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Abstract 

We present a decision support system for flood early warning and disaster management. It includes the models for data-
driven meteorological predictions, for simulation of atmospheric pressure, wind, long sea waves and seiches; a module for 
optimization of flood barrier gates operation; models for stability assessment of levees and embankments, for simulation of 
city inundation dynamics and citizens evacuation scenarios. The novelty of this paper is a coupled distributed simulation of 
surface and subsurface flows that can predict inundation of low-lying inland zones far away from the edge of the flooded 
area, as observed in St. Petersburg city during the floods. All the models are wrapped as software services in the CLAVIRE 
platform for urgent computing, which provides workflow management and resource orchestration. 
 
Keywords: Distributed simulation; city inundation; coupled surface and subsurface porous flow; urban flood; decision support system; 
urgent computing; CLAVIRE platform for workflow and resource management 

1. Introduction.  

Floods are the most common and frequent natural disasters. Flood-induced economic losses are shockingly 
huge! Just one flood brought by the hurricane Katrina cost 125-250 billion US dollar damage  [1],  [2] , which 
accounted for 5-10% of the total US federal budget in 2005. Averaged over the past 30 years, floods around the 
world killed 6,753 people per year and claimed an annual economic loss of 13.7 billion USD  [3], out of which 
4 billion USD in Europe  [4]. Most of these damages are impinging on the cities and urbanized areas. The 
average number of affected people was 96,878,672 per year, a population of 2 countries like Spain or 6 
countries like the Netherlands.  

In some cases, it is possible to prevent floods by monitoring flood defense conditions and by detecting the 
weak spots early enough to repair or reinforce the levee. In other cases, preventing floods is impossible, but we 
can mitigate the consequences and save human lives by alarming them and by suggesting the best evacuation 
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routes. In the past decade, many international projects have been developing flood early warning systems and 
disaster management decision support systems, see  [5] and references therein. They do not replace the 
engineering work on building and reinforcing flood protection systems, but they give us the time and the means 
to monitor the situation and to react promptly.  

Two recent projects exemplify the progress in this field. One is the UrbanFlood European project  [6] that 
developed a flood early warning system, combining the developments in monitoring dikes with sensor 
techniques  [7],  [8], physical study of dike failure mechanisms  [9], software for dike stability analysis  [10],  [11], 
simulation of dike breaching, flood, and city evacuation  [12],  [13],  [14]. All the data streams, the models and 
the computational resources have been connected via the Common Information Space, an advanced ICT 
infrastructure  [15].  

The second example, presented in this paper, is the flood management decision support system developed in 
the Advanced Computing Lab of the ITMO University, St. Petersburg, Russia  [16]. It combines the 
meteorological predictions with modeling the storm winds, the Baltic Sea water levels, the long waves and 
seiches (standing waves) in the Gulf of Finland. This information is then used to optimize the operation of 
flood barrier gates  [17],  [18],  [19] and to calculate possible scenarios of city inundation and citizens' evacuation 
 [14]. The models are integrated into the CLAVIRE (CLoud Applications VIRtual Environment) platform that 
orchestrates the modeling workflow and provides computational resource management  [17].  

In the next section, we give some background information on floods in St. Petersburg and the state-of-the-art 
in coupling the models of surface (overland) flow with subsurface flow that we address in this paper. The 
remainder of the paper is organized as follows: Section  3 describes the architecture of our flood management 
decision support system; Sections  4 and  5 present the overland and subsurface flow models respectively; 
implementation details are given in Section  6; the first simulation results of coupled inundation models and 
performance benchmarks are described in Section  7; Section  8 completes the paper with conclusions and future 
plans. 

2. Floods in St. Petersburg and the state-of-the-art in coupling models of surface and subsurface flows 

St. Petersburg is a 5-million-population city, the former capital of the Russian Empire; it accumulated a 
grand cultural and architectural heritage and very expensive businesses and industries. And all that treasure lies 
in the lowland of the Neva River delta, with the historical center lying at the sea level or mere 1-4m above it. 
Over 300 large-scale floods have been recorded in the city history  [20]. Figure 1 shows the location of St. 
Petersburg and flood statistics for the past 3 centuries.  

One of the new challenges we faced in developing a decision support system for flood management in St. 
Petersburg was the subsurface water flow, previously unaccounted for in the city inundation models. Even 
during a minor flood in St. Petersburg, water is often observed emerging from manholes and underground 
passages far away from the edge of the flooded area. This is caused by the water that enters through the 
stormwater drain inlets and other holes in the inundated area; driven by the pressure head, it flows through the 
drain pipes and other natural or man-made hollow spaces around the underground pipes (e.g. gas, sewage and 
communication systems); and comes out of the open holes and drain inlets, especially in the lower grounds. 
Figure 2 illustrates the problem.  

