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Evolution of density perturbations in a flat FRW universe

P. G. Miedeméa
Koninklijke Militaire Academie, Kasteelplein 10, NL-4811 XC Breda, The Netherlands

W. A. van Leeuwen
Universiteit van Amsterdam, Instituut voor Theoretische Fysica, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands
(Received 15 July 1996

The gauge-invariant perturbation equations proposed in the preceding article are solved in this article in
order to study the evolution of the energy density contrast in the radiation- and matter-dominated eras. The
results are compared with earlier non-gauge-invariant as well as gauge-invariant treatments. In a number of
cases the solutions are different. In the radiation-dominated era growing perturbations are found, where other
treatments lead to constant or decaying energy density perturbdi856-282196)06524-1]

PACS numbds): 98.80.Bp, 04.25.Nx, 98.65.Dx

I. INTRODUCTION - :
6(1)+ a6(1)+ﬁ6(1):’yw(1), (1b)

As has been discussed in the companion art{de  \here the quantity;) is defined as a combinatidh69) of
former attempts to formulate a gauge-invariant perturbatlorg(l) and vy

theory have led to equations that differ from ours, for physi-

cal quantities of which the definitions differ from ours.

Examples of such physical quantities are the energy W)= V)T
density perturbatione(,, its associated density contrast

6:=€q)le(0), and the particle number density perturbationThe coefficientsy, 8, andy are given by(1.63) with (1.64).
v(1). We donotclaim, however, that the results of others areThe Hybble factorH, the zero-order energy densityy),
wrong. What we do claim is that our gauge-invariant ap-and the zero-order particle number density, are solutions

proach yields the nonrelativistic limit in @ more transparentyf the unperturbed Einstein equatioit<.6) for a flat, unper-

and natural way than former gauge-invariant treatments.  ,rhed Friedmann-Robertson-Walk&RW) universe:
In this article we will apply our method to determine ex-

N(o)

_ . 2
€0) T Po) “ @

plicit expressions for the gaqge-mvanant der?sny contﬁist H=—3H2+1 K(2(0)~ P(0y)» (33)
on the isotropic energy density backgrousg, in two lim-

iting cases, namely, the radiation-dominated and the matter- H2=1 3b)
dominated eras of the expanding universe. After what has 3 K8

been said in the first phrase of this section, it will not come :

as a surprise that our final results often differ from those &)= —3H(&(0)* P(0)) (39
obtained earlier. An overview of the various results of the .

different approaches to the perturbation theory in question is Noy=—3HN(. (3d)

given in Table I. The most striking difference is the occur-
rence of growing solutions, where other approaches lead tdhese are three differential equations; Equatiy is a con-

constant or even decaying solutions. dition only on the initial values. The constaatis equal to
Formula numbers preceded by a roman numeral | refer t8 #G/c* with G as Newton’s gravitational constant andis
equation numbers in the companion artiglg. the speed of light. A dot denotes differentiation with respect
to ct. The equation of statp=p(n,e) is supposed to be a
Il. GAUGE-INDEPENDENT PERTURBATION given function ofn, the particle number density, ard the
EQUATIONS: RE SUME energy density. In order to solve Eq4), we first have to

] _ ) solve the zero-order equatio(®). We will limit the discus-
It is our purpose to study the behavior of the density consjon to two extremal cases, namely, the radiation- and

trast, 5: = €1)/£(0), in an expanding universe. The quantities matter-dominated universe. This will be the subject of Secs.
€(1) (the energy density perturbatipand »(;y (the particle || and Iv.
number density perturbatiprobey the manifestly gauge-

invariant equations. 70y lll. DENSITY CONTRAST IN THE RADIATION-

DOMINATED ERA

o= —3H|1- P |, (1a)
o eotPo) P’ Since in a radiation-dominated universe, the pressure is
equal to one-third of the total energy density
*Electronic address: p.miedema@kma.nl p=1e¢, (4)
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TABLE |. Growth rates of the density contrast obtained from different perturbation theories. We distin-
guish between large scale\{~«~) and small scale N—0) perturbations of the radiation- and matter-
dominated eras. Our resulfiglvL ) are compared to those of Mukhanov, Feldman, and Brandent@1§&)
and to those of the nongauge-invariant theory in synchronous coordii@@es

