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Evolution of density perturbations in a flat FRW universe

P. G. Miedema*
Koninklijke Militaire Academie, Kasteelplein 10, NL-4811 XC Breda, The Netherlands

W. A. van Leeuwen
Universiteit van Amsterdam, Instituut voor Theoretische Fysica, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherla

~Received 15 July 1996!

The gauge-invariant perturbation equations proposed in the preceding article are solved in this article in
order to study the evolution of the energy density contrast in the radiation- and matter-dominated eras. The
results are compared with earlier non-gauge-invariant as well as gauge-invariant treatments. In a number of
cases the solutions are different. In the radiation-dominated era growing perturbations are found, where other
treatments lead to constant or decaying energy density perturbations.@S0556-2821~96!06524-1#

PACS number~s!: 98.80.Bp, 04.25.Nx, 98.65.Dx
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I. INTRODUCTION

As has been discussed in the companion article@1#,
former attempts to formulate a gauge-invariant perturba
theory have led to equations that differ from ours, for phy
cal quantities of which the definitions differ from our
Examples of such physical quantities are the ene
density perturbatione (1) , its associated density contra
d:5e (1) /« (0) , and the particle number density perturbati
n (1) . We donot claim, however, that the results of others a
wrong. What we do claim is that our gauge-invariant a
proach yields the nonrelativistic limit in a more transpare
and natural way than former gauge-invariant treatments.

In this article we will apply our method to determine e
plicit expressions for the gauge-invariant density contrasd
on the isotropic energy density background« (0) in two lim-
iting cases, namely, the radiation-dominated and the ma
dominated eras of the expanding universe. After what
been said in the first phrase of this section, it will not com
as a surprise that our final results often differ from tho
obtained earlier. An overview of the various results of t
different approaches to the perturbation theory in questio
given in Table I. The most striking difference is the occu
rence of growing solutions, where other approaches lea
constant or even decaying solutions.

Formula numbers preceded by a roman numeral I refe
equation numbers in the companion article@1#.

II. GAUGE-INDEPENDENT PERTURBATION
EQUATIONS: RÉSUMÉ

It is our purpose to study the behavior of the density c
trast,d:5e (1) /« (0) , in an expanding universe. The quantiti
e (1) ~the energy density perturbation! and n (1) ~the particle
number density perturbation! obey the manifestly gauge
invariant equations~I.70!:

v̇~1!523HS 12
n~0!pn

«~0!1p~0!
Dv~1! , ~1a!
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ë ~1!1aė~1!1be~1!5gv~1! , ~1b!

where the quantityv (1) is defined as a combination~I.69! of
e (1) andn (1) :

v~1! :5n~1!2
n~0!

«~0!1p~0!
e~1! . ~2!

The coefficientsa, b, andg are given by~I.63! with ~I.64!.
The Hubble factorH, the zero-order energy density« (0) ,
and the zero-order particle number densityn(0) are solutions
of the unperturbed Einstein equations~I.16! for a flat, unper-
turbed Friedmann-Robertson-Walker~FRW! universe:

Ḣ523H21 1
2 k~«~0!2p~0!!, ~3a!

H25 1
3 k«~0! , ~3b!

«̇~0!523H~«~0!1p~0!!, ~3c!

ṅ~0!523Hn~0! . ~3d!

These are three differential equations; Equation~3b! is a con-
dition only on the initial values. The constantk is equal to
8pG/c4 with G as Newton’s gravitational constant andc as
the speed of light. A dot denotes differentiation with resp
to ct. The equation of statep5p(n,«) is supposed to be a
given function ofn, the particle number density, and«, the
energy density. In order to solve Eqs.~1!, we first have to
solve the zero-order equations~3!. We will limit the discus-
sion to two extremal cases, namely, the radiation- a
matter-dominated universe. This will be the subject of Se
III and IV.