Why is it important to model the subsurface water flow that only re-distributes the flood? - Because it 
changes the rules in evacuation planning, since some inland streets can be closed due to subsurface flooding 
before being reached by the surface inundation. In the early projects that tried to address this problem, the 
overland inundation models were enriched with the boundary conditions on the land surface that took into 
account an estimated balance of the surcharge and discharge of the manholes and drain sewers  [21]- [23]. 
Recent progress in computational methods and computing power allowed to simulate also the subsurface flows 
and to couple these models to the overland flows  [24]- [25]. Some researchers suggested "extended" shallow 
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water equations, which are suitable for both surface and subsurface flows  [26]- [27], however only 1D and 
small-scale 2D simulations have been performed so far. Keeping in mind the requirement of faster-than-real-
time simulations in critical situations, fully coupled surface-subsurface 3D simulations are still feasible only for 
small catchments, not for a city scale. We therefore adopted a distributed simulation approach, where the two 
models run on different servers and exchange information on the land surface boundary.  

  

Fig. 2. Left: The worst ever flood in St. Petersburg on the 19th of November 1824. Painting by Fedor Alekseev, who died 4 days after that 
disastrous flood. Right: Storm water jets out of a manhole. Photo by Todd Yates/Corpus Christi Caller-Times. 

3. Urban flood decision support system and modeling workflow 

Our flood management decision support and early warning systems include a number of computational 
models and data assimilation procedures. Figure 3 (left) shows the modeling workflow. First, a data 
assimilation module collects and analyses operational data on sea levels and winds correlated to the weather 

 

Fig. 1. Left: St. Petersburg city is located in the lowland delta of the Neva River (image from Google Maps). A 25-km flood barrier dam 
protects the city since its completion in 2011. Right: Over 300 floods have been recorded in the city history in the past 3 centuries.  

The graph shows water levels in cm, each point represents one flood event  [20]. 
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conditions; based on that, meteorological predictions are made for the next 48-60 hours, using the models 
HIRLAM, NCEP/NCAR, WRF. These predictions of atmospheric pressure and wind together with the 
current observations are used for modelling the wind waves by the SWAN model. Then the BSM-2010 and 
FMI models calculate the sea levels in the Baltic Sea and the long waves and seiches (standing waves) in the 
Gulf of Finland. It gives a range of water levels in the reference point located near Saint Petersburg State 
Mining Institute (Gorny Institute).  

If predicted water levels exceed the flood threshold of 130 cm, St. Petersburg Dam flood barrier shall close 
the gates. A special module optimizes the gate operation plan (schedule of closing and opening the gates). 
This is not so trivial because in addition to the storm surge waters coming from the sea, the Neva River brings 
about 2500 m3 per second, or 9 million ton per hour. If the dam gates are closed, this immense amount of water 
will accumulate in the small Neva Bay (see Fig. 1, left) and increase water levels by 2-4 cm per hour. The main 
goal of this optimization is to close the gates for the shortest possible period of time that still provides safe 
water levels in the city. This part of the workflow has been implemented in a Decision support system for 
flood barrier gate operation (highlighted as shown in Fig. 3, left), and described in detail in  [17] and  [28]. In 
addition, another model has been developed that simulates the under-gate flows in order to avoid potentially 
dangerous vibration modes, seabed scour (erosion) around the gates, and some other aspects of gate operation 
(ecological, economical, technical maintenance, etc.), see  [18],  [19]. Integration of this model into the gate 
decision support system is in progress.  

If the flood is possible (in spite of the optimal floodgates operation or in case of gates failure), the Flood 
early warning system issues an ALARM and starts additional models: one module can calculate the stability 
of levees and embankments, based on the Virtual Dike model  [11]. Another module simulates the city 
inundation dynamics, given the predicted water levels. This simulation consists of two models: Surface 
(overland) flow and Subsurface flow. They exchange information on the land surface boundary. In the next 

 

Fig. 3. Left: Modeling workflow for flood early warning and decision support systems. Right: Schematic of an Impact Zone (IZ) with a 
neighbour, in plan and profile. Solid grey represents a volume of water [29]. 
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sections we describe these models and show some preliminary results. Finally, given the flood dynamics, we 
can calculate city evacuation or emergency rescue scenarios. The results of city inundation and evacuation 
provide information to the Decision Support System for flood disaster management. The models are glued 
via the CLAVIRE workflow and resource management platform, and presented to the users via an interactive 
graphical user interface on a multi-touch screen or via a simplified web interface.  

