/v = 6.96).

The most striking result is that m, and s, are independent of
o. This is very useful because it means we need not specify « to
set confidence intervals on b for rejecting H,. In other words,
we can specify one test for the hypothesis “this sample is
drawn from a power-law distribution with unknown slope”
rather than only for the much more restricted hypothesis of the
type “ this sample is drawn from a power-law distribution with
slope 1.23.”

It would be convenient if the distribution f(b) resembled
some well-known distribution, so that confidence intervals for
H, could easily be determined from standard tables rather
than from extensive Monte Carlo simulations. In Figure 2 we
show histograms of f(n, a; b) for the four smallest n as derived
from the 105 Monte Carlo samples. We scale out the already
known variations of the distribution with sample size by plot-
ting the distribution as a function of x = (b — m,)/s,. Also
plotted are the relative differences between the scaled f(x) and
a standard normal distribution. Deviations of f(x) from a stan-
dard normal distribution are noticeable for the smaller sample
sizes and in the far wings of the distribution. Furthermore,
each panel actually contains three plots of f(x) and its devi-
ation from normality, for a = 1.25, 1.75, and 2.25. It is clear
that, where f(x) differs from a standard normal distribution,
the difference is the same for all «, ie., the independence of
f(n, a; b) on a extends beyond the mean and variance and holds
true for the distribution in detail.

To better determine when one can safely set confidence
regions for H, by approximating f(b) with a normal distribu-
tion, we show in Figure 3 what the positions of X, are for a
special set of nine g-values, namely those for which x, would
equal (—4, —3, ..., 4) if f(b) were exactly a standard normal
distribution. The X, are again shifted by m, and scaled to s,.
The points corresponding to identical values of g and « are
connected, and it is clear that the quantiles are essentially
equal to those of a standard normal distribution for sample
sizes n 2 100. A final formal test of the absence of correlation
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FiG. 1—The mean (left) and standard deviation (right) of b as a function of sample size n, and the residuals of each relative to the fitted line. The fit in both panels
treats each combination (n, a) as a separate data point, but points for n < 100 are excluded in the right panel (see text). The fit for the means hasc, = —0.936 + 0.009,

¢y = —0.674 + 0.018, x2/v = 0.78; for the standard deviation ¢, = —0.4999 + 0.0004, c, = —0.2385 + 0.0011, x?/v = 0.72. The lack of dependence on « is illus-
trated in the bottom panels by connecting the fit residuals for the a-values 1.25 (dotted), 1.75 (dashed), and 2.25 (long-dashed). Note that the residuals have been
divided by the estimated errors in the values of m, and s, (which are so small for s, that all points coincide on the top plot).

-4 -2 0 2 4 -4 -2 0 2 4

LENL IR L L L O LN B LB L | BN

'T'lll]lllllllllll]ll
0.4 -
L n=30

f(n,a; x)
f(n,a; x)/N(0,1) — 1

v doea o by e booaa by baad o g by e g bas oo by by g o 1y

-4 -2 0 2 4 -4 =2 0 2 4
x =(b-m,)/s,

FiG. 2.—A comparison between f(n, «; b), shifted to zero mean and scaled to unit variance, and a standard normal distribution N(0, 1) for all sample sizes [except

3000, as that case is indistinguishable from N(0, 1)]. Thick lines are the f(n, a; x); thin lines are the relative differences with N(0, 1) (right scale). Three curves of each
type are drawn in each panel, corresponding to a = 1.25, 1.75, and 2.25; notice that the three are identical up to noise fluctuations.
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F1G. 3.—Scaled values of the quantiles X, as a function of sample size. The lines connect data with equal values of g and «. Dashed lines are drawn for reference at
the position where x, would be for a standard normal distribution. It is seen that the quantiles are quite consistent with a standard normal distribution for n > 100.

between « and X, was performed: for each « and n, 23 quantiles
were computed (of which only nine are shown in Fig. 3). We
calculated Spearman’s rank correlation coefficient (see, e.g.,
Lupton 1993, p. 107) between o and %, of each set of 13 pairs
(o, X,) that have the same n and g. There are 115 such sets, and
the distribution of the 115 rank correlation coefficients
obtained was compared with the theoretical distribution of
rank correlation coefficients expected for sets of 13 uncor-
related data points. A Kolmogorov-Smirnov test yielded a
23% probability that the 115 coefficients were drawn from the
theoretical distribution of coefficients for uncorrelated data;
therefore, we can safely state that the X, are indeed indepen-
dent of a.

3.2. Comparison with Other Statistics

One may well ask why we should go to such length in
exploring a new statistic when there are already many familiar
methods of testing hypotheses and comparing model distribu-
tions to data, such as maximum-likelihood estimation and
Kolmogorov-Smirnov tests.

Maximum-likelihood estimation is a good way of finding the
best-fit slope of a distribution, assuming it is of power-law type.
We found that it is not a good way of detecting a deviation
from power-law behavior: we fitted samples drawn from a pure
power-law distribution with a power-law model using
maximum-likelihood estimation (see also Crawford, Jauncey,
& Murdoch 1970). While this is the most accurate (i.e., lowest
variance) way of estimating the power-slope from the data, the
likelihood value at the best-fit slope, oy , does not reveal devi-
ations from a power-law distribution: the best-fit likelihood is
a function of the fitted ay,; alone for a given sample size and
parent distribution, regardless of whether or not a small bend
was present in the parent distribution.