III. DENSITY CONTRAST IN THE RADIATION-
DOMINATED ERA

Since in a radiation-dominated universe, the pressur
equal to one-third of the total energy density

p5 1
3 «, ~4!
7237 © 1996 The American Physical Society
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TABLE I. Growth rates of the density contrast obtained from different perturbation theories. We d
guish between large scale (l→`) and small scale (l→0) perturbations of the radiation- and matte
dominated eras. Our results~MvL ! are compared to those of Mukhanov, Feldman, and Brandenberger~MFB!
and to those of the nongauge-invariant theory in synchronous coordinates~SC!.

Scale Perturbation theory Radiation-dominated era Matter-dominated era
pÞ0 p50

MvL t, t1/2 t2/3, t21 t2/3

l→` MFB t0 2 t0, t25/3

SC t, t1/2, t21 2 t2/3, t21

MvL t1/2 t21/6 t2/3

l→0 MFB t0, t21/2 2 t2/3, t25/3

SC t0 2 t2/3, t21
in
he
t

et

-

th
ck

t

itut-

en-

di-
vari-
the set of unperturbed equations~3! reduces to

Ḣ523H21 1
3 k«~0! , ~5a!

H25 1
3 k«~0! , ~5b!

«̇~0!524H«~0! . ~5c!

We have omitted Eq.~3d! because we are not interested
the time behavior of the particle number density of t
radiation-dominated era and because it does not occur in
remaining equations. The solutions of Eqs.~5! are

H~ t !5 1
2 ~ct!21, t>t0 , ~6a!

«~0!~ t !5
3

4k
~ct!22, t>t0 , ~6b!

wheret0 is the time at which the radiation-dominated era s
in. Using the relation between the Hubble parameterH and
the scale factora, H:5ȧ/a, one finds, from Eq.~6a!,

a~ t !5a~ t0!S tt0D
1/2

. ~7!

We will now rewrite Eq.~1b! as an equation for the den
sity contrast. From Eq.~4! we have

p«5 1
3 , pn50, ~8!

as follows with Eq.~I.5!. Upon substituting Eqs.~4! and~8!
into the coefficients~I.63! with ~I.64!, one finds that Eq.~1b!
reduces to

ë ~1!17H ė ~1!1
1
3 ¹2e~1!16H2e~1!50. ~9!

In view of Eq. ~8!, the coefficientg in Eq. ~1b! vanishes.
Therefore Eq.~1a! need not be considered as far as Eq.~1b!
is concerned. Moreover, we omit Eq.~1a! since we are not
interested in the evolution of the ancillary quantityv (1) .

We now can rewrite the evolution equation~9! in terms of
the density contrast. As usual, we define the latter as
quotient of the energy density perturbation and the ba
ground energy density
he

s

e
-

d~ t,xi !:5
e~1!~ t,x

i !

«~0!~ t !
. ~10!

However sincee (1) is the—newly defined—gauge-invarian
quantity used in Ref.@1#, the density contrast~10! differs
from the density contrast defined elsewhere. Upon subst
ing Eq. ~10! into Eq. ~9! and using Eqs.~5!, we arrive at a
second-order homogeneous differential equation for our d
sity contrastd(t,xi):

d̈2H ḋ1 1
3 ¹2d12H2d50. ~11!

We may try to solve Eq.~11! by Fourier analysis of the
function d. Writing

d~ t,xi !5d~ t,q!eiq•x, q5uqu5
2p

l
, ~12!

wherel is the wavelength of the perturbation andi 2521,
the evolution equation~11! for the amplituded(t,q) reads

d̈2
1

2ct
ḋ1

q2

3a2~ t0!
S tt0D

21

d1
1

2~ct!2
d50, ~13!

where we have used Eqs.~I.25!, ~6a!, and~7!. Let us rewrite
this equation in such a way that the coefficients become
mensionless. To that end we take, as an independent
able,

t:5
t

t0
, t>t0 . ~14!

From Eq.~14! we get

dn

cndtn
5@2H~ t0!#

n
dn

dtn
, n51,2, . . . , ~15!

where we have used Eq.~6a!. Using Eqs.~14!, ~6a!, and~15!,
Eq. ~13! for the density contrastd(t,q) can be written as

d92
1

2t
d81S 1t q2

12a2~ t0!H
2~ t0!

