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Abstract: We prove that the posterior distribution of a parameter in mis-
specified LAN parametric models can be approximated by a random normal
distribution. We derive from this that Bayesian credible sets are not valid
confidence sets if the model is misspecified. We obtain the result under con-
ditions that are comparable to those in the well-specified situation: uniform
testability against fixed alternatives and sufficient prior mass in neighbour-
hoods of the point of convergence. The rate of convergence is considered in
detail, with special attention for the existence and construction of suitable
test sequences. We also give a lemma to exclude testable model subsets
which implies a misspecified version of Schwartz’ consistency theorem, es-
tablishing weak convergence of the posterior to a measure degenerate at
the point at minimal Kullback-Leibler divergence with respect to the true
distribution.
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1. Introduction

The Bernstein-Von Mises theorem asserts that the posterior distribution of a
parameter in a smooth finite-dimensional model is approximately a normal dis-
tribution if the number of observations tends to infinity. Apart from having
considerable philosophical interest, this theorem is the basis for the justification
of Bayesian credible sets as valid confidence sets in the frequentist sense: (cen-
tral) sets of posterior probability 1− α cover the parameter at confidence level
1 − α. In this paper we study the posterior distribution in the situation that
the observations are sampled from a “true distribution” that does not belong
to the statistical model, i.e. the model is misspecified. Although consistency of
the posterior distribution and the asymptotic normality of the Bayes estima-
tor (the posterior mean) in this case have been considered in the literature, by
Berk (1966, 1970) [2, 3] and Bunke and Milhaud (1998) [5], the behaviour of
the full posterior distribution appears to have been neglected. This is surpris-
ing, because in practice the assumption of correct specification of a model may
be hard to justify. In this paper we derive the asymptotic normality of the full
posterior distribution in the misspecified situation under conditions comparable
to those obtained by Le Cam in the well-specified case.

This misspecified version of the Bernstein-Von Mises theorem has an im-
portant consequence for the interpretation of Bayesian credible sets. In the
misspecified situation the posterior distribution of a parameter shrinks to the
point within the model at minimum Kullback-Leibler divergence to the true
distribution, a consistency property that it shares with the maximum likeli-
hood estimator. Consequently one can consider both the Bayesian procedure
and the maximum likelihood estimator as estimates of this minimum Kullback-
Leibler point. A confidence region for this minimum Kullback-Leibler point can
be built around the maximum likelihood estimator based on its asymptotic nor-
mal distribution, involving the sandwich covariance. One might also hope that
a Bayesian credible set automatically yields a valid confidence set for the min-
imum Kullback-Leibler point. However, the misspecified Bernstein-Von Mises
theorem shows the latter to be false.

More precisely, let B 7→ Πn(B | X1, . . . , Xn) be the posterior distribution
of a parameter θ based on observations X1, . . . , Xn sampled from a density pθ
and a prior measure Π on the parameter set Θ ⊂ Rd. The Bernstein-Von Mises
theorem asserts that if X1, . . . , Xn is a random sample from the density pθ0 ,
the model θ 7→ pθ is appropriately smooth and identifiable, and the prior puts
positive mass around the parameter θ0, then,

Pn
θ0 sup

B

∣

∣

∣
Πn(B | X1, . . . , Xn)−Nθ̂n,(niθ0 )

−1(B)
∣

∣

∣
→ 0,

where Nx,Σ denotes the (multivariate) normal distribution centred on x with

covariance matrix Σ, θ̂n may be any efficient estimator sequence of the parameter
and iθ is the Fisher information matrix of the model at θ. It is customary to
identify θ̂n as the maximum likelihood estimator in this context (correct under
regularity conditions).
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The Bernstein-Von Mises theorem implies that any random sets B̂n such that
Πn(B̂n | X1, . . . , Xn) = 1− α for each n satisfy,

N0,I

(

(niθ0)
1/2(B̂n − θ̂n)

)

→ 1− α,

in probability. In other words, such sets B̂n can be written in the form B̂n =

θ̂n+i
−1/2
θ0

Ĉn/
√
n for sets Ĉn that receive asymptotically probability 1−α under

the standard Gaussian distribution. This shows that the 1− α-credible sets B̂n

are asymptotically equivalent to the Wald 1 − α-confidence sets based on the
asymptotically normal estimators θ̂n, and consequently they are valid 1 − α
confidence sets.

In this paper we consider the situation that the posterior distribution is
formed in the same way relative to a model θ 7→ pθ, but we assume that the
observations are sampled from a density p0 that is not necessarily of the form
pθ0 for some θ0. We shall show that the Bernstein-Von Mises can be extended
to this situation, in the form,

Pn
0 sup

B

∣

∣

∣
Πn(B | X1, . . . , Xn)−Nθ̂n,(nVθ∗ )−1(B)

∣

∣

∣
→ 0,

where θ∗ is the parameter value θ minimizing the Kullback-Leibler divergence
θ 7→ P0 log(p0/pθ) (provided it exists and is unique, see corollary 4.2), Vθ∗ is

minus the second derivative matrix of this map, and θ̂n are suitable estimators.
Under regularity conditions the estimators θ̂n can again be taken equal to the

maximum likelihood estimators (for the misspecified model), which typically sat-

isfy that the sequence
√
n(θ̂n−θ∗) is asymptotically normal with mean zero and

covariance matrix given by the “sandwich formula” Σθ∗ = Vθ∗(P0ℓ̇θ∗ ℓ̇Tθ∗)−1Vθ∗ .
(See, for instance, Huber (1967) [8] or Van der Vaart (1998) [18].) The usual

confidence sets for the misspecified parameter take the form θ̂n+Σ
1/2
θ∗ C/

√
n for

C a central set in the Gaussian distribution. Because the covariance matrix Vθ∗

appearing in the misspecified Bernstein-Von Mises theorem is not the sandwich
covariance matrix, central posterior sets of probability 1− α do not correspond
to these misspecified Wald sets. Although they are correctly centered, they may
have the wrong width, and are in general not 1 − α-confidence sets. We show
below by example that the credible sets may over- or under-cover, depending
on the true distribution of the observations and the model, and to extreme
amounts.

