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STATISTICAL PROPERTIES OF DIGITISED LINE SEGMENTS

A M Vossepoel
Leiden University Medical Center, Netherlands

A W M Smeulders
Delft University of Technology, Netherlands

Digitising straight line segments of finite length on a grid results
in a specific type of chain code strings. A set of linearity
conditions must be fulfilled if a chain code string is to represent a
straight line segment.

Conversely, a chain code string that fulfills these linearity
conditions will always represent a set of straight line segments.
Within limits, posed by the grid points, changes in position and
orientation of the original line segment don't affect the generated
chain code string. But within the set of line segments generating the
same code string the length will vary. A statistical analysis per set
yields an unbiased estimate of the original line segment's length.

By application of the linearity conditions to chain code strings of
curves in various connectivities (assuming 4, 6 or 8 neighbours), the
string is split up into substrings that each can represent a straight
line segment. This means a polygonal approximation of the original
curve. The length of the curve can then be evaluated with high
accuracy using the unbiased length estimates of the individual
straight line segments between vertices.

By applying the described method to digitised circular objects with
random size and position its accuracy and reproducibility are
demonstrated and compared with those of other methods.
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INTRODUCTION

At present, various methods are known to estimate the length of
curves and straight line segments digitized on a grid. Usually lines
are represented by vector elements that connect the points of a
rectangular, or sometimes hexagonal grid. In the rectangular grid
each point may be defined to have 4 or 8 neighbours, resulting in 4
or 8 different vector elements. In the usual coding scheme, the
vector element in the positive x-direction is coded 0, and the code
is incremented with counterclockwise rotation [1].

One class of length estimation methods assigns a distinct length to
each code. In the oldest method, for an 8-connected grid, the grid
constant u is assigned to the even codes and u.21/2 to the odd ones.
A better approach is to compute the probability and expected length
of odd and even codes, randomly positioning the line segment [2].
Alternatively, a least-squares adaptation to lines of infinite length
[3,4] results in coefficients different from the ones reported
earlier [2]. The metrication error is further reduced by correcting
for the number of unequal consecutive codes or corners [3].

Another class of methods is based upon polygonal approximations of
digitised line segments. The vertices of the polygonal approximation
are chosen arbitrarily with a fixed number of codes between them [3],
or accordjing to an irregularity criterion [5]. The length of the
associated line segment is then computed as the Euclidean distance
between the vertices. :

In this paper, a synthesis between the two classes of methods is
presented. The method mentioned first [2] is generalized to express
the probability of a vector and the consecutive codes associated with
it, even if more than one single code is involved. This approach
results in an unbiased length estimate for the straight line segment
associated with a given number of consecutive codes.

To an arbitrary code string one must apply linearity conditions [6,7]
in order to find the vertices of a polygonal representation,
analogous to a polygonal approximation [5]. Having found the
vertices, the unbiased length estimates of the code strings between
the vertices are used, instead of the Euclidean distances.

The linearity conditions can be summarized as follows:

- no more than 2 different codes are involved;

- the difference between these codes is 1 or connectivity-1;

- the minority code always appears isolated;

- no more than 2 runlengths of majority codes are involved;

- the difference between these runlengths is 1 or less:

~ the minority runlengths of the majority codes appear isolated;
- ete., replacing "majority codes" by "majority runlengths".
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DIGITISATION

From the linearity conditions follows that any straight line can only
be digitised into two adjacent chain codes. Therefore it is
sufficient to consider only the digitisation of lines with directions
between those of the basic vectors coded 0 and 1. The direction of

! any other line can be brought into this range by rotation over W/2
(rectangular grid) orr/3 (hexagonal grid), or by reflection with
respect to a basic vector direction. Likewise, a line can always be
translated such that it passes through an entry window, the
difference vector of the basic vectors coded 1 and 0, originating
from an assumed origin. In fig. 1 its end points P and Q are
indicated for various connectivities c¢: czU4, c=6 and «=8,
respectively. The origin is assumed at the intersection of the lines
WQ and VP, but has been omitted in the figure for the sake of

clarity.
W t
NR .
§ f U /U
4
3 q
Q b e o S
\ T O \\\ S
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Figure 1: Length of a straight line segment, represented by U4 vector
codes (1101, n=4) in U~ (a), 6- (b), and B8-connectivity (c).

