
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

SAD progress report

van Halderen, A.W.; de Ronde, J.F.; Beemster, M.; Sloot, P.M.A.

Publication date
1994

Link to publication

Citation for published version (APA):
van Halderen, A. W., de Ronde, J. F., Beemster, M., & Sloot, P. M. A. (1994). SAD progress
report. (CAMAS Technical Report; No. TR-2.2.4.4). Department of Computer Systems,
University of Amsterdam.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/sad-progress-report(e0881765-7788-485b-a435-2b63bd090451).html

Commission of the European Communities

ESPRIT III

PROJECT NB 6756

CAMAS

COMPUTER AIDED MIGRATION OF
APPLICATIONS SYSTEM

CAMAS-TR-2.2.4.4
SAD progress report

Date: October 1994 — Review 4.0

ACE - Univ. of Amsterdam - ESI SA - ESI GmbH - FEGS - PARSYTEC -
Univ. of Southampton

Authors: Berry A.W. van Halderen
Jan de Ronde
Marcel Beemster
P.M.A Sloot

October, 1994

University of Amsterdam,

Faculty of Mathematics and Computer Science

Parallel Scientific Computing and Simulation group

Netherlands

3 AUTOMATIC INSTANTIATION OF PARAMETERS USING LINE PROFILES

1 Introduction

Within this report the work that is done within the CAMAS subtask 2.2.4 for the period
March 15 till September 14 is described.

The work is divided out over the following subsections:� Refinement and debugging of the f2sad tool;� Automatic instantiation of parameters using line profiles;� PAM-Crash core code to SAD (levels 1 and 2) translation;� definition of functionalities of the SAD3 level;� SAD level 3 simulation;

The work spent on the items mentioned is discussed in some detail below. Furthermore
the status of the SAD work will be explained. Also the work that is planned for the next
six monthly period is pointed out.

2 Refinement and Debugging effort

Several deficiencies were revealed in the f2sad tool in larger experiments with Fortran
applications. One of the major problems was the amount of memory necessary to process
a large Fortran application such as a reduced version of the PAM-Crash code (30 percent
of the original). Over 175 Mb was needed to process the Fortran code. This proved to be a
major problem since many machines have a limited amount of 64 Mb of virtual memory.

Much effort has gone into limiting the amount of memory used by the program, which
also gives a better runtime of the program. The current status is that the program uses about
45 Mb of memory for the PAMcrash core code, of which 30 Mb is actively used. A machine
with 20 Mb of real memory or more is therefore advisable for the run time performance of
the tool.

The problem of the extensive memory usage has several causes. Firstly there is the
problem that for each token in the input a medium sized structure is kept in memory, this in
order to be able to trace all parameters in the output back to the position in the input source.
Secondly, much data was replicated since it was reused in other parts of the program. The
current implementation reuses the data whenever it can. The third major factor is the way in
which the memory is allocated. Because the tool builds a huge datastructure, a fast amount
of small structures is kept in memory. Standard memory allocation libraries work well but
for such a large amount of small structures it makes sense to try to save upon those few
bytes per structure by using a different memory allocation scheme.

3 Automatic instantiation of parameters using line profiles

The SAD2 formula is a time complexity formula with two sets of parameters which need
to be filled in. First is the set of machine parameters, which is kept abstract to allow an
interactive experimentation with different architectures. The second is the set of parameters
derived from if-statements and loops in the program. The goal is to provide (possibly pro-
babilistic) functions for these parameters and simulate the program with different settings.

The first step however, needs to be to provide numbers for the formula for example test
runs. In this way, we can test the formula for its correctness, completeness and how well it
models the execution time of the input program. Of course these numbers can be supplied
by hand, but this is a tedious work and requires someone to have detailed knowledge of the
program.

2

5 FUNCTIONALITIES OF SAD3

An automatic way in which the parameters can be filled in using some easy to generate
process in needed. Most compilers can compile programs with additional data tagged to
all basic blocks so that when the program is run a profile of the execution is generated.
There are two types of profiles; time profiles and line profiles (sometimes also called test
coverage). Time profiles are not suitable because they are very inexact (only reliable data
for long executing basic blocks) and mostly because they are machine dependent.

Line profiles can provide enough information in some cases. The data we want to
retrieve from such a line profile is how many times a condition in an if-statement was
evaluated to true or how many times a loop iterated. This can simply be evaluated by
dividing the number of times a loop or then part of an if-statement is entered by a statement
just before the if-statement or loop. This data is directly available in the line profile.

There are however some cases which need special attention; If the statement just before
or in the loop or if-statement is in a different subroutine or function, we may end up with
the wrong number because the subroutine or function may also be called from somewhere
else in the program.

