
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Sparseness of the trabecular pattern on dental radiographs: visual assessment
compared with semi-automated measurements

Geraets, W.G.M.; Lindh, C.; Verheij, H.
DOI
10.1259/bjr/32962542
Publication date
2012
Document Version
Author accepted manuscript
Published in
British Journal of Radiology

Link to publication

Citation for published version (APA):
Geraets, W. G. M., Lindh, C., & Verheij, H. (2012). Sparseness of the trabecular pattern on
dental radiographs: visual assessment compared with semi-automated measurements. British
Journal of Radiology, 85(1016), E455-E460. https://doi.org/10.1259/bjr/32962542

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1259/bjr/32962542
https://dare.uva.nl/personal/pure/en/publications/sparseness-of-the-trabecular-pattern-on-dental-radiographs-visual-assessment-compared-with-semiautomated-measurements(a1acd35e-8bbd-486a-abd5-0ac438eff1ab).html
https://doi.org/10.1259/bjr/32962542


 

 

 

1 

Sparseness of the Trabecular Pattern on Dental Radiographs:  
Visual Assessment compared with Semi-Automated Measurements 

 
 
Corresponding author: 
Dr. Wil GM Geraets, MSc, PhD  
Department of Oral and Maxillofacial Radiology  
Academic Centre for Dentistry Amsterdam (ACTA)  
Gustav Mahlerlaan 3004  
1081 LA  Amsterdam  
The Netherlands 
W.Geraets@acta.nl   
tel: +20 - 59 80831 
 
Prof. Christina Lindh    
Department of Oral Radiology Faculty of Odontology  
Malmö University   
SE - 205 06 Malmö 
Sweden 
Christina.Lindh@mah.se 
 
Dr. Hans Verheij, MSc, PhD  
Department of Oral and Maxillofacial Radiology  
Academic Centre for Dentistry Amsterdam (ACTA)  
Gustav Mahlerlaan 3004    
1081 LA  Amsterdam 
The Netherlands 
H.Verheij@acta.nl 
 
 
Reported work was carried out in Amsterdam and Malmö 
 
Short title: Sparseness of the Trabecular Pattern on Dental Radiographs 
 
 
Acknowledgements 
 
This work was supported by a research and technological development project grant from the 
European Commission Fifth Framework Programme ‘Quality of Life and Management of Living 
Resources’ (QLK6-2002-02243; ‘Osteodent’). Thanks to Prof. Paul Van der Stelt (Academic 
Centre for Dentistry Amsterdam, The Netherlands), Prof. Keith Horner, Dr.Hugh Devlin, Prof. 
Judith Adams and Dr. Elisabeth Marjanovic (University of Manchester, United Kingdom), Prof. 
Reinhilde Jacobs (KU Leuven, Belgium), Prof. Kety Nicopoulou-Karayianni (University of Athens, 
Greece), for organizing the project, recruiting patients and making the radiographs. 
 



 

 

 

2 

Sparseness of the Trabecular Pattern on Dental Radiographs:  

Visual Assessment compared with Semi-Automated Measurements 

 

Abstract 

Objective: In diagnostic imaging the human perception is the most prominent yet least studied 

source of error. Better understanding of image perception will help to improve diagnostic 

performance. This study focusses on the perception of coarseness of trabecular patterns on 

dental radiographs. Comparison of human vision with machine vision should yield knowledge on 

human perception. 

Material and Method: In a study on identifying osteoporotic patients dental radiographs were 

made from 505 postmenopausal women 45 to 70 years of age. Intraoral radiographs of the lower 

and upper jaws were made. Five observers graded the trabecular pattern in categories dense, 

sparse or mixed. The 5 gradings were combined into a single averaged observer score per jaw. 

The radiographs were scanned and a region of interest (ROI) was indicated on each. The ROI's 

were processed with image analysis software measuring 25 image features. Pearson correlation 

and multiple linear regression were used to compare the averaged observer score with the image 

features. 

Results: Fourteen image features correlated significantly with the observer judgement for both 

jaws. The strongest correlation was found for the average gray value in the ROI. Other features 

describing that osteoporotic patients have less but bigger marrow spaces than controls correlated 

less with the sparseness of the trabecular pattern than a rather crude measure for structure such 

as the average gray value.  

Conclusion: Human perception of the sparseness of trabecular patterns is based more on 

average gray value of the ROI than on geometric details within the ROI.  

 
Keywords:  

Dental radiographs,  trabecular pattern,  psychophysics,  
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Introduction 
 
Image perception is an important aspect of diagnostic imaging [1, 2]. According to the UNSCEAR 

2000 report (Annex D) the average number of diagnostic radiological examinations in countries 

with level I healthcare is about 1,000 per year per 1,000 population. Therefore it can be estimated 

that each European has about one radiological examination per year.  