Scale Perturbation theory Radiation-dominated era Matter-dominated era
p#0 p=0
MvL t t1/2 t2/3 t—l t2/3
N—o MFB t0 - t0, t =53
sSC t t1/2 tfl _ t2/3 tfl
MvL t1/2 t71/6 t2/3
A—0 MFB t0, =12 - t23, 17553
sC t° - t23 1
the set of unperturbed equatio(® reduces to , €1)(t,x)
i - (DHAH
S(t,xy =—"—"=. (10
: 2,1 (o)1)
H=-3H +§K8(0), (56)
_ However sincee(y is the—newly defined—gauge-invariant
H =3 ke (o), (5b) qguantity used in Ref[1], the density contrastlO) differs
_ from the density contrast defined elsewhere. Upon substitut-
g0)= —4He(q). (50 ing Eqg. (10) into Eq. (9) and using Eqgs(5), we arrive at a

second-order homogeneous differential equation for our den-
We have omitted Eq(3d) because we are not interested in sity contrasts(t,x'):
the time behavior of the particle number density of the
radiation-dominated era and because it does not occur in the S5—Ho+1V25+2H25=0. (11)
remaining equations. The solutions of E(s). are

B We may try to solve Eq(1l) by Fourier analysis of the
H(t)=3(ct)™, t=to, (63 function 6. Writing

_3 -2 . . 2m
eo(=7-(CH%  t=to, (6b) a(tx)=a(t,qe'",  q=[ql= =, (12)

wheret is the time at which the radiation-dominated era set
in. Using the relation between the Hubble paraméteand

the scale factoa, H:=a/a, one finds, from Eq(6a),

Swhere is the wavelength of the perturbation aifd=—1,
the evolution equatioll) for the amplitudes(t,q) reads

2

t) 12 5—i5+q—(l)_15+i5=0 (13
t—) . (7) 2ct”  3a’(tg) \tg 2(ct)? '
0

where we have used Eq3.25), (6a), and(7). Let us rewrite
this equation in such a way that the coefficients become di-
mensionless. To that end we take, as an independent vari-

a(t)=a(tp)

We will now rewrite Eq.(1b) as an equation for the den-
sity contrast. From Eq4) we have

p.=3% pa=0, (8 @bl

as follows with Eq.(I.5). Upon substituting Eqg4) and (8) e l =t (14)
into the coefficient$l.63) with (1.64), one finds that Eq.1b) Tty "

reduces to

. From Eq.(14) we get
6(1)+7H 6(1)+ % V26(1)+6H26(1):O. (9)
n dn
In view of Eq. (8), the coefficienty in Eq. (1b) vanishes. WZ[ZH(%)]”W, n=12,..., (15

Therefore Eq(1a) need not be considered as far as Edp)
is concerned. Moreover, we omit E(La since we are not
interested in the evolution of the ancillary quantity .

We now can rewrite the evolution equati@) in terms of
the density contrast. As usual, we define the latter as the
quotient of the energy density perturbation and the back- 5,_i5,+ 1 a Tl
ground energy density 27 T 12a%(tg)H3(ty) 272

where we have used E(a). Using Eqs(14), (6a), and(15),
Eq. (13) for the density contrasé(7,q) can be written as

2
6=0, (16
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where a prime denotes differentiation with respect.tdhis

equation can be solved easily with a computer algebra pro-

gram, e.g.,MAPLE V [2]. The result is, transforming back
from rtot,

1/2
5(t,q)=[Clsin01(t)+Czcosvl(t)]<5) , (17
where the functiorr,(t) is given by
t 1/2
01('[)125(,[—> , (18)
0
with
q
=— 19
T At (B 49
and the constant§, andC, are given by
~ _ cog S(to,q)
C1=6(to,q)siné—~ E o(to,q) — T’f&} (209
sin S(to,
Ca= (1o, a) 00+ ?g[ 8(to, ) - ,:("—tcj)} (200
where we have used that
S(to,a)=8(r=10), d(to,q)=2H(to)d'(r=17), (21

see Eq(15). We now will consider our general result7)—
(20) for the radiation-dominated era in two limiting cases,
namely for large and small wavelength®f the perturbation
(12).

A. Large-scale perturbations

EVOLUTION OF DENSITY PERTURBATIONS IN A ...
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B. Small-scale perturbations

In the limit A\ — 0 (or, equivalentlyg— o) we find, using
Egs.(17)-(20),

112
5("&)”&"0#1)(5) cosr(t), (23

where

t 1/2
E) ) (24

with ¢ given by Eq.(19). Hence, small-scale perturbations
are seen to oscillate with an amplitude which increases pro-
portional tot'2. The nongauge-invariant perturbation theory
in synchronous coordinates as well as the gauge-invariant
theory of MFB vyield small-scale energy density perturba-
tions oscillating with a constant amplitude: see R6f, Eq.
(88.19 and Ref.[7], Eq. (5.46), respectively.