4. City inundation model: surface (overland) flow 

In critical situations decisions must be made very fast, therefore the requirement on all our simulations was a 
response within minutes, with a maximum of a few hours for long-term predictions. This restriction determined 
the methods and codes selected for simulation of inundation on a city scale. The surface flow dynamics is 
simulated by the Dynamic Rapid Flood Spreading Model (DRFSM), developed by the HR Wallingford team 
and adapted in our project. The model is based on a computationally efficient diffusion-wave based inundation 
approach, sufficiently robust for use in flood risk models  [29]. The limitations of this model are that it is not 
suitable for very fast flooding processes like tsunamis, and it can provide only indirect means for assessment of 
building damages due to the water flows, since it does not solve the energy balance equation.  

In a pre-processing stage, the domain is discretised in irregular shaped computational elements. These so-
called Impact Zones (IZs) are delineated around depressions in the topography (see Fig. 3, right). Input to this 
pre-process is the floodplain topography in the form of a Digital Terrain Model (DTM). Each IZ captures the 
underlying topography by the means of a table giving the volume of water stored in the IZ for different flood 
levels. This mesh allows to speed up the simulation by reducing the number of computational elements 
compared to the initial number of cells in the input DTM. The use of the level-volume relation means that the 
computation of the water level in an IZ is more precise than the use of an averaged ground level for situations 
where the IZ is not entirely flooded. 

The model receives flood volumes discharged into floodplain areas from breached or overtopped defenses 
and then spreads the water over the floodplain according to the terrain topography. Spreading of flood water is 
achieved by transferring water between IZs at each computational time-step. The discharge between IZs can be 
calculated by two methods, the Manning relationship (i.e. similar to diffusion wave models) or the weir 
relation. The computational time-step is constant. Water level, average discharge and average velocity are 
calculated in each IZ during the computation. The water level is then used as a boundary condition in the 
subsurface flow model. To take into account water surcharge due to the subsurface flow or water sink through 
the storm-water drain inlets, each inundation zone can be assigned the rate of water level change in m/s. Water 
surcharge is dynamically calculated by the subsurface flow model.  

This approach can be used in probabilistic flood risk analysis where multiple runs are required, or in real 
time situations (flood forecasting), where the model run time is critical. The model has been validated against 
available flood data and more advanced models, see  [30],  [31]. 

5. City inundation model: subsurface flow (through porous media) 

The subsurface model we developed assumes that the city network of storm-water drainage pipes, drain 
inlets and outlets is sufficiently dense; therefore on a scale of the city, we can consider the land being a porous 
medium characterized by some porosity and permeability. These parameter values are different from those of 
the real soils (sands or clays), because they represent the density and "throughout" of the underground water 
streams. As a test case, we consider Vasilyevsky Island of St. Petersburg city that faces the Gulf of Finland and 
hosts a historical city centre district with over 200,000-population.  

A 3-dimensional simulation domain is presented in Figure 4 (left). It spans 5 km by 7.5 km in horizontal 
direction and 20 m in vertical direction. The upper surface of the island and vertical surfaces forming the 
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embankments are treated as water-permeable. The water levels from the surface flow model are used in the 
subsurface flow model as boundary conditions, see Fig. 4 (right). 

The resistance of the porous medium to the water flow is modeled using a transient groundwater flow 
equation based on Darcy’s law  [32]: 

0)]([ =+∇−⋅∇+
∂
∂ gzpK

t
pS S ρ

μ   (1) 

Here S is water storage [1/Pa]; p is water pressure [Pa]; t is time [s]; KS is permeability [m2];  is water 
dynamic viscosity [Pa·s]; g is standard gravity [m/s2],  is water density [kg/m3], z is land elevation coordinate 
[m]. Filtration velocity is calculated from Darcy’s law: )(/ pgKV s ∇−= ρμ  

Equation (1) is solved with the boundary conditions and with the initial conditions specified as follows: 
Boundary condition on the bottom surface of the island simulates an impermeable wall: Vn=0. Pressure 
boundary condition is specified on the embankments and on the upper surface of the island: 

)),,(( zyxthgp in −⋅= ρ , where ),,( yxthin  is the transient water level above ground obtained from the surface 
(overland) flow model; x and y are coordinates in a Cartesian coordinate system. In "dry" areas, a zero water 
head is specified: 0),,( =yxthin . The initial condition assumes that the ground water table stays at the reference 
sea level: gzp ρ−= . The surcharge water levels resulting from the porous flow simulation are computed from 
the pressure values on the upper surface of the island: 

0),,(0),,(;0),,(),,(),,( <=≥= yxtpforyxthyxtpfor
g

yxtpyxth filtrfiltr ρ  

Negative pressure values on the upper surface indicate that phreatic surface is located below the ground 
surface in this area and no inundation occurs due to the subsurface filtration. The total floodwater depth is 
calculated as a sum of the levels obtained from the surface (overland) flow model and from the filtration 
analysis:  

filtrintotal hhyxth +=),,( . 