We define a strip here as the part of the plane between adjacent grid
lines running parallel to the entry window and through the grid
points. A line intersecting the entry window at an angle T with the
direction of code 0, 0<T<2W/c, will then generate one code for every
intersection with a strip. In fig. 1 the situation in which the line
TU intersects 4 strips between PQ and VW, thus generating 4 codes, is
depicted. The line is digitised by connecting the highest grid points
below the line on both sides of each strip, or, in practice, by a
standard line-tracking algorithm starting at P,

There are many strings of n codes that can be generated by varying
the direction of the line between T=0 and T=2W/c, and by varying the
position of the entry point (T) on the entry window (PQ). Even if
this position is kept fixed, the number of different strings will be
of the order of n(n+1)/2.

In order to reduce this large number of possibilities, we consider

code strings as equivalent if they have the same number of codes n,
the same number of odd (i.e. with value 1) codes m, and the same
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number of corners n_. Because of the linearity conditions, n_ can
have only 3 different values for distinet values of n and m. The
codes that belong to the minority will be distributed evenly over the
string, which is equivalent to a maximal number of corners. If both
ends of the code string consist of majority codes, the number of
corners is twice that of the minority codes, but each minority code
occurring at either end of the code string reduces the value of nc by

one.

We here replace n by the parameter k, defined as the (integer)
number of codes 1 at both ends of a code string: k = code(1)+code(n).

Conversely, n_ is then given by: n,(n,m,k) = (n-1)-1(n-1)-(2m-k) 1,

The change of sign in the argument of the abs-function occurs when
m=n/2 and k=1. For even-valued n we then get:

nc(n,n/2,0) = nc(n,n/2.2) (z n=2),

which implies that the use of k instead of n, gives a slightly more
accurate description.

For distinet values of n and m, the value of the first code of the
string is determined by the existence of an intersection between the
line segment TU and the horizontal grid line through Q in the first
strip:

code(1) = [e+t].

with e = JPTI/IPQl (relative entry height), t = tUSI/IRSI (relative
exit height), and the brackets [] denoting the entier function.
Likewise, the value of the last code is determined by the
intersection, or not, of the line segment TU with a horizontal grid
line in the last strip, adjacent to VW:

code(n) = [e+nt] - [e+(n=1)t].

The entier function only changes value at an integer value of its
argument. Therefore, equating the arguments of the entier functions
mentioned with one of their possible integer values will provide the
boundaries of the domains with constant n, m and nc:

e+nt = m (with 0<Km<n+1), e+t = 1, and e+(n-1)t = m (with 0<m<n).

Beside these intermediate boundaries, there are, of course, the
ultimate boundaries represented by t=0, e=0, t=1 and e=1. In fig. 2,
the quantity e+nt is plotted as a function of e for the various
boundaries by which the domains of the segments with the same values
of n, m, and n_  are delineated. The resulting code strings are
indicated in each domain. From the figure, one may also see that
there are at most 3 different values of n_ possible for each value of
n and m (represented by the square regions in the figure for 0<m<n).
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Figure 2: Code
strings
generated by
the segment TU
in figure 1 as
a function of
the position
of T on the
segment PQ and
of U on the
segment SR.
The position
of the point U
in fig. 1 is
indicated by
an asterisk.
The dotted
lines separate
regions with
different
codetstrings
that have the
same number of
odd codes,
also at both
ends.
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These vaiues occur in 4 different sub-regions, separated by the
second and third boundaries mentioned.

LENGTH EVALUATION

If we want to know the segment length s,
expressed as a multiple of the grid constant
u, averaged over various orientations (¥) and
entry heights (e), and its variance, we should
be able to integrate three moment generating
functions over these variables: the weight
(h_.) {(which, after normalization, is the
probability density), the weighted length (h1)
and the weighted length squared (h.,). The
resulting integrals over a domain wWith
distinct values of n,m and k are called G,, G
and G,, respectively. Then the average length
L(n,m,k) of all line segments that can be
digitised into these distinct values is given
by:

L(n,m,k) = G,/Gy, with
standard deviation: (G,/G.-(G,/G.)2) /2,

270 170
In this scheme, normalization is performed by
dividing G, and G, by G., the integrated
weight function, So there is no need for
normalizing the weight function itself.