02(01:5[1—

IV. DENSITY CONTRAST IN THE MATTER-
DOMINATED ERA

Once protons and electrons recombine to yield hydrogen
at a temperature around 4000 K, the radiation pressure be-
comes negligible, and the equations of state reduce to those
of a nonrelativistic monatomic perfect ga#/einberg[3],
Egs.(15.8.20—(15.8.21]

e(n,T)=nmyc?+ 3nkgT, p(n,T)=nkgT, (25
wherekg is Boltzmann'’s constantn, the proton mass, and
T the temperature of the matter.

We first consider the zero-order Einstein equati¢8s
The maximum temperature in the matter-dominated era oc-
curs around the timég, of the decoupling of matter and ra-
diation: T(ty) ~4000 K. Hence, from Eq25) it follows that
the pressure is negligible with respect to the energy density:

~ 2 — 10 [P H
Large-scale perturbations are perturbations of large wave?/ & ~KgT/myc°<3.7X 10" ™" This implies that, to a good

lengths. In the limit of large wavelengths,—, the magni-
tude of the wave vectorg=2w/\ vanishes. Writing

5(t)=48(t,q=0) and &(t)=&(t,q=0), we find, from Egs.

(17)—(20), for t=t,,
1/2 y
" a2
0

~ H(to)

S(to)

R R T9)

26(tg) —

(22

E .

Consequently, in this limit, there is no oscillatory character

any more.

The nongauge-invariant perturbation theory in synchro-

nous coordinatef3—6] yields, next to the growth rates’
andt of Eg. (22), also a solution which is proportional to
t~ ! [see Ref[5], Eq.(86.20, and Ref[6], Eq.(9.12])]. The
latter solution is a gauge solutigh,6], which in our gauge-

<+

approximation, &gy * po)~¢&( and s(o)~n(0)ch2. Thus

as is well known, in an unperturbed flat FRW universe, one
can neglect the pressure with respect to the energy density.
Using the above facts, we find that the Einstein equat{8ns
reduce to

H=—3H2+ } ke (g, (263
HZ:%KS(O), (26b)

Note that in a matter-dominated universe, E§&) and(3d)
are identical. Thus the general solutions of the zero-order
Einstein equations aie]

invariant approach does not show up. Hence, our result and
the classical result happen to be closely parallel. This is in

— 2 -1
contrast with what is found in the gauge-invariant treatment HO=3(cH) ", t=to, (273
of Mukhanov, Feldman, and Brandenber@dFB [7]), who
find a mode of constant amplitude: see their Eg47). g(o)(t)= ik(ct) 2, t=t,, (27b
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wheret, is the time at which the matter-dominated era set415.5.16]. Moreover, for low temperatures the pressure is

in. Using the definition of the Hubble parametdr=a/a,  Vvanishingly small. This case will be considered in Sec. IVB.

one finds from Eq(27a for the scale factor Upon substituting Eqs29), (32), and(35) into Eq. (1b)
with (1.63) and(1.64), one arrives at

213

a(t)=a(tp) (28 5 kgT

9H?+ 3 ch2V2 €1=0. (36

In the next two subsections we consider the perturbed flat

FRW universe. We distinguish between the nonzero and th&ince, as noted beforekgT/myc®<1 in the matter-
Zero pressure cases. dominated era, Eq(32) survives only as a coefficient of

V2. Equation(36) can be rewritten as an equation for the

i .
A. Nonzero pressure density contrast(t,x'):

Since kgT/myc?<1 in the matter-dominated era, one . . [5 keT _, 47G
may verify that, to a good approximation, 6+2Ho+| 3 chzV & f0]o=0, (37
w1)~0, (29

where we have used the definition of the density contrast,
Eq. (10, and the Einstein equationg26). Writing
8(0)=p(0)02, Eq. (37) becomes the familiar equation of the
Newtonian theory of gravity

implying that the Einstein equatiofla) is identically satis-
fied. This implies, in turn, that Eq1b) is homogeneous. In
order to calculate the coefficients and 8 occurring in Eq.