1
1

2t2D d50, ~16!
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where a prime denotes differentiation with respect tot. This
equation can be solved easily with a computer algebra
gram, e.g.,MAPLE V @2#. The result is, transforming bac
from t to t,

d~ t,q!5@C1sins1~ t !1C2coss1~ t !#S tt0D
1/2

, ~17!

where the functions1(t) is given by

s1~ t !:5jS tt0D
1/2

, ~18!

with

j:5
q

a~ t0!H~ t0!A3
, ~19!

and the constantsC1 andC2 are given by

C15d~ t0 ,q!sinj2
cosj

j
Fd~ t0 ,q!2

ḋ~ t0 ,q!

H~ t0!
G , ~20a!

C25d~ t0 ,q!cosj1
sinj

j
Fd~ t0 ,q!2

ḋ~ t0 ,q!

H~ t0!
G , ~20b!

where we have used that

d~ t0 ,q!5d~t51,q!, ḋ~ t0 ,q!52H~ t0!d8~t51,q!, ~21!

see Eq.~15!. We now will consider our general result~17!–
~20! for the radiation-dominated era in two limiting case
namely for large and small wavelengthsl of the perturbation
~12!.

A. Large-scale perturbations

Large-scale perturbations are perturbations of large wa
lengths. In the limit of large wavelengths,l→`, the magni-
tude of the wave vectorq52p/l vanishes. Writing
d(t)[d(t,q50) and ḋ(t)[ḋ(t,q50), we find, from Eqs.
~17!–~20!, for t>t0,

d~ t !5F2d~ t0!2
ḋ~ t0!

H~ t0!
G S t
t0
D 1/22Fd~ t0!2

ḋ~ t0!

H~ t0!
G t
t0
. ~22!

Consequently, in this limit, there is no oscillatory charac
any more.

The nongauge-invariant perturbation theory in synch
nous coordinates@3–6# yields, next to the growth ratest1/2

and t of Eq. ~22!, also a solution which is proportional t
t21 @see Ref.@5#, Eq. ~86.20!, and Ref.@6#, Eq. ~9.121!#. The
latter solution is a gauge solution@5,6#, which in our gauge-
invariant approach does not show up. Hence, our result
the classical result happen to be closely parallel. This is
contrast with what is found in the gauge-invariant treatm
of Mukhanov, Feldman, and Brandenberger~MFB @7#!, who
find a mode of constant amplitude: see their Eq.~5.47!.
o-
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B. Small-scale perturbations

In the limit l→0 ~or, equivalently,q→`) we find, using
Eqs.~17!–~20!,

d~ t,q!'d~ t0 ,q!S tt0D
1/2

coss2~ t !, ~23!

where

s2~ t !:5jF12S tt0D
1/2G , ~24!

with j given by Eq.~19!. Hence, small-scale perturbation
are seen to oscillate with an amplitude which increases p
portional tot1/2. The nongauge-invariant perturbation theo
in synchronous coordinates as well as the gauge-invar
theory of MFB yield small-scale energy density perturb
tions oscillating with a constant amplitude: see Ref.@5#, Eq.
~88.12! and Ref.@7#, Eq. ~5.46!, respectively.

IV. DENSITY CONTRAST IN THE MATTER-
DOMINATED ERA

Once protons and electrons recombine to yield hydro
at a temperature around 4000 K, the radiation pressure
comes negligible, and the equations of state reduce to th
of a nonrelativistic monatomic perfect gas@Weinberg @3#,
Eqs.~15.8.20!–~15.8.21!#

«~n,T!5nmHc
21 3

2 nkBT, p~n,T!5nkBT, ~25!

wherekB is Boltzmann’s constant,mH the proton mass, and
T the temperature of the matter.

We first consider the zero-order Einstein equations~3!.
The maximum temperature in the matter-dominated era
curs around the timet0 of the decoupling of matter and ra
diation:T(t0)'4000 K. Hence, from Eq.~25! it follows that
the pressure is negligible with respect to the energy dens
p/«'kBT/mHc

2<3.7310210. This implies that, to a good
approximation,« (0)6p(0)'« (0) and « (0)'n(0)mHc

2. Thus
as is well known, in an unperturbed flat FRW universe, o
can neglect the pressure with respect to the energy den
Using the above facts, we find that the Einstein equations~3!
reduce to

Ḣ523H21 1
2 k«~0! , ~26a!