Kolmogorov-Smirnov tests cannot be used directly to
answer the question we pose in this paper. This is because the
K-S distance between a model and data can only yield the
probability that the data are drawn from the model distribu-
tion in a simple manner if no parameters of the model have
been estimated from the data (e.g., if the model has free param-
eters which have been adjusted by fitting to the data). Since we

TABLE 1

RESULTS OF BENDING STATISTIC FOR THE THREE COMPLETE SUBSAMPLES
FROM THE FIRST-YEAR BATSE CATALOG

(ms) Mo (counts per bin)  fun  buw  Pub>ban)  Pufdys> dxsam)
64......... 135 72.0 128 —0.0164 0.640(5) 0.400(5)
256......... 148 147.8 133 0.0951 0.032(2) 0.027(2)
1024......... 193 3429 165 0.0609 0.096(3) 0.184(4)

NOTE—t,,;, is the duration of the time bins on which triggering for that sample is based. n,, is the total
number of bursts triggered on that timescale, i.e., bursts with C,,,/C .., > 1, excluding overwrites. C,, is the
uniform threshold adopted to create a complete subsample. n,,, is the number of bursts left in the complete
subsample. b,,,, is the value of the bending statistic, and the next column gives the probability of getting a
value of b > b, by chance from a pure power-law distribution. The last column is discussed in § 3.2.
Figures in parentheses indicate uncertainties in the last digits of the number.
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want to search for a bend independent of the best-fit slope, we
cannot directly use a K-S test. What we can try is the follow-
ing: find the slope, ags, that results in the smallest K-S distance
to the data among all possible power-law models and record
this distance dgs. Now find the distribution of this minimum
K-S distance under the null hypothesis that the distribution is
a power law via Monte Carlo simulations in which the above
fit procedure is applied to many independent samples (of the
same size as the data set) drawn from a pure power-law dis-
tribution. Using this distribution we can infer what is the prob-
ability P(dys > dgs sam) that value of dyg greater than that of the
actual data sample would arise by chance under H,. For small
enough P we would reject H,,.

We applied this test to the same data as the bending test (see
§ 4 and Table 1). In the cases studied, both tests are on average
about equally sensitive to detecting a smooth deviation from a
power law. However, the outcome of the bending test contains
additional information about the nature of the deviation, such
as whether the bend is up or down. This is an advantage if we
are seeking a specific type of deviation (as we are here). If we
are interested only in whether or not there is any kind of
deviation, we might prefer the K-S method. The advantage is
probably small, because the lowest order smooth deviation
from a pure power law is always a bend.

4. AN APPLICATION: GAMMA-RAY BURST BRIGHTNESSES

The origin of gamma-ray bursts is completely unknown, as
is their distance scale. However, we do know that bright
gamma-ray bursts, such as those seen by the Pioneer Venus
Orbiter (PVO, Chuang et al. 1992), have d log N( > C,,,)/
dlog C,,., = — 1.5, and fainter bursts, such as those seen by
SIGNE (Atteia et al. 1992) and BATSE (Meegan et al. 1992),
have slopes that are progressively shallower. (C,,,, is the peak
raw count rate of a burst at a specified time resolution.) The
most natural interpretation of this behavior is that up to some
characteristic distance the density of gamma-ray bursts is con-
stant. Beyond that either the density decreases and/or effects of
non-Euclidean space are visible. Comparison of peak intensity
distributions between different instruments is tricky because of
their different sensitivities and energy bands (see, e.g., Tamblyn
& Melia 1993 and Fenimore et al. 1993 for attempts to do so).
We therefore try to detect the effect of a steepening slope in the
log N( > C,,,)-log C,,., distribution of one data set, the first-
year BATSE catalog (BATSE Team 1993), using the bending
statistic discussed in § 3.1.

The first problem in this analysis is that we want to measure
the bending of the true brightness distribution, while the
observed one is distorted by selection effects. As a measure of
burst brightness, we shall choose the peak count rate in the
second brightest detector, C,,,,. It is available in the BATSE
public catalog and directly determines whether a burst is trig-
gered, so that the dominant selection effects that affect its
observed distribution are relatively easy to assess. The main
effect we should take into account is the varying sensitivity of
the BATSE detectors due to varying backgrounds. It causes
the observed log N(> C,,,,)-log C,.., distribution to become
incomplete at the lowest values of C,,,, which makes the slope
of the distribution shallower. Since the intrinsic effect we are
examining is of the same character, using a complete sample is
important. We have adopted the following procedure for con-
structing a complete sample: we choose one of the three
BATSE trigger timescales and use only bursts with
Cinax/Cimin > 1 (where C,;, is the smallest value of C,,, for