Assuming evenly distributed position and
orientation of straight lines on the grid, the
variables T and e show a uniform probability
density. The number of codes n per (arbitrary)
unit length v of the straight line depends on
the angle ¥ between the line and a line
perpendicular to the earlier defined strips:

nu/v = cos(y).

On the other hand, the length s of the line
segment TU (cf. fig. 1), measured in units u,
is given by:

s = nq(c)/cos(y),

in which q(e¢) denotes the strip width, which
depends on the connectivity:

=1/2 1/2

q(l)=2 , q(6)=(1/2).3 , and q(8)=1.

Therefore, assuming n and c¢ constant, the code generating probability




476

per unit length of a straight line segment is apparently inversely
proportional to its length s, ef.[2].

In the evaluation of the finite integrals involved, it turns out to
be convenient to express the angle T as a function of the length t.
This involves the differential substitution:

dT = (dT/dt)dt, with: dT/dt = 1/(dt/dT) if dt/dT = O.

If we define the angle & between the direction of the strips and the
direction of code 0, the length t is found by applying the sine rule
in the triangle STU:

t = sin(T)/sin(T+q) ==p dt/dT = sin(a)/(sin(Ted)>;

Likewise, applying the sine rule in the triangle STU again:

sin(T+@) = sin(&)/s, substitution of which gives: dT/dt = sin(g)/s2.
So, if we use s as a weight function, the following expression
results for the functions hi(t) to be integrated over t:

h (t) = sin(a)/(s(t)) 371,

with s(t) = (£°41-2t.cos(a)) /2

In order to evaluate, e.g., the average length of all segments that
result in code 0, h_(t) should first be integrated over 0<t<1-e, and
the result then over 0<e<1. After application of the same procedure
to ho(t)‘the average length is the quotient of the two results.,

As a result of the first integration over t, the primitive functions
of hi(t) are Hi(t):

Ho(t) = (t-cos(o)/(s(t)sin(a));

"

H1(t) n.arctan((t-cos(g))/(sin(e)));

Hz(t) = (n2)sin(oﬁlog(s(t)+t-cos(cﬁ).

After the first integration over t, we have to substitute the
integration boundaries t(e) in the primitive functions H.(t) of h.(t)
before integrating over e. For the intermediate boundari&s betweefi
domains with distinct values of n, m and k it is more convenient to
substitute these boundaries as e(t) in the integration variable e. In
the second integration d(e(t)) may then be replaced by (de/dt) dt,
(de/dt)b denoting the differential quotient along the boundary. This
is a simple constant, because the equations describing the
intermediate boundaries define a linear relationship between e and t.
For the two ultimate boundaries of the first integration, where t=0
and t=1 respectively, substitution in Hi(t) remains necessary because
(de/dt)b is not defined.
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The results of the (second) integration, that of H,(t) over e, are
i
called Fi(t):

Fo(t) = (de/dt)bs(t)/sin(aﬂ:

F1(t) = (de/dt)bn((t-cos(cﬁ)arctan((t—cos(d?)/sin(d?)—sin(oﬁlog(s(t)))

F2(t) (de/dt)b(nz)sin(cﬁ((t-cos(c))log(s(t)+(t—cos(07))-s(t)).
Since one pair of integration boundaries has already been substituted
into these primitive functions, as (de/dt), , the original integration
boundaries are now reduced to four points in the e-t-plane. The value
of the finite integral over the domain of all code strings with
distinet values of n, m, and k is then found by substitution of the
values of t at the four corners of the integration domain:

Gi(n,m,k) = Fi(t1)—Fi(t2)+Fi(t )—Fi(tu)

3

in which t, denotes the value of t at the first quadrant corner of

the integration domain, t_ at the second quadrant corner, etc. The

ultimate integration boungaries of £, t=0 and t=1, present an

exception to this expression: in these cases one should replace

F.(t_)-F.(t ) by H (0), and F_(t_)-F (t_) by H (1), respectively.
i 3 i 4 i i 1 i 2 i

For 0<m<n the following expressions for Gi(n,m.k) result:

G.(n,m,0)
i

2Fi(m/(n—1))—Fi((m+1)/n)—Fi((m-1)/(n—2)):
Gi(n,m,1) = 2(Fi(m/n)+Fi((m—1)/(n-2))—Fi(m/(n—1))—Fi((m—1)/(n—1)));
Gi(n.m.2) = 2Fi((m—1)/(n-1))—Fi((m-1)/n)-Fi((m—1)/(n—2)).