There is also another problem, having to do with a process earlier in the f2sad tool.
The f2sad tool removes go to’s by rewriting the program. In this process it is possible that
if-statements or loops are created from multiple conditions in the original program. In this
case we end up with a condition which is not directly related to a condition in the original
program, but rather is a combination of and, or and not functions and conditions in the
original program.

These problems have been addressed and were partly resolved. The version of the
automatic parameter actualization work well in e.g. the IPS examples in appendix B.
However it is not possible to do so for every program yet, for example the PAM-Crash core
code.

4 PAM-Crash core code to SAD translation

A core sample which contained about 30 percent of the original PAM-Crash source was
selected by ESI for the evaluation of the f2sad tool. Evaluation by ESI of an estimation by
f2sad showed the problems with the memory behaviour of f2sad. Though these have now
been resolved there remains the problem addressed in the previous section which is still
unresolved for the performance evaluation of PAM-Crash.

5 Functionalities of SAD3

SAD levels 1 and 2 are used to describe the functionality of general sequential programs
written in an imperative programming language such as Fortran. The f2sad tool can be
used to abstract a symbolic description from a Fortran 77 program. This sequential time-
complexity description can be used to estimate sequential programs performance.

SAD level 3 introduces performance behaviour due to the presence of communication
constructs as appearing in general data-parallel SPMD programs. We consider as basic
message types that can be used:� Send (synchronous or asynchronous and blocking or non-blocking)� Send to group (asynchronous and blocking or non-blocking)� Receive (blocking or non-blocking)� Receive from group (blocking or non-blocking)

3

6 SAD LEVEL 3 SIMULATION 5.1 Message patterns

5.1 Message patterns

In general an SPMD program will consists of separate communication and calculation
phases that alternate. Several typical communication patterns may occur. In principal
though we distinguish three basic communication strategies.� Static Communication patterns� Quasi Static Communication patterns� Dynamic Communication patterns

The communication patterns are considered on the level of process ID’s that send data
to one another or to a group. How these processes are mapped on the physical processor
topology is handled by an underlying layer that depends on the machine definition within
Parasol I.

5.1.1 Static Communication patterns

The characteristics of a static communication pattern are that the message sizes are constant
every time a specific message is send from processor A to B. Also the destinations remain
constant throughout the execution of the parallel program.

For example in PAM Crash initially the input mesh is decomposed. Nodal points that
are shared by two or more processors remain the same throughout execution. Consequently
the message pattern for sending forces or velocities along “boundary” nodal points remains
static also.

5.1.2 Quasi Static Communication patterns

For quasi static communication patterns applies that the messages sizes do not have to
be constant, but the destinations remain constant throughout the execution of the parallel
program.

5.1.3 Dynamic Communication patterns

In a dynamic communication pattern neither the message sizes nor the destinations are
constant. This communication pattern is the most complex and unpredictable.

6 SAD level 3 simulation

SAD level 3 will utilize simulation to mimic performance behaviour of SPMD applications.
Phases within the SPMD application in which number crunching takes place is simulated
using the functionality of SAD levels 1 and 2. The communication phases that occur are
mimiced using simulation.

We consider applications that exhibit a certain behaviour on a network of processors.
This behaviour can be subdivided into the classes application parameters and machine
parameters. Which processor communicates with which other processor, at which point
in time and how much data is transmitted are parameters determined by the application.
The application parameters dictate what impact the machine parameters have. Which
processors communicate determines the locality of messages in the computernetwork. In
this way parameters like congestion are influenced. Send and receive times are related
to message sizes (application parameter) in a linear fashion. Also the send and receive
times depend on the setup and transmission times (machine parameters). The message size
defines the effect of the machine paramters on the total performance behaviour.

So there is a link from the application parameters to the machine parameters, where
the application parameters determine at which point in the execution time the machine

4

6 SAD LEVEL 3 SIMULATION

parameters take their effect. For SPMD applications there is no link back. Typical SPMD
applications do not adapt for send/receive delays; the communication pattern remains the
same. This is not the case for all parallel application types. Many server–client applications
have time-out influences and transmission control flow. Note that synchronization cost,
apart from the messages that need to be send, is an application parameter.

A simulation on the basis of the behaviour instantiated with the hardware parameters
is therefore obvious. For this simulation to be fast enough in an interactive environment
it needs to be done on a course grained basis; simulation on network events only and the
interleaving computation parts of the program are simulated using the simple formula of
the SAD2 level.

A simulation of the processors and the network on the level of events is planned.
Because of asynchronous communication it is possible that a processor node is involved
in multiple network transactions and can still be performing computation. The simulator
must therefore manage a queue of running actions on each processor.