 

The interpretation of radiographs is complicated by the variations in human anatomy and the 

spatial information that is lost while projecting the patient body on a 2D plane [3]. Visual clues are 

overlooked or misinterpreted [4-6]. The diagnostic process of radiologists can be improved by the 

use of computers [7-11]. Pattern-recognition techniques have been designed to draw the 

attention of the radiologist to regions in mammograms that need careful scrutiny and 

interpretation [12]. Fully automated methods can screen chest radiographs for features of 

tuberculosis [13]. Although the results compete with human performance, the automated methods 

do not outperform the radiologists. It is expected that some day computers may replace human 

observers in the analysis of the data, however, complete replacement of the human observer is 

yet a remote possibility [11]. For the foreseeable future, human interpretation will continue to be 

an inseparable element of medical imaging [14]. We need to understand the images and the 

technologies used to acquire and display them, but since patient treatment and care depend a lot 

on radiologists interpreting images, we also need to understand human perception and cognition. 

In the process of image acquisition, image processing and image display many parameters are 

involved and it is largely unknown how they should be optimized for human interpretation. 

Understanding the perceptual and cognitive processes involved in reading medical images will 

help to enhance the most useful properties of the images to improve diagnostic performance and 

reduce error rates [2, 3, 6, 14-17].  

 

In dental radiography many radiographs show bone with radiographic trabecular pattern, an 

irregular meshwork of vague bright lines with fuzzy dark meshes (Figure 1). Visual assessment of 

the trabecular pattern in intraoral radiographs is a method to identify women at risk of having 
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osteoporosis. Dense trabeculation is a strong indicator of healthy bone whereas sparse 

trabeculation is a sign of osteoporosis [18-20].  

 

At the Oral Radiology department of the Academic Centre for Dentistry Amsterdam methods were 

developed for semi-automatic analysis of the trabecular pattern of radiographs. Measurements on 

the trabecular pattern of intraoral radiographs were found to predict bone mineral density and 

osteoporosis [21, 22].  

 

When both the visual assessment and the semi automatic analysis had been applied to the same 

set of radiographs there rose an opportunity to compare the two and to gain more insight in the 

human perception of the coarseness of the radiographic trabecular pattern. 

 
Materials and Methods 
 
 
In 2003 the European Union granted a research project, named OSTEODENT, to five European 

Universities at Manchester, Amsterdam, Athens, Leuven, and Malmö.  

 
Subjects and radiographs 
 

In the project women from Manchester, Athens, Leuven and Malmö were recruited [20, 23]. Local 

ethical approval for the study was obtained in each recruiting centre and informed consent was 

obtained from all subjects. From each subject intraoral radiographs were made from the upper 

right and lower right premolar region using one of three Planmeca Prostyle Intra devices (60-63 

kV; Planmeca Oy, Helsinki, Finland) or with a Siemens Heliodent MD (60 kV; Sirona, Bensheim, 

Germany). The radiographic trabecular pattern was graded by 3 experienced radiologists and 2 

general practitioners [20].  

 

They were given 3 reference images from the upper and the lower jaw and they were asked to 

classify the trabecular pattern between the roots of the premolars as dense, alternating dense 

and sparse, or sparse. Additional instructions to observers described dense trabeculation as 



 

 

 

5 

having many trabeculae connected to each other and small or few marrow spaces. Sparse 

trabeculation was described as having less trabeculae, larger marrow spaces, and darker. Any 

trabecular pattern that was ambiguous had to be assigned to the intermediate category. Lamina 

dura, mandibular cortex and maxillary sinus as well as diseased areas were excluded from the 

assessment.  

 

Subjects that had not been graded by all the observers were excluded from the study [20]. 

Complete sets of data including BMD of hip and spine, two intraoral radiographs and 5 observer 

gradings were obtained from 505 subjects of which 21% was diagnosed as osteoporotic. 

 

Image processing 

 

The intraoral radiographs were scanned with a flatbed scanner (Agfa Duoscan T1200, Agfa 

Gevaert, Mortsel, Belgium; fixed sensitivity settings) at a resolution of 118 pixels cm-1 (300 dpi). 

Most radiographs displayed three interdental regions of which the widest was used by an 

observer to select a region of interest (ROI) containing trabecular pattern only (Figure 1). The ROI 

was subjected to automated image analysis procedures measuring various image features that 

have proven their relevance for bone structure and osteoporosis extensively [21-27]. First the 

mean (MEAN) and standard deviation (SD) of the gray values were determined on the raw 

unfiltered ROI (Figure 1).  