By means of these expressions we can compute an unbiased estimate of
the average length L(n,m,k) of all straight line segments that may be
represented by a string of codes, provided the string can indeed
represent a straight line segment:

L(n,m,k) = G,/G, with standard deviation: (G2/GO—(G1/GO)2)1/2,

in which the arguments of Gi are omitted for the sake of clarity.

The resulting values of L(n,m,k) are summarized in table 1 for a
number of values of n. Besides, a graphic impression of the
application of some of the formulas derived above is presented in
figure 3. Essentially, this figure is a representation of figure 2,
with n=4 also, in which the area of the domains is made proportional
to the integrated weight function G.(n,m,k). This is accomplished by
taking for the ordinate, instead of t:

(Ho(t)-HO(O))/(HO(1)—H0(0)).

The values of t are still indicated on the vertical axis (e=0) on a
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F1 non-linear scale. On the line segment e=1, some values of s(t) are
I indicated, reflecting the decreasing probability of segments of

\} increasing length.
|

TABLE 1.

UH Relative probability or weight w, length s (zL/n), and

ﬂ» variation coefficient d for some numbers of codes n, as a

I function of n, the number of odd codes m, and the number k of
| odd codes at either end of the code string. The number of

p corners is denoted by nc.

\

connectivity = 4 connectivity = 6 connectivity = 8

f nmKk n, W s d W s d W S a d
i 100 070.500 0.785 10.2% 0.500 0.907 4.3% 0.586 1.059_ 7.0%
! 1120 0.500 0.785 10.2% 0.500 0.907 4.3% 0.414 1.183"10.0%
’ 1 total 1.000 0.785 10.2% 1.000 0.907 4.3% 1.000 1.111 8.4%
| nmkn W s d W S d W s d
L 2 0 0 0°0.207 0.837 10.0% 0.232 0.930 4.2% 0.334 1.019 2.2%
i 2 111 0.586 0.749 7.0% 0.536 0.887 2.9% 0.504 1.113 7.5%
| 2 220 0.207 0.837 10.0% 0.232 0.930 4.2% 0.162 1.292 5.9%
MM 2 total 1.000 0.785 8.4% 1.000 0.907 3.5% 1.000 1.111 5.9%
1‘1‘ nmk nc W s d W s d W s d
| 300070.118 0.885 7.6% 0.146 0.949 3.3% 0.229 1.009 1.0%
| 31110.178 0.772 7.2% 0.173 0.897 3.0% 0.209 1.041 2.5%
| 3102 0.204 0.739 6.4% 0.182 0.882 2.6% 0.189 1.075 4.4%
1 322 20.204 0.739 6.4% 0.182 0.882 2.6% 0.148 1.165 6.1%
\W 321 10.178 0.772 7.2% 0.173 0.897 3.0% 0.127 1.228 4,8%
! 33200.118 0.885 7.6% 0.146 0.949 3.3% 0.099 1.333 4.0%
K 3 total 1.000 0.785 7.0% 1.000 0.907 2.9% 1.000 1.111 3.9%
‘ nmk n, W s d W S d W s d
! 400 0°0.081 0.914 5.9% 0.106 0.961 2.6% 0.174 1.005 0.6%
ﬂf 4111 0.074 0.823 6.1% 0.080 0.919 2.6% 0.111 1.021 1.2%
& 4102 0.178 0.772 7.2% 0.173 0.897 3.0% 0.209 1.041 2.5%
B 4 2220.052 0.736 2.5% 0.046 0.878 0.9% 0.049 1.063 1.7%
- 421 30.229 0.713 1.0% 0.191 0.869 0.4% 0.169 1.117 2.7%
i 4202 0.052 0.736 2.5% 0.046 0.878 0.9% 0.035 1.186 2..4%
i 43220.178 0.772 7.2% 0.173 0.897 3.0% 0.127 1.228 4.8%
| 4311 0.074 0.823 6.1% 0.080 0.919 2.6% 0.056 1.281 3.4%
i’ 4420 0.081 0.914 5.9% 0.106 0.961 2.6% 0.071 1.354 3.0%
il 4 total 1.000 0.785 5.5% 1.000 0.907 2.4% 1.000 1.111 2.7%