The first results concerning limiting normality of a posterior distribution date
back to Laplace (1820) [10]. Later, Bernstein (1917) [1] and VonMises (1931) [14]
proved results to a similar extent. Le Cam used the term ‘Bernstein-Von Mises
theorem’ in 1953 [11] and proved its assertion in greater generality. Walker
(1969) [19] and Dawid (1970) [6] gave extensions to these results and Bickel
and Yahav (1969) [4] proved a limit theorem for posterior means. A version of
the theorem involving only first derivatives of the log-likelihood in combination
with testability and prior mass conditions (compare with Schwartz’ consistency
theorem, Schwartz (1965) [16]) can be found in Van der Vaart (1998) [18] which
copies (and streamlines) the approach Le Cam presented in [12].
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Weak convergence of the posterior distribution to the degenerate distribu-
tion at θ∗ under misspecification was shown by Berk (1966, 1970) [2, 3], while
Bunke and Milhaud (1998) [5] proved asymptotic normality of the posterior
mean. These authors also discuss the situation that the point of minimum
Kullback-Leibler divergence may be non-unique, which obviously complicates
the asymptotic behaviour considerably. Posterior rates of convergence in mis-
specified non-parametric models were considered in Kleijn and Van der Vaart
(2006) [9].

In the present paper we address convergence of the full posterior under mild
conditions comparable to those in Van der Vaart (1998) [18]. The presentation
is split into two parts. In section 2 we derive normality of the posterior given
that it shrinks at a

√
n-rate of posterior convergence (theorem 2.1). We actually

state this result for the general situation of locally asymptotically normal (LAN)
models, and next specify to the i.i.d. case. Next in section 3 we discuss results
guaranteeing the desired rate of convergence, where we first show sufficiency of
existence of certain tests (theorem 3.1), and next construct appropriate tests
(theorem 3.3). We conclude with a lemma (applicable in parametric and non-
parametric situations alike) to exclude testable model subsets, which implies a
misspecified version of Schwartz’ consistency theorem.

In subsection 2.1 we work in a general locally asymptotically normal set-up,
but in the remainder of the paper we consider the situation of i.i.d. observations,
considered previously and described precisely in section 2.2.

2. Posterior limit distribution

2.1. Asymptotic normality in LAN models

Let Θ be an open subset of Rd parameterising statistical models {P (n)
θ : θ ∈ Θ}.

For simplicity, we assume that for each n there exists a single measure that

dominates all measures P
(n)
θ as well as a “true measure” P

(n)
0 , and we assume

that there exist densities p
(n)
θ and p

(n)
0 such that the maps (θ, x) 7→ p

(n)
θ are

measurable.
We consider models satisfying a stochastic local asymptotic normality (LAN)

condition around a given inner point θ∗ ∈ Θ and relative to a given norming
rate δn → 0: there exist random vectors ∆n,θ∗ and nonsingular matrices Vθ∗

such that the sequence ∆n,θ∗ is bounded in probability, and for every compact
set K ⊂ Rd,

sup
h∈K

∣

∣

∣
log

p
(n)
θ∗+δnh

p
(n)
θ∗

(X(n))− hTVθ∗∆n,θ∗ − 1
2h

TVθ∗h
∣

∣

∣
→ 0, (2.1)

in (outer) P
(n)
0 -probability. We state simple conditions ensuring this condition

for the case of i.i.d. observations in section 2.2.
The prior measure Π on Θ is assumed to be a probability measure with

Lebesgue-density π, continuous and positive on a neighbourhood of a given
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point θ∗. Priors satisfying these criteria assign enough mass to (sufficiently
small) balls around θ∗ to allow for optimal rates of convergence of the posterior
if certain regularity conditions are met (see section 3).

The posterior based on an observation X(n) is denoted Πn( · |X(n)): for every
Borel set A,

Πn

(

A
∣

∣ X(n)
)

=

∫

A

p
(n)
θ (X(n))π(θ) dθ

/
∫

Θ

p
(n)
θ (X(n))π(θ) dθ. (2.2)

To denote the random variable associated with the posterior distribution, we
use the notation ϑ. Note that the assertion of theorem 2.1 below involves con-
vergence in P0-probability, reflecting the sample-dependent nature of the two
sequences of measures converging in total-variation norm.

Theorem 2.1. Assume that (2.1) holds for some θ∗ ∈ Θ and let the prior Π
be as indicated above. Furthermore, assume that for every sequence of constants
Mn → ∞, we have:

P
(n)
0 Πn

(

‖ϑ− θ∗‖ > δnMn

∣

∣ X(n)
)

→ 0. (2.3)

Then the sequence of posteriors converges to a sequence of normal distributions
in total variation:

sup
B

∣

∣

∣
Πn

(

(ϑ− θ∗)/δn ∈ B
∣

∣ X(n)
)

−N∆n,θ∗ ,V
−1

θ∗
(B)

∣

∣

∣

P0−→ 0. (2.4)

Proof. The proof is split into two parts: in the first part, we prove the assertion
conditional on an arbitrary compact set K ⊂ Rd and in the second part we
use this to prove (2.4). Throughout the proof we denote the posterior for H =
(ϑ − θ∗)/δn given X(n) by Πn. The posterior for H follows from that for θ by
Πn(H ∈ B|X(n)) = Πn((ϑ−θ∗)/δn ∈ B|X(n)) for all Borel setsB. Furthermore,
we denote the normal distribution N∆n,θ∗ ,V

−1

θ∗
by Φn. For a compact subset

K ⊂ R
d such that Πn(H ∈ K|X(n)) > 0, we define a conditional version ΠK

n

of Πn by ΠK
n (B|X(n)) = Πn(B ∩K|X(n))/Πn(K|X(n)). Similarly we defined a

conditional measure ΦK
n corresponding to Φn.

LetK ⊂ Rd be a compact subset of Rd. For every open neighbourhood U ⊂ Θ
of θ∗, θ∗ +Kδn ⊂ U for large enough n. Since θ∗ is an internal point of Θ, for
large enough n the random functions fn : K ×K → R,

fn(g, h) =
(

1− φn(h)

φn(g)

sn(g)

sn(h)

πn(g)

πn(h)

)

+
,

are well-defined, with φn : K → R the Lebesgue density of the (randomly
located) distribution N∆n,θ∗ ,Vθ∗

, πn : K → R the Lebesgue density of the prior
for the centred and rescaled parameter H and sn : K → R the likelihood

quotient sn(h) = p
(n)
θ∗+hδn

/p
(n)
θ∗ (X(n)).