The abstraction level of events is quite high. Computation is simulated as a period
of time in which the process cannot issue additional events. Synchronous communication
is simulated by invoking a load on the network and querying the machine database for
the time the operation will take, given the current total network load. The network load
is only taken into account for other queries to the machine database during the time the
network transaction is in progress. The difference between synchronous and asynchronous
communication is that in the asynchronous communication the process will immediately
generate new events, while in synchronous communication the process waits for the current
event.

5

A RESULTS OF F2SAD/PARASOL ON MD1 (GENESIS BENCHMARK)

A Results of f2sad/parasol on MD1 (Genesis Benchmark)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
on

ds
)

Problem size (number of lattice cells)

’predicted0’
’measured0’

problem size measured time predicted time
1 3.04 2.55
2 5.97 4.67
3 17.62 14.22
4 30.94 23.74
5 58.11 45.01
6 87.87 68.31
7 141.01 108.85
8 204.74 149.21
9 265.05 198.63

10 363.04 277.28
11 465.32 350.49
12 617.03 463.36
13 762.07 565.03
14 952.90 718.28
15 1149.61 853.07
16 1495.07 1052.88
17 1675.49 1225.46
18 1921.28 1416.26
19 2333.41 1693.02
20 2659.20 1928.34

Figure 1: Measured and Predicted execution times for the MD1 benchmark program from
the Genesis benchmark suite

The MD1 benchmark has extensively been used to verify the operation of f2sad. In the
figure 1 the results of the measured execution time and the predicted value by f2sad is
shown. There is a 27 percent difference between the expected and estimated value. This
difference can be ascribed to the fact that in the f2sad model the data cache is not modeled;
the data cache is considered near perfect. In other experiments we can see that this can give
substantial performance loss, even greater than 20 percent.

Modeling the data cache is clearly one of the attention points to be covered.
The trends are however clearly the same, even the irregularity of the real performance

behaviour is shown by the prediction. The irregular behaviour is caused by a call to the
function MIN() which determines a loop variable.

6

B RESULTS OF F2SAD/PARASOL ON IPS

B Results of f2sad/parasol on IPS

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Problem size (matrix size)

’predicted1’
’measured1’

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Problem size (matrix size)

’predicted2’
’measured2’

GCel Sun
n Predicted Measured Error Predicted Measured Error

100 2.004 2.175 0.078 0.706 0.900 0.216
200 8.593 9.473 0.093 3.011 4.000 0.247
300 20.047 22.269 0.100 7.011 9.700 0.277
400 37.073 41.424 0.150 12.951 17.900 0.277
500 59.005 66.137 0.178 20.600 28.900 0.287
600 86.602 30.221 42.600 0.291
700 120.164 41.916 59.100 0.291
800 159.990 55.789 79.300 0.297
900 202.303 70.536 100.300 0.297

1000 254.605 88.747 126.600 0.299
1100 313.970 109.413 156.600 0.301
1200 373.465 130.137 187.300 0.305

Figure 2: Predicted and Measured execution times of the IPS program (grid version) for
both the Parsytec GCel (program was executed on a single transputer) and a Sun Sparc Lx
workstation

Within the IPS subtask two different parallel implementations have been realized, one using
a grid communication pattern and one using a ring. The time complexity of the calculation
kernel of both implementations have been derived using f2sad, for which the results are
shown in figures 2 and 3.

In these two experiments with two different implementations (grid and ring) it clearly
can be seen that a prediction for a machine with a simpler memory model (the Parsytec
GCel builds upon t800’s) is far more accurate that a complicated memory model (Sun
workstation) at least for the points we were able to measure on the Parsytec GCel. We have
identified the deviation in the predictions for the Sun to be due to the effects of caching.

7

B RESULTS OF F2SAD/PARASOL ON IPS

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Problem size (matrix size)

’predicted3’
’measured3’

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

Problem size (matrix size)

’predicted4’
’measured4’

GCel Sun
n Predicted Measured Error Predicted Measured Error

100 1.983 2.122 0.066 0.703 0.900 0.219
200 8.504 9.223 0.078 2.999 4.100 0.269
300 19.844 21.648 0.083 6.983 9.600 0.273
400 36.710 40.236 0.088 12.901 18.400 0.299
500 58.434 64.208 0.090 20.520 28.900 0.290
600 85.777 30.105 43.200 0.303
700 119.038 41.757 60.200 0.306
800 158.517 55.581 81.500 0.318
900 200.436 70.271 101.700 0.309

1000 252.296 88.420 124.500 0.300
1100 311.174 109.016 158.200 0.311
1200 370.134 129.664 189.200 0.315

Figure 3: Predicted and Measured execution times of the IPS program (ring version) for
both the Parsytec GCel (program was executed on a single transputer) and a Sun Sparc Lx
workstation

8