H25 1
3 k«~0! , ~26b!

«̇~0!523H«~0! . ~26c!

Note that in a matter-dominated universe, Eqs.~3c! and~3d!
are identical. Thus the general solutions of the zero-or
Einstein equations are@3#

H~ t !5 2
3 ~ct!21, t>t0 , ~27a!

«~0!~ t !5 4
3k ~ct!22, t>t0 , ~27b!
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wheret0 is the time at which the matter-dominated era s
in. Using the definition of the Hubble parameterH:5ȧ/a,
one finds from Eq.~27a! for the scale factor

a~ t !5a~ t0!S tt0D
2/3

. ~28!

In the next two subsections we consider the perturbed
FRW universe. We distinguish between the nonzero and
zero pressure cases.

A. Nonzero pressure

Since kBT/mHc
2!1 in the matter-dominated era, on

may verify that, to a good approximation,

v~1!'0, ~29!

implying that the Einstein equation~1a! is identically satis-
fied. This implies, in turn, that Eq.~1b! is homogeneous. In
order to calculate the coefficientsa andb occurring in Eq.
~1b!, we need the equation of statep5p(n,«). Eliminating
the absolute temperatureT from Eqs.~25!, one finds

p~n,«!5 2
3 ~«2nmHc

2!. ~30!

From this equation it follows that

p«5 2
3 , pn52 2

3 mHc
2, ~31!

so that, to a good approximation,

p«1
n~0!pn

«~0!1p~0!
'
5

3

kBT

mHc
2 , ~32!

where we have used Eq.~25!. From Eq.~I.64! and ~32! it
follows that the quantityz figuring in the coefficientsa and
b occurring in Eq.~1b! is a function of the matter tempera
ture:

z5
Ṫ

T
. ~33!

In order to determinez as a function of the Hubble paramet
H, we recall the following: After decoupling of matter an
radiation at 4000 K, the temperture of the matter,T, is no
longer locked to the photon temperatureTg . However, when
Tg.2000 K, the matter temperature still follows the phot
temperature quite closely~see Weinberg, Chap. 15, Sec. 5!.
Since the photon temperature is, during the whole history
the universe, inversely proportional to the scale factor,
have, to a good approximation

T'Tg}a21, Tg.2000 K. ~34!

Combining Eqs.~33! and ~34!, one finds

z52H, Tg.2000 K, ~35!

where we have used thatH:5ȧ/a. For temperatures
Tg,2000 K, the thermal contact between matter and rad
tion is negligible, implying thatT}a22 @see Weinberg, Eq
s

at
e

f
e

-

~15.5.16!#. Moreover, for low temperatures the pressure
vanishingly small. This case will be considered in Sec. IV

Upon substituting Eqs.~29!, ~32!, and ~35! into Eq. ~1b!
with ~I.63! and ~I.64!, one arrives at

ë ~1!18H ė ~1!1S 9H21
5

3

kBT

mHc
2¹2D e~1!50. ~36!

Since, as noted before,kBT/mHc
2!1 in the matter-

dominated era, Eq.~32! survives only as a coefficient o
¹2. Equation~36! can be rewritten as an equation for th
density contrastd(t,xi):

d̈12H ḋ1S 53 kBT

mHc
2¹22

4pG

c4
«~0!D d50, ~37!

where we have used the definition of the density contr
Eq. ~10!, and the Einstein equations~26!. Writing
« (0)5r (0)c

2, Eq. ~37! becomes the familiar equation of th
Newtonian theory of gravity

d̈12H ḋ1S vs2c2 ¹22
4pG

c2
r~0!D d50, ~38!

@Weinberg, Eq.~15.9.23!# wherevs is the speed of sound o
a nonrelativistic gas, which for a monatomic gas is given

vs5A5

3

kBT

mH
. ~39!