By the LAN assumption, we have for every random sequence (hn) ⊂ K,
log sn(hn) = hTnVθ∗∆n,θ∗− 1

2h
T
nVθ∗hn+oP0

(1). For any two sequences (hn), (gn)
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in K, πn(gn)/πn(hn) → 1 as n→ ∞, leading to,

log
φn(hn)

φn(gn)

sn(gn)

sn(hn)

πn(gn)

πn(hn)

= (gn − hn)
TVθ∗∆n,θ∗ + 1

2h
T
nVθ∗hn − 1

2g
T
nVθ∗gn + oP0

(1)

− 1
2 (hn −∆n,θ∗)TVθ∗(hn −∆n,θ∗) + 1

2 (gn −∆n,θ∗)TVθ∗(gn −∆n,θ∗)

= oP0
(1),

as n → ∞. Since all functions fn depend continuously on (g, h) and K ×K is
compact, we conclude that,

sup
g,h∈K

fn(g, h)
P0−→ 0, (n→ ∞), (2.5)

where the convergence is in outer probability.
Assume thatK contains a neighbourhood of 0 (to guarantee that Φn(K) > 0)

and let Ξn denote the event that Πn(K) > 0. Let η > 0 be given and based on
that, define the events:

Ωn =
{

sup
g,h∈K

fn(g, h) ≤ η
}

∗,

where the ∗ denotes the inner measurable cover set, in case the set on the right
is not measurable. Consider the inequality (recall that the total-variation norm
‖ · ‖ is bounded by 2):

P
(n)
0

∥

∥ΠK
n − ΦK

n

∥

∥1Ξn
≤ P

(n)
0

∥

∥ΠK
n − ΦK

n

∥

∥1Ωn∩Ξn
+ 2P

(n)
0 (Ξn \ Ωn). (2.6)

As a result of (2.5) the second term is o(1) as n → ∞. The first term on the
r.h.s. is calculated as follows:

1
2P

(n)
0

∥

∥ΠK
n − ΦK

n

∥

∥1Ωn∩Ξn
= P

(n)
0

∫

(

1− dΦK
n

dΠK
n

)

+
dΠK

n 1Ωn∩Ξn

= P
(n)
0

∫

K

(

1−
∫

K

sn(g)πn(g)φ
K
n (h)

sn(h)πn(h)φKn (g)
dΦK

n (g)
)

+
dΠK

n (h) 1Ωn∩Ξn
.

Note that for all g, h ∈ K, φKn (h)/φKn (g) = φn(h)/φn(g), since on K φKn differs
from φn only by a normalisation factor. We use Jensen’s inequality (with respect
to the ΦK

n -expectation) for the (convex) function x 7→ (1− x)+ to derive:

1
2P

(n)
0

∥

∥ΠK
n − ΦK

n

∥

∥1Ωn∩Ξn

≤ P
(n)
0

∫

(

1− sn(g)πn(g)φn(h)

sn(h)πn(h)φn(g)

)

+
dΦK

n (g) dΠK
n (h)1Ωn∩Ξn

≤ P
(n)
0

∫

sup
g,h∈K

fn(g, h)1Ωn∩Ξn
dΦK

n (g) dΠK
n (h) ≤ η.
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Combination with (2.6) shows that for all compact K ⊂ Rd containing a neigh-

bourhood of 0, P
(n)
0

∥

∥ΠK
n − ΦK

n

∥

∥1Ξn
→ 0.

Now, let (Km) be a sequence of balls centred at 0 with radii Mm → ∞. For
each m ≥ 1, the above display holds, so if we choose a sequence of balls (Kn)
that traverses the sequence Km slowly enough, convergence to zero can still be
guaranteed. Moreover, the corresponding events Ξn = {Πn(Kn) > 0} satisfy

P
(n)
0 (Ξn) → 1 as a result of (2.3). We conclude that there exists a sequence of

radii (Mn) such that Mn → ∞ and P
(n)
0

∥

∥ΠKn
n − ΦKn

n

∥

∥ → 0 (where it is under-
stood that the conditional probabilities on the l.h.s. are well-defined on sets of
probability growing to one). The total variation distance between a measure and
its conditional version given a set K satisfies ‖Π− ΠK‖ ≤ 2Π(Kc). Combining

this with (2.3) and lemma 5.2, we conclude that P
(n)
0

∥

∥Πn − Φn

∥

∥ → 0, which
implies (2.4).

Condition (2.3) fixes the rate of convergence of the posterior distribution to
be that occuring in the LAN property. Sufficient conditions to satisfy (2.3) in
the case of i.i.d. observations are given in section 3.

2.2. Asymptotic normality in the i.i.d. case

Consider the situation that the observation is a vector X(n) = (X1, . . . , Xn) and

the model consists of n-fold product measures P
(n)
θ = Pn

θ , where the components
Pθ are given by densities pθ such that the maps (θ, x) 7→ pθ(x) are measurable
and θ 7→ pθ is smooth (in the sense of lemma 2.1). Assume that the observations
form an i.i.d. sample from a distribution P0 with density p0 relative to a common
dominating measure. Assume that the Kullback-Leibler divergence of the model
relative to P0 is finite and minimized at θ∗ ∈ Θ, i.e.:

− P0 log
pθ∗

p0
= inf

θ∈Θ
−P0 log

pθ
p0

<∞. (2.7)

In this situation we set δn = n−1/2 and use ∆n,θ∗ = V −1
θ∗ Gnℓ̇θ∗ as the centering

sequence (where ℓ̇θ∗ denotes the score function of the model θ 7→ pθ at θ∗ and
Gn =

√
n(Pn − P0) is the empirical process).

Lemmas that establish the LAN expansion (2.1) (for an overview, see, for in-
stance Van der Vaart (1998) [18]) usually assume a well-specified model, whereas
current interest requires local asymptotic normality in misspecified situations.
To that end we consider the following lemma which gives sufficient conditions.

Lemma 2.1. If the function θ 7→ log pθ(X1) is differentiable at θ∗ in P0-
probability with derivative ℓ̇θ∗(X1) and:

(i) there is an open neighbourhood U of θ∗ and a square-integrable function
mθ∗ such that for all θ1, θ2 ∈ U :

∣

∣

∣
log

pθ1
pθ2

∣

∣

∣
≤ mθ∗‖θ1 − θ2‖, (P0 − a.s .), (2.8)
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(ii) the Kullback-Leibler divergence with respect to P0 has a 2nd-order Taylor-
expansion around θ∗:

− P0 log
pθ
pθ∗

= 1
2 (θ − θ∗)Vθ∗(θ − θ∗) + o(‖θ − θ∗‖2), (θ → θ∗), (2.9)

where Vθ∗ is a positive-definite d× d-matrix,

then (2.1) holds with δn = n−1/2 and ∆n,θ∗ = V −1
θ∗ Gnℓ̇θ∗. Furthermore, the

score function is bounded as follows:

‖ℓ̇θ∗(X)‖ ≤ mθ∗(X), (P0 − a.s .). (2.10)

Finally, we have:

P0ℓ̇θ∗ =
∂

∂θ

[

P0 log pθ
]

θ=θ∗
= 0. (2.11)

Proof. Using lemma 19.31 in Van der Vaart (1998) [18] for ℓθ(X) = log pθ(X),
the conditions of which are satisfied by assumption, we see that for any sequence
(hn) that is bounded in P0-probability:

Gn

(√
n
(

ℓθ∗+(hn/
√
n) − ℓθ∗

)

− hTn ℓ̇θ∗

)

P0−→ 0. (2.12)

Hence, we see that,

nPn log
pθ∗+hn/

√
n

pθ∗

−Gnh
T
n ℓ̇θ∗ − nP0 log

pθ∗+hn/
√
n

pθ∗

= oP0
(1).