| ct. 1]
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Figure 3: Boundaries of regions
with equal number of odd codes
(m) and equal number of odd
codes at both ends of the code
string (k), which consists of &
codes (n = 4), Horizontal and
vertical axis have the same
meaning as in fig. 2, but the
vertical axis is transformed
such that the area is directly
proportional to the probability
of a distinct code string.
Vertical (non-linear) scales
indicate normalized segment
lengths s and t (cf. text).

If we want to compute the segment length K by means of a relation
linear in n, m and n_, we may adopt a least-squares approximation to

evaluate the coefficients an, bn

K(n.m,nc) = na, + mbn +n.co,

and

c, for a distinet value of n in:

in which a_ represents the length assigned to all codes, b_ the
length correction for odd codes, and e, the correction for the corner

count n_,
c

For the normal equations used in this least-squares approach we have
adopted the same dimensionality as used in [3]:
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¥ (nGy(k/L-1)) = 0,

0,

> (mG, (K/L-1))
S (n,Gy(K/L-1)) = O,

in which the summations are performed over the different values of m
and n_, given n, and the arguments of the functions G,, K and L have
been omitted for the sake of clarity. Each term of theé equations
might as well have been multiplied or divided by L, in order to
minimize the absolute or the relative variance, respectively.

In U4~ or 6-connectivity, any difference in length assigned to odd or
even codes is artificial, so we may remove the second equation from
the set, and put b =0, for n=oo and c=4 giving the same result as in
[3], An analogous situation occurs in 8-connectivity when the
equations account for the number of corners, but the lengtq/assigned
to the odd-coded segments is a predefined multiple q (q,=2 ) of the
length assigned to the even-coded segments. Then b :an(q—1), and the
second equation should also be removed from the set.

In 8-connectivity, a special case of these equations occurs when the
corners are not taken into account. Then one should restrict the set
of equations to the first two and put c¢_=0, for n=1 giving the same
results as [2]. n

TABLE 2.

Coefficients a_ (average length per code), b_ (odd code

correction), and c¢_ (corner correction) used in the computation
n

of the segment length

K:an.n+bn.m+cn.nC fgr n=1000;

d_ denotes the resulting average variation coefficient of K, d '

the same for the unbiased length estimate L, and en' the average
absolute error in L.

connectivity constraints a, bn e, dn dn' en'
y bn=0 0.948a 0.000 -0.278% 2 3 %a 0.021 % 0.184
6 bn??g 0.977 0.000 -0.131 1.0 % 0.010 % 0.096
8 bnzan.(z -1) 0.984 0.408 -0.08 0.8 % 0.009 % O.114
8 cn:O 0.948 0.392 0,000 2.3 %4 0.009 % O.114
8 0.980 0.426 -0.091 0.7 % 0.009 % 0,114
a cf. 3]

In table 2 the values of a_, and c_ are presented for n=1000. This

b
number of codes is large eHougH to maEe the results comparable with
those described (for UY-connectivity) for infinite n [3]. The results
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for 6~ and 8-connectivity are also presented, using the constraints
mentioned before, or not. One may see from the table that the
constraint ¢ =0 in 8-connnectivity results in the same values for the
average length per code a, and the variation coefficient dn as in
U4-connectivity.

Note that the absol¥tﬁ lengths in 6-connectivity have to be
multiplied by (4/3)1/ » in order to compensate for the higher density
of grid points, and consequently shorter grid constant u in these
grids.

By applying the linearity conditions to an increasing number of codes
until failure one may construct a polygonal representation of a code
string of arbitrary shape and length, assuming a vertex ocecurring
just after the last code. The next code in turn may be taken as the
first code of the next string. The process may be repeated until the
end of the string is reached. For closed contours that contain a
"sharp" corner, i.e., two adjacent codes representing non-adjacent
directions, it makes sense to start at this "sharp" corner.