We thus have shown that the purely relativistic equation~37!
happens to be identical to the corresponding equation fo
from the Newtonian theory of gravity. Although Eqs.~37!
and~38! have the same appearance, their derivation is dif
ent: see Weinberg, Chap 15, Sec. 9 for a derivation of
~38! with the help of the Newtonian theory.

MFB, Sec. 5.3 did not arrive at Eq.~37!, but obtained a
different result. Equation~56! of Ref. @8# has been made
gauge invariant by choosing the integration constantg equal
to zero. This procedure works well if the pressure vanish

We will come to Eq.~37!. From the constraint equatio
~26b!, it follows that Eq.~37! can be written

d̈12H ḋ1S 53 kBT

mHc
2¹22

3

2
H2D d50. ~40!

As usual, we solve Eq.~40! by Fourier analysis of the func
tion d. From Eqs.~I.25! and ~12! it follows

¹2d~ t,xi !5
q2

a2~ t !
d~ t,q!. ~41!

Furthermore, from Eqs.~27!, ~28!, and ~34! we find that
T/(a2H2) is independent of the time. Hence, we have

T¹25
q2

a2~ t !

T~ t !

H2~ t !
H2~ t !5

q2

a2~ tp!

T~ tp!

H2~ tp!
H2~ t !, ~42!

whereq is the wave vector associated with the scale o
fluctuation andtp is the present time. Using Eq.~42!, Eq.
~40! can be rewritten in the form
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d̈12H ḋ2 3
2 dH2~12m!50, ~43!

where the constantm is given by

m:5
10

9

q2

a2~ tp!

kBT~ tp!

mHc
2

1

H2~ tp!
. ~44!

We now switch to a dimensionless timet with the help of
Eqs.~14! and ~27a!. We have

dn

cndtn
5@ 3

2 H~ t0!#
n
dn

dtn
, n51,2, . . . , ~45!

so that Eq.~43! can be written in the form of a Euler equa
tion

d91
4

3t
d82

2

3t2
~12m!d50, ~46!

where a prime denotes differentiation with respect tot.
Equation ~46! happens to be identical to Eq.~15.9.44! of
Weinberg, where it applies, however, to a different physi
situation. Using that@see Eq.~45!#

d~ t0 ,q!5d~t51,q!, ḋ~ t0 ,q!5
3

2
H~ t0!d8~t51,q!, ~47!

one finds, fort>t0,

d~ t,q!5C1S tt0D
21/61~1/6!A25224m

1C2S tt0D
21/62~1/6!A25224m

, m,
25

24
, ~48a!

d~ t,q!5Fd~ t0 ,q!1S 1
6

d~ t0 ,q!1
2ḋ~ t0 ,q!

3H~ t0!
D lnS t

t0
D G

3S t
t0
D 21/6

, m5
25

24
, ~48b!

d~ t,q!5Fd~ t0 ,q!coss3~ t !1S d~ t0 ,q!

1
4ḋ~ t0 ,q!

H~ t0!
D sins3~ t !

A24m225
G S tt0D

21/6

, m.
25

24
,

~48c!

where the constantsC1 andC2 are given by

C6 :56

@16A25224m#d~ t0 ,q!1
4ḋ~ t0 ,q!

H~ t0!

2A25224m
, ~49!

and the functions3(t) is given by

s3~ t !:5
1
6A24m225 lnS tt0D . ~50!
l

Note that Eq.~48b! can be obtained from Eqs.~48a! or ~48c!
by taking the limitm→ 25

24. We consider the general resu
~48!–~50! for the matter-dominated era in two limiting case
namely for large and smalll.

Large-scale perturbations

In the limit l→` the magnitude of the wave vectorq
vanishes. Writingd(t)[d(t,q50) andḋ(t)[ḋ(t,q50) we
find, from Eqs.~44!, ~48a!, and~49!,

d~ t !5F3
5

d~ t0!1
2ḋ~ t0!

5H~ t0!
G S t
t0
D 2/3

1F2
5

d~ t0!2
2ḋ~ t0!