Using the second-order Taylor-expansion (2.9):

P0 log
pθ∗+hn/

√
n

pθ∗

− 1

2n
hTnVθ∗hn = oP0

(1),

and substituting the log-likelihood product for the first term, we find (2.1). The
proof of the remaining assumptions is standard.

Regarding the centering sequence ∆n,θ∗ and its relation to the maximum-
likelihood estimator, we note the following lemma concerning the limit distri-
bution of maximum-likelihood sequences.

Lemma 2.2. Assume that the model satisfies the conditions of lemma 2.1 with

non-singular Vθ∗ . Then a sequence of estimators θ̂n such that θ̂n
P0−→ θ∗ and,

Pn log pθ̂n ≥ sup
θ

Pn log pθ − oP0
(n−1),

satisfies the asymptotic expansion:

√
n(θ̂n − θ∗) =

1√
n

n
∑

i=1

V −1
θ∗ ℓ̇θ∗(Xi) + oP0

(1). (2.13)
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Proof. The proof of this lemma is a more specific version of the proof found in
Van der Vaart (1998) [18] on page 54.

Lemma 2.2 implies that for consistent maximum-likelihood estimators (suf-
ficient conditions for consistency are given, for instance, in theorem 5.7 of
van der Vaart (1998) [18]) the distribution of

√
n(θ̂n − θ∗) has a normal limit

with mean zero and covariance V −1
θ∗ P0[ℓ̇θ∗ ℓ̇Tθ∗]V

−1
θ∗ . More important for present

purposes, however, is the fact that according to (2.13), this sequence differs
from ∆n,θ∗ only by a term of order oP0

(1). Since the total-variational distance
‖Nµ,Σ − Nν,Σ‖ is bounded by a multiple of ‖µ − ν‖ as (µ → ν), the assertion
of the Bernstein-Von Mises theorem can also be formulated with the sequence√
n(θ̂n−θ∗) as the locations for the normal limit sequence. Using the invariance

of total-variation under rescaling and shifts, this leads to the conclusion that:

sup
B

∣

∣

∣
Πn

(

ϑ ∈ B
∣

∣ X1, . . . , Xn

)

−Nθ̂n,n−1Vθ∗
(B)

∣

∣

∣

P0−→ 0,

which demonstrates the usual interpretation of the Bernstein-VonMises theorem
most clearly: the sequence of posteriors resembles more-and-more closely a se-
quence of ‘sharpening’ normal distributions centred at the maximum-likelihood
estimators. More generally, any sequence of estimators satisfying (2.13) (i.e.
any best-regular estimator sequence) may be used to centre the normal limit
sequence on.

The conditions for lemma 2.2, which derive directly from a fairly general
set of conditions for asymptotic normality in parametric M -estimation (see,
theorem 5.23 in Van der Vaart (1998) [18]), are close to the conditions of the
above Bernstein-Von Mises theorem. In the well-specified situation the Lips-
chitz condition (2.8) can be relaxed slightly and replaced by the condition of
differentiability in quadratic mean.

It was noted in the introduction that the mismatch of the asymptotic covari-
ance matrix V −1

θ∗ P0[ℓ̇θ∗ ℓ̇Tθ∗ ]V
−1
θ∗ and the limiting covariance matrix V −1

θ∗ in the
Bernstein-Von Mises theorem causes that Bayesian credible sets are not confi-
dence sets at the nominal level. The following example shows that both over-
and under-covering may occur.

Example 2.1. Let Pθ be the normal distribution with mean θ and variance
1, and let the true distribution possess mean zero and variance σ2 > 0. Then
θ∗ = 0, P0ℓ̇

2
θ∗ = σ2 and Vθ∗ = 1. It follows that the radius of the 1−α-Bayesian

credible set is zα/
√
n, whereas a 1−α-confidence set around the mean has radius

zασ/
√
n. Depending on σ2 ≤ 1 or σ2 > 1, the credible set can have coverage

arbitrarily close to 0 or 1.

2.3. Asymptotic normality of point-estimators

Having discussed the posterior distributional limit, a natural question concerns
the asymptotic properties of point-estimators derived from the posterior, like
the posterior mean and median.
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Based on the Bernstein-Von Mises assertion (2.4) alone, one sees that any
functional f : P 7→ R, continuous relative to the total-variational norm, when
applied to the sequence of posterior laws, converges to f applied to the nor-
mal limit distribution. Another general consideration follows from a generic
construction of point-estimates from posteriors and demonstrate that posterior
consistency at rate δn implies frequentist consistency at rate δn.

Theorem 2.2. Let X1, . . . , Xn be distributed i.i.d.-P0 and let Πn(·|X1, . . . , Xn)
denote a sequence of posterior distributions on Θ that satisfies (2.3). Then there

exist point-estimators θ̂n such that:

δ−1
n (θ̂n − θ∗) = OP0

(1), (2.14)

i.e. θ̂n is consistent and converges to θ∗ at rate δn.

Proof. Define θ̂n to be the center of a smallest ball that contains posterior mass
at least 1/2. Because the ball around θ∗ of radius δnMn contains posterior mass
tending to 1, the radius of a smallest ball must be bounded by δnMn and the
smallest ball must intersect the ball of radius δnMn around θ∗ with probability
tending to 1. This shows that ‖θ̂n − θ∗‖ ≤ 2δnMn with probability tending to
one.

Consequently, frequentist restrictions and notions of asymptotic optimality
have implications for the posterior too: in particular, frequentist bounds on the
rate of convergence for a given problem apply to the posterior rate as well.