 

 

Fig. 4.  Left: Vasilyevsky Island simulation domain. Right: Coupling of the overland and subsurface flow models. Top: initial position of 
the ground water table and overland inundation. Bottom: flood resulting from the subsurface flow model. 
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6. Implementation of city inundation models and integration in CLAVIRE distributed environment 

The surface (overland) flow model is implemented in C/C++; the auxiliary codes for fields' interpolation and 
setting boundary conditions and model parameters are written in C# and Python. All input parameters and 
simulation results are stored in a database. Minimal hardware requirements are: Intel x86 Family 6 processor, 
1 GB free disk space and 1 GB RAM memory. Minimal software requirements include Windows OS with 
.NET 2.0 and Microsoft SQL Server 2008. The simulation executable and the database are installed in a virtual 
machine (VM). The VM image is deployed under Xen hypervisor.  

The subsurface model is implemented in Comsol Multiphysics® 4.3 using the finite element method and 
time dependent implicit BDF solver. Each time step, a system of nonlinear algebraic equations is solved by 
Newton’s iterative method with a parallel MUMPS (MUltifrontal Massively Parallel sparse direct Solver). 
Fields interpolation and integration of the module in the computational workflow is implemented by the scripts 
written in Matlab language with the help of LiveLink™ for Matlab® component of the Comsol package. The 
scripts implement automatic execution of the following operations: 
• export of inundation water levels from the surface flow model to the subsurface flow model; 
• start of subsurface flow model in a batch mode from CLAVIRE environment; 
• export of subsurface simulation results into CLAVIRE; 
• visualization of floodwater depths (time-step images and animations of flood dynamics). 

 The subsurface simulation can run on a hardware platform with at least Pentium IV or Athlon processor, 
10 GB free disk space and 1 GB RAM, with the minimal requirements on software being: Windows XP2, or 
Linux 2.6.18 with GNU C Library 2.3.6, or MacOS 10.5. The visualization software requires x86 1.6 GHz 
processor with SSE2 support, 1 GB RAM, and a videocard 512 MB and DirectX10. The software requirements 
are Windows XP SP 4 with .NET 4 and Microsoft XNA Framework 4.0. Figure 5 summarizes the hardware 
and software requirements.  

The overall decision support modeling workflow is implemented in CLAVIRE (CLoud Applications 
VIRtual Environment) platform described in  [33]. It creates and maintains the data links between the models in 

 

Fig. 5.  UML diagram showing software and hardware minimal requirements of the models for simulation of city inundation dynamics. 
DRFSM component simulates the surface (overland) flow. COMSOL component simulates the subsurface flow. VisualFlood component 

visualizes the simulation results. 
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a distributed environment and orchestrates the computational resources with the goal of satisfying the urgent 
computing requests. All the software components are wrapped as services using domain-specific language 
EasyFlow and EasyPackage. The CLAVIRE environment supports the urgent computing paradigm by a 
scheduling mechanism with different priority levels and with a feature of matching simulation software with 
available computational resources, following the concept suggested in  [34],  [35]. The main idea is that a special 
module in CLAVIRE environment runs a series of benchmarks and measures simulation time with different 
combinations of input parameters, on different hardware platforms and with different number of parallel 
cores/nodes. It analyses this information and makes the best software-hardware match given the requirements 
on simulation deadline  [36],  [37]. All new simulation runs are adding data to the benchmark statistics, thus 
improving the forecast and helping to deliver the results in time.  

7. Results 

7.1. City inundation simulation results 

Since its completion in 2011, St. Petersburg Dam flood barrier gates were closed several times to prevent 
city inundation. Figure 6 (left) shows an example of the schedule for gate closing and opening moments 
suggested by the decision support system for flood barrier gates operation  [17]. The black dotted line shows 
water level dynamics at the tip of Vasilyevsky Island predicted by the BSM-2012 model in case of open flood 
barrier gates. Two solid lines (red and green) show two acceptable scenarios of gate operation that prevent 
flood. No flood was expected if the gates were closed according to the suggested plans, therefore the lower half 
of the modeling workflow (Fig. 3, left) was not processed. To test the coupled surface-subsurface city 
inundation model, we assumed that the gates stay open and that the inundation threshold is 130 cm (blue 
dashed line in Fig. 6, left). The water head above 130 cm was assumed to start flooding all the island 
boundaries simultaneously. In reality, there is a delay of several minutes, but that can be neglected in the first 
tests. The discharge through the boundary element was calculated by the weir equation, using the length of the 
boundary and the water head.  