max
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which the detection of a burst is deemed significant). The
varying C,;, for the bursts in that list is then replaced with a
single uniform value C,,. This means discarding all bursts with
Crax < C,.; however, we should also discard those bursts
observed when C,;, > C,, because at such times only bright
bursts could be seen and including them would cause bright
bursts to be overrepresented. We now have a complete sample
for any C,, which corresponds to the bursts detected by a
fictitious instrument that operated only when the C_;, of
BATSE was less than C,, and had a uniform threshold of C,, at
those times. Any value of C, yields a complete sample, but we
fix our choice to be the one that yields the largest sample.
Lynden-Bell (1971) and Petrosian (1993) have shown how to
reconstruct the distribution of C,,,, without discarding bursts,
but the weights of bursts at the faint end become variable
through that procedure. This implies that the statistical
properties of such a reconstructed sample are different from a
simple power law. For the purpose of illustration, we stay with
our simpler method and accept the loss of 5%—15% of the
bursts. Since there are three trigger timescales, we constructed
three complete subsamples in the manner described above.
Their log N(> C,,)-log C,.. distributions are shown in
Figure 4.

A second effect that distorts the distribution stems from the
fact that C,,, is the count rate in the second most brightly
illuminated of the eight BATSE detectors. It is not corrected
for the fact that the angle between the direction of the burst
and the normal to that detector varies from burst to burst: for
an ideal octahedron configuration of equal detectors, the
cosine of this angle varies from 1/3 to (2/3)}/2 with a mean of
0.62 and rms deviation of 0.10. This means that the observed
Crax Will vary by the same factor even if the true peak count
rate of all bursts were the same. However, if the true peak
count rates have a pure power-law distribution, the observed
Cnax distribution will also have one. On the other hand, any
deviation from a pure power law will be smeared out some-
what, so by ignoring this effect we are less likely to detect the
deviation from a pure power law.

The expectation value of b is positive if the slope of log
N(> C,.)-log C,., steepens with increasing C,,,, and nega-
tive if it flattens. We are looking for a steepening, i.., for b
significantly greater than zero, so we perform one-sided tests
on b, quoting the probabilities that b > b, rather than |b| >
| beam |- We used Monte Carlo simulations to determine con-
fidence levels because deviations from normality in the dis-
tribution of b are still noticeable with the currently available
sample sizes (see § 3.1). The results of applying the bending
statistic to the three complete samples described above are
somewhat ambiguous (Table 1). There is an indication for a
bend in the 256 ms and 1024 ms samples but none at all in the
64 ms sample. This may just be a statistical fluctuation: the
evidence for a bend is not overwhelming in any of the samples,
and the variation of b over the three samples could reflect the
statistical fluctuations expected for an effect that is just barely
measurable with the present sample sizes. On the other hand,
the 256 ms sample does have the shallowest slope at the faint
end, and because gamma-ray bursts have a distribution in
duration, it is likely that the different trigger timescales do
select slightly different bursts. Some of the differences in the
distributions of C,,, could therefore be real, but we cannot
claim such an effect with any confidence on the basis of the
present analysis. If the true value of b is actually between the
values measured for the current 256 ms and 1024 ms samples, it
will take 300-800 bursts to detect the effect with 3 ¢ signifi-
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Fig. 4—Thelog N( > C,,,,)-log C,,, distribution for the three complete subsamples derived from the first-year BATSE catalog.

cance. This means that it may already be possible with the
complete BATSE sample that is presently available. Even-
tually, the steepening of the power-law slope must be found
because we know from the PV O data that very bright bursts
have a steeper log N(> C,,,,)-log C,.., than the BATSE data.

5. CONCLUSION AND DISCUSSION

We have found a class of statistics that can be used to con-
struct tests to determine whether a set of data is consistent with
being drawn from a power-law parent distribution. Investiga-
tion of one simple member of this class of statistics, which we
named the “bending statistic,” showed that its properties are
independent of the parameters of the parent population. This
means that it can be used to test the general hypothesis “this
sample is drawn from a power-law distribution,” rather than
the more restricted hypothesis “this sample is drawn from a
power-law distribution with power-law index o.” Since this
particular statistic was chosen without knowing that it would
have that property, it may turn out that more complicated
members of the class also have a distribution that does not
depend on the power-law index. The question of which statistic
in the class is the optimum choice depends on the problem at
hand, especially what type of deviation from a power-law is
expected.

With the sample sizes in the available first-year BATSE
catalog and the values of the bending statistic measured from
them, no conclusive evidence is found for a steepening of the
slope of log N( > C,,,,)-log C,., toward larger values of C,,,.
This is in agreement with our earlier work in which we
analyzed the data within the context of a specific model in
order to determine the dependence of the density of gamma-
ray bursts on distance. A sample of 400 bursts was found only
marginally sufficient to detect a transition between the slopes
of bright and faint bursts, as evidenced by the fact that the
fitted value of the core radius of the density distribution had a
large error (Lubin & Wijers 1993). The method described here
is somewhat more sensitive to slope changes.

We expect that the change in slope that is tentatively indi-
cated by the longer trigger timescale data sets from the first-
year BATSE catalog should be measurable with good
confidence from the full set of BATSE bursts that has been
collected to date.
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