However, these general points are more appropriate in non-parametric con-
text and the above existence theorem does not pertain to the most widely-used
Bayesian point-estimators. Asymptotic normality of the posterior mean in a
misspecified model has been analysed in Bunke and Milhaud (1998) [5]. We
generalize their discussion and prove asymptotic normality and efficiency for a
class of point-estimators defined by a general loss function, which includes the
posterior mean and median.

Let ℓ : Rk → [0,∞) be a loss-function with the following properties: ℓ is
continuous and satisfies, for every M > 0,

sup
‖h‖≤M

l(h) ≤ inf
‖h‖>2M

l(h),

with strict inequality for some M . Furthermore, we assume that ℓ is subpoly-
nomial, i.e. for some p > 0,

ℓ(h) ≤ 1 + ‖h‖p. (2.15)

Define the estimators θ̂n as the (near-)minimizers of

t 7→
∫

ℓ
(√
n(t− θ)

)

dΠn(θ|X1, . . . , Xn).

The theorem below is the misspecified analog of theorem 10.8 in van der Vaart
(1998) [18] and is based on general methods from M -estimation, in particular
the argmax theorem (see, for example, corollary 5.58 in [18]).
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Theorem 2.3. Assume that the model satisfies (2.1) for some θ∗ ∈ Θ and
that the conditions of theorems 3.1 are satisfied. Let ℓ : Rk → [0,∞) be a loss-
function with the properties listed and assume that

∫

‖θ‖p dΠ(θ) < ∞. Then

under P0, the sequence
√
n(θ̂n − θ∗) converges weakly to the minimizer of,

t 7→ Z(t) =

∫

ℓ(t− h) dNX,V −1

θ∗
(h),

where X ∼ N(0, V −1
θ∗ P0[ℓ̇θ∗ ℓ̇Tθ∗ ]V

−1
θ∗ ), provided that any two minimizers of this

process coincide almost-surely. In particular, if the loss function is subconvex
(e.g. ℓ(x) = ‖x‖2 or ℓ(x) = ‖x‖, giving the posterior mean and median), then√
n(θ̂n − θ∗) converges weakly to X under P0.

Proof. The theorem can be proved along the same lines as theorem 10.8 in [18].
The main difference is in proving that, for any Mn → ∞,

Un :=

∫

‖h‖>Mn

‖h‖p dΠn(h|X1, . . . , Xn)
P0−→ 0. (2.16)

Here, abusing notation, we write dΠn(h|X1, . . . , Xn) to denote integrals rela-
tive to the posterior distribution of the local parameter h =

√
n(θ − θ∗). Under

misspecification a new proof is required, for which we extend the proof of theo-
rem 3.1 below.

Once (2.16) is established, the proof continues as follows. The variable ĥn =√
n(θ̂n − θ) is the maximizer of the process t 7→

∫

ℓ(t − h) dΠn(h|X1, . . . , Xn).

Reasoning exactly as in the proof of theorem 10.8, we see that ĥn = OP0
(1). Fix

some compact set K and for given M > 0 define the processes

t 7→ Zn,M (t) =

∫

‖h‖≤M

ℓ(t− h) dΠn(h|X1, . . . , Xn)

t 7→Wn,M (t) =

∫

‖h‖≤M

ℓ(t− h) dN∆n,V
−1

θ∗
(h)

t 7→WM (t) =

∫

‖h‖≤M

ℓ(t− h) dNX,V −1

θ∗
(h)

Since supt∈K,‖h‖≤M ℓ(t − h) < ∞, Zn,M −Wn,M = oP0
(1) in ℓ∞(K) by theo-

rem 2.1. Since ∆n
P0

 X , the continuous mapping theorem theorem implies that

Wn,M
P0

 WM in ℓ∞(K). Since ℓ has subpolynomial tails, integrable with respect

to NX,V −1

θ∗
, WM

P0−→Z in ℓ∞(K) as M → ∞. Thus Zn,M
P0

 WM in ℓ∞(K),

for every M > 0, and WM
P0−→Z as M → ∞. We conclude that there ex-

ists a sequence Mn → ∞ such that Zn,Mn

P0

 Z. The limit (2.16) implies that

Zn,Mn
− Zn = oP0

(1) in ℓ∞(K) and we conclude that Zn
P0

 Z in ℓ∞(K). Due
to the continuity of ℓ, t 7→ Z(t) is continuous almost surely. This, together with
the assumed unicity of maxima of these sample paths, enables the argmax the-

orem (see, corollary 5.58 in [18]) and we conclude that ĥn
P0

 ĥ, where ĥ is the
minimizer of Z(t).
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For the proof of (2.16) we adopt the notation of theorem 3.1. The tests ωn

employed there can be taken nonrandomized without loss of generality (oth-
erwise replace them for instance by 1ωn>1/2) and then Unωn tends to zero in
probability by the only fact that ωn does so. Thus (2.16) is proved once it is
established that, with ǫn =Mn/

√
n,

Pn
0 (1− ωn) 1Ω\Ξn

∫

ǫn≤‖θ−θ∗‖<ǫ

np/2‖θ − θ∗‖p dΠn(θ
∣

∣ X1, . . . , Xn

)

→ 0,

Pn
0 (1 − ωn) 1Ω\Ωn

∫

‖θ−θ∗‖≥ǫ

np/2‖θ − θ∗‖p dΠn(θ
∣

∣ X1, . . . , Xn

)

→ 0.

We can use bounds as in the proof of theorem 3.1, but instead of at (3.5) and
(3.5) we arrive at the bounds

en(a
2

n(1+C)−Dǫ2)

Π
(

B(an, θ∗;P0)
)np/2

∫

‖θ − θ∗‖p dΠ(θ),

K ′e−
1

2
nDǫ2n

∞
∑

j=1

np/2(j + 1)d+pǫpne
−nD(j2−1)ǫ2n .

These expressions tend to zero as before.
The last assertion of the theorem follows, because for a subconvex loss func-

tion the process Z is minimized uniquely by X , as a consequence of Anderson’s
lemma (see, for example, lemma 8.5 in [18]).

3. Rate of convergence

In a Bayesian context, the rate of convergence is defined as the maximal pace at
which balls around the point of convergence can be shrunk to radius zero while
still capturing a posterior mass that converges to one asymptotically. Current
interest lies in the fact that the Bernstein-Von Mises theorem of the previous
section formulates condition (2.3) (with δn = n−1/2),

Πn

(

‖ϑ− θ∗‖ ≥Mn/
√
n

∣

∣ X1, . . . , Xn

) P−→ 0,

for all Mn → ∞. A convenient way of establishing the above is through the
condition that suitable test sequences exist. As has been shown in a well-specified
context in Ghosal et al. (2000) [7] and under misspecification in Kleijn and Van
der Vaart (2003) [9], the most important requirement for convergence of the
posterior at a certain rate is the existence of a test-sequence that separates the
point of convergence from the complements of balls shrinking at said rate.