In order to test this polygon approach we generated circular objects
on rectangular and hexagonal grids. The radius of the circles was
given 32 uniformly distributed random values between 1.5u and 17.5u.
For each value of the radius the centroid position was uniformly
randomized over 64 positions. This was done by adding p times basic
vector coded 0 and q times basic vector coded 1, p and q being
uniformly distributed variables with values between 0 and 1.

Each circular object generated was digitised into an inner and into
an outer contour chain code string by means of a simple contour
tracking algorithm. The resulting chain code strings were both
segmented into polygons, each string once forward and once backward.
Then we applied 3 methods of length estimation to each string: the
naive method [1], the corner count method [3] and the proposed
method. In the naive method, we assigned a length of 1 to each code,
except the odd ones with ¢=8, to which we assigned 21/2, In the
corner count method, we used the one with no constraints for c=8, cf.
the lowest line of table 2.

The perimeter length was computed as the average of the U4 contour
lengths (inner, outer, forward and backward). The difference between
the real perimeter length of the object and the one estimated by each
method was averaged over the 64 centroid positions, resulting in the
average systematic error for a distinct radius. In the naive method,
the length estimate is biased, so the systematic error had to be
expressed as a percentage of the perimeter length. The other methods
showed little correlation between systematic error and perimeter
length, so there we could adopt the average over all 32 radius values
for the systematic error. For the root-mean-square error in the
average perimeter values the correlation with perimeter length was
also slight. Therefore, this quantity could also be averaged over all
radius values. The results of the test are presented in table 3.
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TABLE 3

Average errors in the perimeter lengths of circular objects on grids
with U-, 6~ and 8-connectivity.

Radius and centroid position of the objects have been uniformly
randomised within distinct ranges (see text).

average systematic error average r.m.s. error

connectivity: y 6 8 y 6 8
Naive method [1]: 27% 10% 5% 1.1 0.7 0.5
Corner count method [3]: 1.3 0.7 0.4 0.7 0.4 0.4
Proposed method: -0.2 -0.1 -0.2 0.4 0.3 0.3
DISCUSSION

The length estimate derived in [2] for one single code wWill remain
unbiased as long as the curve represented by a code string is
isotropic. It is evident that with increasing n the variation
coefficient (d) will remain at the value for n=1, whereas in the
proposed method this coefficient decreases towards O.

From table 1 appears that the length estimation of coded linear
segments is most accurate with c=6 for short segments. Looking at the
variation coefficients d_t' in table 2, the accuracy of long linear
segments seems optimal with c¢=8. However, for large n the average
absolute error e ' in the segment length is decreasing towards a
constant with increasing number of codes. This constant value is
smaller for c=6 than for c¢=8, even after compensation for the higher
density of grid points, and consequently smaller grid constant u in
6-connectivity.

From tables 1 and 2 we arrive at the conclusion, other than [3], that
with each method mentioned 8-connected grids are better suited for
length measurements than U-connected grids. In this comparison we
have accounted for the fact that the number of codes17§presenting a
segment with distinct length is larger by a factor 2 for c=4 than
it is for c=8.

As for the various least-squares approaches, one may see from table 2
that with c=8 application over all three variables leads to smaller
variation coefficients than application with constraints.

For large numbers of codes, the greatest difference between the least
squares approach and the presented length estimation method is also
in the resulting relative error. In the first approach the error
remains finite, even if the number of codes is infinite, whereas in
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our approach the absolute error decreases towards a constant for
large n, leading to a vanishing relative error for an infinite number
of codes. In this case also, the difference is caused by the forced
linear relationship of the least squares approach.

The test with the randomly generated circular objects shows that the
proposed method is more accurate for computing the length of curved
contours as well. The difference with the naive method is really
striking in this respect. The reproducibility of the proposed method
is also better than that of the other methods. The accuracy and
reproducibility of the contour length estimation in 6-connectivity
are slightly better than in 8-connectivity with the proposed method,
as opposed to the other methods. These results are confirmed by other
experiments [8].

A by-product of the test were the differences in length between the
inner and outer contour chain code string. In 4-, 6- and
8-connectivity, they turned out to be 7.7, 6.3 and 5.6 respectively,
virtually irrespective of the length estimation method used. The
polygonal representation also has potentialities for increasing the
coding efficiency, e.g. by assigning to each segment between two
vertices one single code.
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