(1b), we need the equation of stgpe= p(n,e). Eliminating b2 4G
the absolute temperatufiefrom Egs.(25), one finds S+ 2H S5+ _§v2__2_p(0)) 5=0, (39
c c
p(n,e)= 3 (e—nmyc?). (30)

[Weinberg, Eq(15.9.23] whereuv is the speed of sound of

From this equation it follows that a nonrelativistic gas, which for a monatomic gas is given by

5 kgT
P.=5, Pa=—5myc?, (31) ve= ‘/§miH' (39)

so that, to a good approximation, o
We thus have shown that the purely relativistic equat®i)

N(0)Pn 5 kgT happens to be identical to the corresponding equation found
~ (32 from the Newtonian theory of gravity. Although Eq&7)
and(38) have the same appearance, their derivation is differ-

where we have used Eq5). From Eq.(1.64) and (32) it ~ €nt: see Weinberg, Chap 15, Sec. 9 for a derivation of Eq.

follows that the quantity. figuring in the coefficientsr and  (38) with the help of the Newtonian theory.

8 occurring in Eq.(1b) is a function of the matter tempera- _MFB, Sec. 5.3 did not arrive at E¢37), but obtained a
ture: different result. Equatior(56) of Ref. [8] has been made

gauge invariant by choosing the integration constartjual
to zero. This procedure works well if the pressure vanishes.

&

— 5,
8(0)"’ p(o) 3 mHC

_'I_
(= T (33 We will come to Eq.(37). From the constraint equation
(26b), it follows that Eq.(37) can be written
In order to determing as a function of the Hubble parameter ) 5 KkaT 3
H, we recall the following: After decoupling of matter and S+2HS+ 3 mBCZVZ‘_ E|_|2 5=0. (40)
H

radiation at 4000 K, the temperture of the matfgr,is no
longer locked to the photon temperatdrg. However, when As usual, we solve Eq40) by Fourier analysis of the func-
T,>2000 K, the matter temperature still follows the photontion 5 Fr’om Eqs.( 25).and (312) it follows y

temperature quite closekgee Weinberg, Chap. 15, Seg. 5 ' qs.l.

Since the photon temperature is, during the whole history of 2

q

the universe, inversely proportional to the scale factor, we V25(t,x) = >—4&(1,q). (41)
have, to a good approximation a“(t)
T~T,xa !, T.,>2000K. (34  Furthermore, from Eqs(27), (28), and (34) we find that
7 7 T/(a?H?) is independent of the time. Hence, we have
Combining Eqs(33) and(34), one finds
2 T() 9°  T(tp)
TV2=—2—q 5 HY(t)=——— =2 H3(t), (42
{=—-H, T,>2000 K, (35 a(t) H(t) a’(t,) H(ty) ’

where we have used thaH:=a/a. For temperatures whereq is the wave vector associated with the scale of a
T,<2000 K, the thermal contact between matter and radiafluctuation andt, is the present time. Using E@42), Eq.
tion is negligible, implying thaff<a? [see Weinberg, Eq. (40) can be rewritten in the form



S+2HS— 2 5H2(1—w)=0, (43)
where the constant is given by
10 g* KkgT(t 1
q B ( p) (44)

’u::gaz(tp) muc? HA(ty)

We now switch to a dimensionless timewith the help of
Egs.(14) and(279. We have

dn dn
WZ[% H(to)]ndTn,

n=12,..., (45)

so that Eq.(43) can be written in the form of a Euler equa-
tion

& 4 &' 2 1 6=0 46

+3,0'—32(1=n)6=0, (46)

where a prime denotes differentiation with respectto
Equation (46) happens to be identical to E§15.9.44 of

Weinberg, where it applies, however, to a different physica

situation. Using thafsee Eq(45)]

. 3
6(to,q)=8(7=10), &(to,q)=5H(t)d'(r=14q), (47)

one finds, fort=t,

~1/6+(1/6) V25~ 24u
5(I,Q)=C+<G)

<25
1 M ﬂ!

]

(48b)

+C_ (483

t ) —1/6—(1/6) V25— 24u

to

25(10,9)

1
6 2o D+

5(“1):[5(%,(1)"'

-1/6
t

to

25

X L

o(t,q)=| &(tg,q)cosrs(t) +| d(ty,q)

t —1/6
E )

where the constanS, andC_ are given by

45(t0,q)
H(to)

sino3(t)

24— 25

[1+ 25— 24#]5(t0,q)+%$,)q)
0

C.:==+ ,

- 2\/25—24u

and the functionors(t) is given by

(49

(50

o3(t):=5v24u—25 In( tt—o> .

EVOLUTION OF DENSITY PERTURBATIONS IN A ...

7241

Note that Eq(48b) can be obtained from Eq&183 or (48¢)

by taking the limit u— 2. We consider the general result
(48)—(50) for the matter-dominated era in two limiting cases,
namely for large and smal.