This is also the approach we follow here: we show that the sequence of pos-
terior probabilities in the above display converges to zero in P0-probability if a
test sequence exists that is suitable in the sense given above (see the proof of
theorem 3.1). However, under the regularity conditions that were formulated to
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establish local asymptotic normality under misspecification in the previous sec-
tion, more can be said: not complements of shrinking balls, but fixed alternatives
are to be suitably testable against P0, thus relaxing the testing condition con-
siderably. Locally, the construction relies on score-tests to separate the point
of convergence from complements of neighbourhoods shrinking at rate 1/

√
n,

using Bernstein’s inequality to obtain exponential power. The tests for fixed
alternatives are used to extend those local tests to the full model.

In this section we prove that a prior mass condition and suitable test se-
quences suffice to prove convergence at the rate required for the Bernstein-
Von Mises theorem formulated in section 2. The theorem that begins the next
subsection summarizes the conclusion. Throughout the section we consider the
i.i.d. case, with notation as in section 2.2.

3.1. Posterior rate of convergence

With use of theorem 3.3, we formulate a theorem that ensures
√
n-rate of conver-

gence for the posterior distributions of smooth, testable models with sufficient
prior mass around the point of convergence. The testability condition is formu-
lated using measures Qθ, defined by,

Qθ(A) = P0

( pθ
pθ∗

1A

)

,

for all A ∈ A and all θ ∈ Θ. Note that all Qθ are dominated by P0 and that
Qθ∗ = P0. Also note that if the model is well-specified, then Pθ∗ = P0 and
Qθ = Pθ for all θ. Therefore the use of Qθ instead of Pθ to formulate the testing
condition is relevant only in the misspecified situation (see Kleijn and Van der
Vaart (2006) [9] for more on this subject). The proof of theorem 3.1 makes use
of Kullback-Leibler neighbourhoods of θ∗ of the form:

B(ǫ, θ∗;P0) =
{

θ ∈ Θ : −P0 log
pθ
pθ∗

≤ ǫ2, P0

(

log
pθ
pθ∗

)2

≤ ǫ2
}

, (3.1)

for some ǫ > 0.

Theorem 3.1. Assume that the model satisfies the smoothness conditions of
lemma 2.1, where in addition, it is required that P0(pθ/pθ∗) < ∞ for all θ in a
neighbourhood of θ∗ and P0(e

smθ∗ ) <∞ for some s > 0. Assume that the prior
possesses a density that is continuous and positive in a neighbourhood of θ∗.
Furthermore, assume that P0ℓ̇θ∗ ℓ̇Tθ∗ is invertible and that for every ǫ > 0 there
exists a sequence of tests (φn) such that:

Pn
0 φn → 0, sup

{θ:‖θ−θ∗‖≥ǫ}
Qn

θ (1− φn) → 0. (3.2)

Then the posterior converges at rate 1/
√
n, i.e. for every sequence (Mn),

Mn → ∞:

Πn

(

θ ∈ Θ : ‖θ − θ∗‖ ≥Mn/
√
n
∣

∣ X1, X2, . . . , Xn

) P0−→ 0.
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Proof. Let (Mn) be given, and define the sequence (ǫn) by ǫn = Mn/
√
n. Ac-

cording to theorem 3.3 there exists a sequence of tests (ωn) and constants D > 0
and ǫ > 0 such that (3.7) holds. We use these tests to split the Pn

0 -expectation
of the posterior measure as follows:

Pn
0 Π

(

θ : ‖θ − θ∗‖ ≥ ǫn
∣

∣ X1, X2, . . . , Xn

)

≤ Pn
0 ωn + Pn

0 (1− ωn)Π
(

θ : ‖θ − θ∗‖ ≥ ǫn
∣

∣ X1, X2, . . . , Xn

)

.

The first term is of order o(1) as n → ∞ by (3.7). Given a constant ǫ > 0 (to
be specified later), the second term can be decomposed as:

Pn
0 (1 − ωn)Π

(

θ : ‖θ − θ∗‖ ≥ ǫn
∣

∣ X1, X2, . . . , Xn

)

= Pn
0 (1− ωn)Π

(

θ : ‖θ − θ∗‖ ≥ ǫ
∣

∣ X1, X2, . . . , Xn

)

+ Pn
0 (1− ωn)Π

(

θ : ǫn ≤ ‖θ − θ∗‖ < ǫ
∣

∣ X1, X2, . . . , Xn

)

.

(3.3)

Given two constants M,M ′ > 0 (also to be specified at a later stage), we define
the sequences (an), an = M

√

logn/n and (bn), bn = M ′ǫn. Based on an and
bn, we define two sequences of events:

Ξn =
{

∫

Θ

n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ) ≤ Π
(

B(an, θ
∗;P0)

)

e−na2

n(1+C)
}

,

Ωn =
{

∫

Θ

n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ) ≤ Π
(

B(bn, θ
∗;P0)

)

e−nb2n(1+C)
}

.

The sequence (Ξn) is used to split the first term on the r.h.s. of (3.3) and
estimate it as follows:

Pn
0 (1− ωn)Π

(

θ : ‖θ − θ∗‖ ≥ ǫ
∣

∣ X1, X2, . . . , Xn

)

≤ P0(Ξn) + Pn
0 (1 − ωn) 1Ω\Ξn

Π
(

θ : ‖θ − θ∗‖ ≥ ǫ
∣

∣ X1, X2, . . . , Xn

)

.

According to lemma 3.1, the first term is of order o(1) as n → ∞. The second
term is estimated further with the use of lemmas 3.1, 3.2 and theorem 3.3: for
some C > 0,

Pn
0 (1−ωn) 1Ω\Ξn

Π
(

θ : ‖θ − θ∗‖ ≥ ǫ
∣

∣ X1, X2, . . . , Xn

)

≤ ena
2

n(1+C)

Π
(

B(an, θ∗;P0)
)

∫

{θ:‖θ−θ∗‖≥ǫ}
Qn

θ (1− ωn) dΠ(θ)

≤ en(a
2

n(1+C)−Dǫ2)

Π
(

B(an, θ∗;P0)
)Π

(

θ : ‖θ − θ∗‖ ≥ ǫ
)

.