An example of visualized results of flood simulations is shown in Fig. 6 (right). At time t = 1800 s, the 
inundation is seen along the perimeter of the island. At time t = 2700 s, we see a small area that was flooded 

  

Fig. 6. Left: Water levels for three scenarios: flood barrier gates open (dashed line), and two scenarios of gates closing and opening 
moments suggested by the decision support system for flood barrier gates operation  [17].  

Right: Visualized results of inundation simulation. The elevation map was artificially modified by lowering the central part of the island, to 
illustrate the effect of subsurface flow, which emerged in the concave area in the center. 
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further inland from the perimeter inundated by the overland water flow. No other puddles were initially 
observed. To illustrate the effect of the subsurface flow, the elevation map of Vasilyevsky Island was 
artificially modified by lowering the central part of the island. It produced an additional inundated area in the 
center at t = 5400 s, which grew in size, as we see at t = 8100 s.  

7.2. Software and CLAVIRE environment performance testing 

A typical model for city surface inundation contains 500,000 computational cells pre-processed into 10,000-
100,000 Impact Zones, depending on map resolution and desired accuracy. The computational runtime 
typically takes several minutes for hours of computed inundation. The exact values depend on the number of 
zones where the inundation starts and on the amount of discharged water. A typical subsurface simulation with 
50,000 computational cells takes 20 seconds of CPU time for 1 hour of simulated time on a quad-core 2.4 GHz 
processor in a multithreading mode.  

To assess the models performance and execution overheads in the CLAVIRE environment, we executed 
several series of simulations, with 10 runs for each point in parameter space. Figure 7 shows an example of 
performance results for the runs with varying number of flooded boundary zones. As we see, the calculation 
time of the surface flow model (DRFSM) increases with the number of flooded zones, while the subsurface 
flow (COMSOL) computational time is nearly constant or even slightly decreasing. The overheads are mainly 
due to the data transfer between the models and the CLAVIRE environment.  
 

  

Fig. 7. Computational time and overheads. Left: Surface flow model (DRFSM). Right: Subsurface flow model (Comsol). 

8. Conclusions and future plans 

To prevent floods and to mitigate their consequences, we developed a decision support system for flood 
early warning and disaster management. It includes the models for data-driven meteorological predictions, for 
simulation of atmospheric pressure, wind, long sea waves and seiches; a module for optimization of flood 
barrier gates operation; models for stability assessment of levees and embankments, for simulation of city 
inundation dynamics and citizens evacuation. The system has been tested on St. Petersburg city that faces the 
Gulf of Finland and has a long history of severe floods. Recently completed St. Petersburg flood barrier now 
protects the city, but requires a smart decision support system for flood barrier gate control. The modelling 
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workflow successfully predicted the floods and proposed a schedule for closing and opening the flood gates.  
The novelty of this paper is a coupled distributed simulation of surface and subsurface flows that can predict 

inundation of low-lying inland zones far away from the edge of the flooded area, as observed in St. Petersburg 
city during the floods. Preliminary results of inundation simulations on an artificially modified topography of 
Vasilyevsky Island with a lowered part of the island showed that the models correctly simulate the effect of 
subsurface water flow, which emerged in the concave inland area. In the future, the coupled modeling shall be 
tested on a realistic topography different from a flat pancake.  

All the models have been wrapped as software services in the CLAVIRE platform for urgent computing, 
which provides workflow management and resource orchestration. One of the features important for urgent 
computing is smart scheduling and matching simulation software with the available computational resources, 
with the goal of delivering the results in time for making an informed decision in critical situations. We are 
currently working on it and on other resource management aspects.  

In the modeling workflow, we plan to connect the model of under-gate flow simulations to the module 
optimizing the flood barrier gate operation. This model has been developed and tested separately, now it needs 
to be plugged in, with some strategy for prioritizing the various aspects of flood decisions support: the 
probability of flood, the potentially dangerous flow modes causing gate vibrations, the undesirable seabed 
erosion (scour) around the gates, and some negative ecological and economical aspects. Next, the evacuation 
model shall be connected to the CLAVIRE environment. It was running manually so far. Then we will look 
into modeling pollution from the stormwater runoff, and into an automated damage assessment.  
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