Large-scale perturbations

In the limit A\—o the magnitude of the wave vectar
vanishes. Writings(t)= &(t,q=0) ands(t)=&(t,q=0) we
find, from Eqgs.(44), (483, and(49),

3 25(ty) | t|*°
o(t)= 55(t°)+5H—(to) &
2 258(to)

+ (51

t -1
5ot~ 5H(to)}(a) ‘

Thus large-scale perturbations grow proportionai’®

Small-scale perturbations.

In the limit A—0 the magnitude of the wave vectqr
Ibecomes large. From Eqgl4), (480, and(50) we get

t
to

Thus small-scale perturbations decrease proportional to
t_l/6.

—1/6

o(1,0)~ 6(to,q) cosr3(t). (52)

B. Zero pressure

When the photon temperature has dropped to
T,~2000 K, the pressure has become negligible. In Ref.
[1], Sec. VI, it has been shown that if the pressure vanishes,
thene(;) obeys the first-order differential equation
as follows from Eqs(l.78c) and(1.78d). Using Eqs(10) and
(260, one finds that the density contrastobeys the first-
order differential equation

5—SH=0. (54)

The solution of Eq(54) is

t 2/3
=R

where we have used: =a/a and Eq.(28). The resul{(55) is
independentf A, i.e., of the scale of a perturbation.

The Newtonian perturbation theof$—6] yields a second-
order differential equation for the density contr@shamely
Eqg. (38) with v3=0 [see, e.g., Weinberg, E¢L5.9.25 with
solutions(15.9.29 and(15.9.30].

MFB find that the evolution of a density perturbation does
depend on the scale of that perturbation: see thei(£§3).
They conclude that small-scale perturbations increase as
t?/® and that large-scale perturbations remain constant.

8(t,x') = 8(tg,x") (55)
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V. SUMMARY AND CONCLUSION equation of the classical Newtonian theory of gravity with

Starti ¢ with fostl variant perturba.€1) &S Source term. _
arting out with a manitestly gauge-invariant perturba- “y,-p gefine a gauge-invariant quantide (@ by their Eq.

tion scheme(1.70) of a companion article, we obtained the (5 17) and interpret it as an energy density perturbation. This
energy density contrast: = €(;)/£(g). The results are col- jnterpretation is based upon the assumption that their Eq.
lected in Table I. A most striking difference between our(1.92) reduces to the Poisson equation in the Newtonian
treatment and the perturbation theories of the literature is thimit: see the text in Ref.7] just below Eq(5.19. However,
t¥2 growth rate of the energy density contrast in thethe perturbation theory of MFB has not the usual Newtonian
radiation-dominated era in the limit of small wavelengthslimit: since the Hubble parametet+ 0, Eq.(1.92) cannot be
(A—0). cast into the form of a Poisson equation with(%) as source

In the nongauge-invariant perturbation theory in synchroterm. Therefore the gauge-invariant functigef®’ cannot be
nous coordinategsee, e.g., Eqs(l.40)], the functione,, ~ INterpreted as the perturbation on the energy density.
that is used to describe an energy density perturbation ilsﬁ vlz;]riasnetC.u\;nsu)i]; ? c%mpl)zam(olré??rtxrlﬁcxv?as gg'e?rzn? f?oanlqjge_
gauge dependenThis implies that ;) has no physical sig- 9 Yew) By £4- 1.3 Ly

i A he Sonct be i the definition of the quantitys(9) used by MFB. In Sec.
nificance. As a consequence, the functiqRy cannot be In- v/ of Ref. [1] we consider the set of perturbation equations
terpreted easily as an energy density perturbation.

i i g " : (1.45) in the limit that the pressure vanishes. We have shown
Since only gauge-invariantquantities have an inherent that in this limit Eqs.(1.45) imply, for H#0, the usual New-
physical meaning, a first step is to define a gauge-invarianbnian limit, i.e., the Poisson equatiotis89)—(1.90) with
quantity .1y, which may play the role of an energy density €(;y as source term. This leads us to the conclusion that the
perturbation. Since there are many possibilities to definguantitye,, can indeed be interpreted as the perturbation on
€(1), one has to choose this quantity in such a way that théhe energy density. Thus our gauge-invariant approach yields
perturbation theory based upon it has a Newtonian limit, i.e.the usual nonrelativistic limit in a more transparent and natu-
one of the equations can be cast into the form of the Poissoral way than the treatments of MFB and predecessors.
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