(3.4)

Note that a2n(1 + C)−Dǫ2 ≤ −a2n(1 + C) for large enough n, so that:

en(a
2

n(1+C)−Dǫ2)

Π
(

B(an, θ∗;P0)
) ≤ K−1e−na2

n(1+C)(an)
−d ≤ 1

Md/2K
(logn)−d/2n−M2(1+C)+

d
2 ,
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for large enough n, using (3.6). A large enough choice for the constant M then
ensures that the expression on the l.h.s. in the next-to-last display is of order
o(1) as n→ ∞.

The sequence (Ωn) is used to split the second term on the r.h.s. of (3.3) after
which we estimate it in a similar manner. Again the term that derives from 1Ωn

is of order o(1), and

Pn
0 (1−ωn) 1Ω\Ωn

Π
(

θ : ǫn ≤ ‖θ − θ∗‖ < ǫ
∣

∣ X1, X2, . . . , Xn

)

≤ enb
2

n(1+C)

Π
(

B(bn, θ∗;P0)
)

J
∑

j=1

∫

An,j

Qn
θ (1− ωn) dΠ(θ),

where we have split the domain of integration into spherical shells An,j , (1 ≤
j ≤ J , with J the smallest integer such that (J + 1)ǫn > ǫ): An,j =

{

θ : jǫn ≤
‖θ−θ∗‖ ≤

(

(j+1)ǫn
)

∧ǫ
}

. Applying theorem 3.3 to each of the shells separately,
we obtain:

Pn
0 (1−ωn) 1Ω\Ωn

Π
(

θ : ǫn ≤ ‖θ − θ∗‖ < ǫ
∣

∣ X1, X2, . . . , Xn

)

=
J
∑

j=1

enb
2

n(1+C) sup
θ∈An,j

Qn
θ (1− ωn)

Π(An,j)

Π
(

B(bn, θ∗;P0)
)

≤
J
∑

j=1

enb
2

n(1+C)−nDj2ǫ2n
Π
{

θ : ‖θ − θ∗‖ ≤ (j + 1)ǫn
}

Π
(

B(bn, θ∗;P0)
) .

For a small enough ǫ and large enough n, the sets
{

θ : ‖θ− θ∗‖ ≤ (j+1)ǫn
}

all
fall within the neighbourhood U of θ∗ on which the prior density π is continuous.
Hence π is uniformly bounded by a constant R > 0 and we see that: Π{ θ :
‖θ − θ∗‖ ≤ (j + 1)ǫn } ≤ RVd(j + 1)dǫdn, where Vd is the Lebesgue-volume of
the d-dimensional ball of unit radius. Combining this with (3.6), there exists a
constant K ′ > 0 such that, with M ′ <

√

D/2(1 + C):

Pn
0 (1−ωn) 1Ω\Ωn

Π
(

θ : ǫn ≤ ‖θ − θ∗‖ < ǫ
∣

∣ X1, . . . , Xn

)

≤ K ′e−
1

2
nDǫ2n

∞
∑

j=1

(j + 1)de−nD(j2−1)ǫ2n ,
(3.5)

for large enough n. The series is convergent and we conclude that this term is
also of order o(1) as n→ ∞.

Consistent testability of the type (3.2) appears to be a weak requirement
because the form of the tests is arbitrary. (It may be compared to “classical
conditions” like (B3) in section 6.7, page 455, of [13], formulated in the well-
specified case.) Consistent testability is of course one of Schwarz’ conditions
for consistency ([16]) and appears to have been introduced in the context of
the (well-specified) Bernstein-Von Mises theorem by Le Cam. To exemplify its
power we show in the next theorem that the tests exist as soon as the parameter
set is compact and the model is suitably continuous in the parameter.
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Theorem 3.2. Assume that Θ is compact and that θ∗ is a unique point of
minimum of θ 7→ −P0 log pθ. Furthermore assume that P0(pθ/pθ∗) < ∞ for all
θ ∈ Θ and that the map,

θ 7→ P0

( pθ

psθ1p
1−s
θ∗

)

,

is continuous at θ1 for every s in a left neighbourhood of 1, for every θ1. Then
there exist tests φn satisfying (3.2). A sufficient condition is that for every
θ1 ∈ Θ the maps θ 7→ pθ/pθ1 and θ 7→ pθ/pθ∗ are continuous in L1(P0) at θ = θ1.

Proof. For given θ1 6= θ∗ consider the tests,

φn,θ1 = 1{Pn log(p0/qθ1) < 0}.
Because Pn log(p0/qθ1) → P0 log(p0/qθ1) in Pn

0 -probability by the law of large
numbers, and P0 log(p0/qθ1) = P0 log(pθ∗/pθ1) > 0 for θ1 6= θ∗ by the definition
of θ∗ we have that Pn

0 φn,θ1 → 0 as n → ∞. By Markov’s inequality we have
that,

Qn
θ (1− φn,θ1) = Qn

θ

(

esnPn log(p0/qθ1 ) > 1
)

≤ Qn
θ e

snPn log(p0/qθ1 ) =
(

Qθ(p0/qθ1)
s
)n

= ρ(θ1, θ, s)
n,

for ρ(θ1, θ, s) =
∫

ps0q
−s
θ1
qθ dµ. It is known from Kleijn and Van der Vaart (2006)

[9] that the affinity s 7→ ρ(θ1, θ1, s) tends to P0(qθ1 > 0) = P0(pθ1 > 0)
as s ↑ 1 and has derivative from the left equal to P0 log(qθ1/p0)1qθ1>0 =
P0 log(pθ1/pθ∗)1pθ1

>0 at s = 1. We have that either P0(pθ1 > 0) < 1 or
P0(pθ1 > 0) = 1 and P0 log(pθ1/pθ∗)1pθ1

>0 = P0 log(pθ1/pθ∗) < 0 (or both).
In all cases there exists sθ1 < 1 arbitrarily close to 1 such that ρ(θ1, θ1, sθ1) < 1.
By assumption the map θ 7→ ρ(θ1, θ, sθ1) is continuous at θ1. Therefore, for
every θ1 there exists an open neighbourhood Gθ1 such that,

rθ1 = sup
θ∈Gθ1

ρ(θ1, θ, sθ1) < 1.

The set {θ ∈ Θ : ‖θ−θ∗‖ ≥ ǫ} is compact and hence can be covered with finitely
many sets of the type Gθ1 , say Gθi for 1 = 1, . . . , k. We now define

φn = max
i=1,...,k

φn,θi .