5H~ t0!
G S t
t0
D 21

. ~51!

Thus large-scale perturbations grow proportional tot2/3.

Small-scale perturbations.

In the limit l→0 the magnitude of the wave vectorq
becomes large. From Eqs.~44!, ~48c!, and~50! we get

d~ t,q!'d~ t0 ,q!S tt0D
21/6

coss3~ t !. ~52!

Thus small-scale perturbations decrease proportiona
t21/6.

B. Zero pressure

When the photon temperature has dropped
Tg'2000 K, the pressure has become negligible. In R
@1#, Sec. VIII, it has been shown that if the pressure vanish
thene (1) obeys the first-order differential equation

ė ~1!12He~1!50, ~53!

as follows from Eqs.~I.78c! and~I.78d!. Using Eqs.~10! and
~26c!, one finds that the density contrastd obeys the first-
order differential equation

ḋ2dH50. ~54!

The solution of Eq.~54! is

d~ t,xi !5d~ t0 ,x
i !S tt0D

2/3

, ~55!

where we have usedH:5ȧ/a and Eq.~28!. The result~55! is
independentof l, i.e., of the scale of a perturbation.

The Newtonian perturbation theory@3–6# yields a second-
order differential equation for the density contrastd, namely
Eq. ~38! with vs50 @see, e.g., Weinberg, Eq.~15.9.25! with
solutions~15.9.29! and ~15.9.30!#.

MFB find that the evolution of a density perturbation do
depend on the scale of that perturbation: see their Eq.~5.33!.
They conclude that small-scale perturbations increase
t2/3 and that large-scale perturbations remain constant.
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V. SUMMARY AND CONCLUSION

Starting out with a manifestly gauge-invariant perturb
tion scheme~I.70! of a companion article, we obtained th
energy density contrastd:5e (1) /« (0) . The results are col-
lected in Table I. A most striking difference between o
treatment and the perturbation theories of the literature is
t1/2 growth rate of the energy density contrast in t
radiation-dominated era in the limit of small wavelengt
(l→0).

In the nongauge-invariant perturbation theory in synch
nous coordinates,@see, e.g., Eqs.~I.40!#, the function« (1)
that is used to describe an energy density perturbatio
gauge dependent. This implies that« (1) has no physical sig-
nificance. As a consequence, the function« (1) cannot be in-
terpreted easily as an energy density perturbation.

Since onlygauge-invariantquantities have an inheren
physical meaning, a first step is to define a gauge-invar
quantitye (1) , which may play the role of an energy densi
perturbation. Since there are many possibilities to de
e (1) , one has to choose this quantity in such a way that
perturbation theory based upon it has a Newtonian limit, i
one of the equations can be cast into the form of the Pois
e
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equation of the classical Newtonian theory of gravity w
e (1) as source term.

MFB define a gauge-invariant quantityd« (gi) by their Eq.
~5.11! and interpret it as an energy density perturbation. T
interpretation is based upon the assumption that their
~I.92! reduces to the Poisson equation in the Newton
limit: see the text in Ref.@7# just below Eq.~5.19!. However,
the perturbation theory of MFB has not the usual Newton
limit: since the Hubble parameterHÞ0, Eq.~I.92! cannot be
cast into the form of a Poisson equation withd« (gi) as source
term. Therefore the gauge-invariant functiond« (gi) cannot be
interpreted as the perturbation on the energy density.

In Sec. V of a companion article we define a gaug
invariant quantitye (1) by Eq. ~I.37!, which is different from
the definition of the quantityd« (gi) used by MFB. In Sec.
VIII of Ref. @1# we consider the set of perturbation equatio
~I.45! in the limit that the pressure vanishes. We have sho
that in this limit Eqs.~I.45! imply, for HÞ0, the usual New-
tonian limit, i.e., the Poisson equations~I.89!–~I.90! with
e (1) as source term. This leads us to the conclusion that
quantitye (1) can indeed be interpreted as the perturbation
the energy density. Thus our gauge-invariant approach yi
the usual nonrelativistic limit in a more transparent and na
ral way than the treatments of MFB and predecessors.
e
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