 

Isolated pixels with deviating gray values were adjusted with a 3x3 median filter. Large scale 

variations in gray value caused by varying thickness of cortex and soft tissues were removed with 

an unsharp self-masking filter. Then the ROI was segmented using the mode of the histogram as 

threshold value. This resulted in a version of the ROI consisting of black and white segments 

(Figure 2).  The segments were used to measure the fractal dimension according to the caliper 

method (FRACT), the number of black segments (N black), the number, area and the perimeter of 
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the white segments (N white, BV/TV, BS/TV) and an index of orientation in horizontal direction (0°) 

up to 165° in steps of 15° (LFD 0, LFD 15, ... LFD165). 

 

Next the white segments were eroded to a wire frame that was used to measure length of the 

frame, number of terminal points and number of furcations (TSL white, N.Tm white, N.Nd white). 

Similarly the black segments were eroded to a wire frame that was used to measure the length, 

number of terminal points and number of furcations (TSL black, N.Tm black, N.Nd black). Various 

methods for filtering and measuring image features have been described before [21, 23-32]. 

Similar image features are current in studies on osteoporosis and bone structure [33-39].  

 

Statistics 

 

To reduce the variations between the individual gradings and to simplify the analysis the gradings 

of the five observers were combined by equating the gradings dense, alternating, and sparse with 

numbers 1, 2, and 3. For each subject and each jaw the five numbers were combined into a 

single averaged observer score, resulting in 1010 averaged observer scores pertaining to 505 

subjects. 

 

For the interobserver agreement values of the kappa index ranged from 0.32 (fair) to 0.55 

(moderate) [20]. Since kappa is the agreement it can be seen that the disagreement, or noise, in 

the individual observer is 0.45 to 0.68. To estimate the noise in the averaged observer score the 

factor 1/√(5) is used leading to a noise level of 0.20 to 0.30. Obviously 30% of the variation in the 

averaged observer judgement must be considered noise and 70% of the variation in the averaged 

observer score is the maximum that can be accounted for by any set of features.  

 

With respect to the image features it can be said that the semi-automatic measurements were 

very reproducible since most of the associated values of Cronbach's alpha exceeded 0.8 and 

even 0.9 [27]. 
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To test the relation between the averaged observer score and the image features the Pearson 

correlation was calculated. In addition stepwise multiple linear regression was applied to calculate 

the multiple correlation between the averaged observer score and the image features. Single and 

multiple correlations were computed with the SPSS package (version 18, SPSS inc., Chicago, 

USA). To define significance α=0.05 was used. Additional computations of confidence intervals 

were done in accordance with Hayes [40]. 
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Results 
 
Table 1 summarizes the correlations of the image features on the lower and upper jaws with the 

averaged observer score. Of the 25 features that were investigated 14 correlated significantly for 

both jaws and 6 correlated significantly for only one jaw.  The difference between the correlation 

coefficients for upper jaw and the lower jaw was less than the critical value 0.124 for all features 

except BS/TV. Allowing 1 in 20 features to differ this implies that the corrrelations for upper and 

lower jaws correspond. 

 

The highest correspondence is found for the average grayvalue (MEAN) in the lower jaw (-0.39), 

as well as in the upper jaw (-0.37). This implies that MEAN accounts for 15% of the variance in 

the averaged observer score in the lower jaw and 14% in the upper jaw.  

 

Using stepwise multiple linear regression the percentage variation accounted for increased to 

19% (R=0.43) for the upper jaw and 27% (R=0.52) for the lower jaw. The analysis started with 

predictor MEAN and then one by one predictors were added until the prediction improved 

insignificantly. Table 2 shows the predictors and the order in which they entered the regression 

eqation. For the lower jaw 6 predictors were entered and for the upper jaw 4. The three most 

important features in lower and upper jaw corresponded; they were MEAN, BS/TV and LFD 75. 
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Discussion 
 
 

The assessments of the trabecular pattern by the observers were similar for the upper and lower 

jaw [20]. In addition the semi-automatic measurements of upper and lower jaws correspond to a 

large extent [29]. This may explain the correspondence of upper and lower jaws in Table 1.  

 
 
In a previous study several features discriminated significantly between osteoporotic patients and 

healthy controls of which the strongest was the number of terminal points (N.Tm black) [29]. To a 

large extent this is confirmed by the correlations provided in Table 1. It can be seen that the 

trabecular patterns of osteoporotic patients have less geometrical details than the patterns of the 

controls. Obviously osteoporotic patients have less but bigger marrow spaces than controls. This 

is consistent with the finding that sparse trabeculation is a sign of osteoporosis.  

 

The negative value of the correlation between MEAN and the observer score implies that low 

values of MEAN are associated with sparse trabecular patterns which is consistent with the loss 

of bone mineral and increased sparseness of the radiographic trabecular pattern of osteoporotic 

patients [20,41]. Considering that MEAN represents the average gray value of the pixels in the 

ROI one might say that MEAN is a crude measure for structure. Therefore it is striking that in this 

study MEAN has a stronger correlation with the observer grading than the other features such as 

N.Nd black and TSL white that reflect relevant structural aspects of trabecular microarchitecture. 

MEAN even surpasses features N black and BV/TBV which are closely related with the concept of 

sparse and dense trabeculation. Part of a possible explanation can be found in the instructions to 

the observers stating that sparse trabeculation associates with darker images. Our main 

conclusion is that the human perception of the sparseness of trabecular patterns is based more 

on average gray value of the ROI than on other structural aspects of the ROI. 
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Figures 

 
 
Figure 1: Radiograph of the right side of the lower jaw with region of interest 3.7 mm x 5.8 mm 

between first and second premolar. This is used to measure mean and standard deviation of the 

gray value (MEAN, SD). 
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Figure 2: The region of interest in fig.1 has been filtered and segmented into black and white 

segments. This is used to measure fractal dimension (FRACT), numbers of black and white 

segments (N black, N white), area and perimeter of the white segments (BV/TV, BS/TV) and 

orientation (LFD 0, LFD 15, ..., LFD 165). 
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Figure 3: The white segments in fig.2 have been eroded. The eroded parts are displayed in gray. 

The remaining wire structure is displayed in white. Each white pixel contributes to the length of 

the white frame (TSL white). Each white pixel with 1 (or 0) white neighbours is an endpoint and 

contributes to N.Tn white. Each white pixel with 3 (or 4) white neighbours is a furcation point and 

contributes to N.Nd white. 
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Table 1: Correlations between observer grading and image features. 
 
 
----------------------------------------------------------------------------------------------------- 
Feature             Codename Upper jaw Lower jaw 
----------------------------------------------------------------------------------------------------- 
average grayvalue  MEAN   -0.37   -0.39 
standard dev of gray value SD   -0.10   -0.13 
 
fractal dimension  FRACT  +0.16  +0.09 
 
number of white segments N white  +0.15  +0.11 
number of black segments N black   -0.18   -0.18 
area     of white segments BV/TV    -0.19    -0.26 
perimeter white segments BS/TV   -0.16    -0.32 
 
orientation horizontal  LFD  0     ns  +0.12 
orientation along 15°  LFD 15     ns     ns 
orientation along 30°  LFD 30     ns     ns 
orientation along 45°  LFD 45     ns   -0.13 
orientation along 60°  LFD 60   -0.14  -0.18 
orientation along 75°  LFD 75   -0.15  -0.19 
 
orientation vertical   LFD 90   -0.13  -0.16 
orientation along 105°  LFD105   -0.10  -0.15 
orientation along 120°  LFD120   -0.11    ns 
orientation along 135°  LFD135     ns    ns 
orientation along 150°  LFD150     ns  +0.11 
orientation along 165°  LFD165     ns  +0.11 
 
length       white wire  TSL  white  -0.21   -0.32 
endpoints white wire  N.Tn white    ns    ns 
furcations white wire  N.Nd white  -0.14   -0.19 
 
length       black wire  TSL  black    ns     ns 
endpoints black wire  N.Tn black  -0.19  -0.22 
furcations black wire  N.Nd black  -0.09    ns  
------------------------------------------------------------------------------------------------------ 
 
 
ns = not significant. 
 



 

 

 

18 

Table 2: Results of stepwise multiple linear regression. 
 
   Upper jaw 
-------------------------------------------------------------------------------------------------------------------------------- 
Order in regression Feature in upper jaw           Codename Variance accounted for 
-------------------------------------------------------------------------------------------------------------------------------- 
 1  average grayvalue  MEAN   14% 
 2  perimeter white segments BS/TV   16% 
 3  orientation along 75°  LFD 75   18% 
 4  standard dev of gray value SD   19% 
-------------------------------------------------------------------------------------------------------------------------------- 
 
   Lower jaw 
-------------------------------------------------------------------------------------------------------------------------------- 
Order in regression Feature in lower jaw            Codename Variance accounted for 
-------------------------------------------------------------------------------------------------------------------------------- 
 1  average grayvalue  MEAN   15% 
 2  perimeter white segments BS/TV   21% 
 3  orientation along 75°  LFD 75   23% 
 4  length of white wire  TSL white  25% 
 5  orientation horizontal  LFD  0   26% 
 6  furcations white wire  N.Nd white  27% 
-------------------------------------------------------------------------------------------------------------------------------- 
 
Stepwise multiple linear regression first selects the single feature describing the observer grading 
best. The second feature is selected to increase descriptive power the most. This is continued as 
long as significant improvement can be achieved.  
 