This test satisfies

Pn
0 φn ≤

k
∑

i=1

Pn
0 φn,θi → 0,

Qn
θ (1− φn) ≤

k
max
i=1

Qn
θ (1− φn,θi) ≤

k
max
i=1

rnθi → 0,

uniformly in θ ∈ ∪k
i=1Gθi . Therefore the tests φn satisfy the requirements.

To prove the last assertion we write ρ(θ1, θ, s) = P0(pθ/pθ1)
s(pθ/pθ∗)1−s.

Continuity of the maps θ 7→ (pθ/pθ1) and θ 7→ (pθ/pθ∗) in L1(P0) can be seen
to imply the required continuity of the map θ 7→ ρ(θ1, θ, s).
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Beyond compactness it appears impossible to give mere qualitative sufficient
conditions, like continuity, for consistent testability. For “natural” parameteri-
zations it ought to be true that distant parameters (outside a given compact)
are the easy ones to test for (and a test designed for a given compact ought
to be consistent even for points outside the compact), but this depends on
the structure of the model. Alternatively, many models would allow a suitable
compactification to which the preceding result can be applied, but we omit a
discussion. The results in the next section allow to discard a “distant” part of
the parameter space, after which the preceding results apply.

In the proof of theorem 3.1, lower bounds in probability on the denominators
of posterior probabilities are needed, as provided by the following lemma.

Lemma 3.1. For given ǫ > 0 and θ∗ ∈ Θ such that P0 log(p0/pθ∗) <∞ define
B(ǫ, θ∗;P0) by (3.1). Then for every C > 0 and probability measure Π on Θ:

Pn
0

(

∫

Θ

n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ) ≤ Π
(

B(ǫ, θ∗;P0)
)

e−nǫ2(1+C)
)

≤ 1

C2nǫ2
.

Proof. This lemma can also be found as lemma 7.1 in Kleijn and Van der Vaart
(2003) [9]. The proof is analogous to that of lemma 8.1 in Ghosal et al. (2000) [7].

Moreover, the prior mass of the Kullback-Leibler neighbourhoods B(ǫ, θ∗;P0)
can be lower-bounded if we make the regularity assumptions for the model used
in section 2 and the assumption that the prior has a Lebesgue density that is
well-behaved at θ∗.

Lemma 3.2. Under the smoothness conditions of lemma 2.1 and assuming
that the prior density π is continuous and strictly positive in θ∗, there exists a
constant K > 0 such that the prior mass of the Kullback-Leibler neighbourhoods
B(ǫ, θ∗;P0) satisfies:

Π
(

B(ǫ, θ∗;P0)
)

≥ Kǫd, (3.6)

for small enough ǫ > 0.

Proof. As a result of the smoothness conditions, we have, for some constants
c1, c2 > 0 and small enough ‖θ − θ∗‖, −P0 log(pθ/pθ∗) ≤ c1‖θ − θ∗‖2, and
P0(log(pθ/pθ∗))2 ≤ c2‖θ− θ∗‖2. Defining c = (1/c1 ∧ 1/c2)

1/2, this implies that
for small enough ǫ > 0, {θ ∈ Θ : ‖θ − θ∗‖ ≤ cǫ} ⊂ B(ǫ, θ∗;P0). Since the
Lebesgue-density π of the prior is continuous and strictly positive in θ∗, we see
that there exists a δ′ > 0 such that for all 0 < δ ≤ δ′: Π

(

θ ∈ Θ : ‖θ − θ∗‖ ≤
δ
)

≥ 1
2Vdπ(θ

∗) δd > 0. Hence, for small enough ǫ, cǫ ≤ δ′ and we obtain (3.6)
upon combination.

3.2. Suitable test sequences

In this subsection we prove that the existence of test sequences (under mis-
specification) of uniform exponential power for complements of shrinking balls
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around θ∗ versus P0 (as needed in the proof of theorem 3.1), is guaranteed when-
ever asymptotically consistent test-sequences exist for complements of fixed balls
around θ∗ versus P0 and the conditions of lemmas 2.1 and 3.4 are met. The fol-
lowing theorem is inspired by lemma 10.3 in Van der Vaart (1998) [18].

Theorem 3.3. Assume that the conditions of lemma 2.1 are satisfied, where
in addition, it is required that P0(pθ/pθ∗) < ∞ for all θ in a neighbourhood of
θ∗ and P0(e

smθ∗ ) < ∞ for some s > 0. Furthermore, suppose that P0ℓ̇θ∗ ℓ̇Tθ∗ is
invertible and for every ǫ > 0 there exists a sequence of test functions (φn), such
that:

Pn
0 φn → 0, sup

{θ:‖θ−θ∗‖≥ǫ}
Qn

θ (1− φn) → 0.

Then for every sequence (Mn) such that Mn → ∞ there exists a sequence of
tests (ωn) such that for some constants D > 0, ǫ > 0 and large enough n:

Pn
0 ωn → 0, Qn

θ (1− ωn) ≤ e−nD(‖θ−θ∗‖2∧ǫ2), (3.7)

for all θ ∈ Θ such that ‖θ − θ∗‖ ≥Mn/
√
n.

Proof. Let (Mn) be given. We construct two sequences of tests: one sequence
to test P0 versus {Qθ : θ ∈ Θ1} with Θ1 = {θ ∈ Θ : Mn/

√
n ≤ ‖θ − θ∗‖ ≤ ǫ},

and the other to test P0 versus {Qθ : θ ∈ Θ2} with Θ2 = {θ : ‖θ − θ∗‖ > ǫ},
both uniformly with exponential power (for a suitable choice of ǫ). We combine
these sequences to test P0 versus {Qθ : ‖θ − θ∗‖ ≥ Mn/

√
n} uniformly with

exponential power.
For the construction of the first sequence, a constant L > 0 is chosen to

truncate the score-function component-wise (i.e. for all 1 ≤ k ≤ d, (ℓ̇Lθ∗)k = 0 if

|(ℓ̇θ∗)k| ≥ L and (ℓ̇Lθ∗)k = (ℓ̇θ∗)k otherwise) and we define:

ω1,n = 1
{

‖(Pn − P0)ℓ̇
L
θ∗‖ >

√

Mn/n
}

,

Because the function ℓ̇θ∗ is square-integrable, we can ensure that the matrices
P0(ℓ̇θ∗ ℓ̇Tθ∗), P0(ℓ̇θ∗(ℓ̇Lθ∗)T ) and P0(ℓ̇

L
θ∗(ℓ̇Lθ∗)T ) are arbitrarily close (for instance in

operator norm) by a sufficiently large choice for the constant L. We fix such an
L throughout the proof.

By the central limit theorem Pn
0 ω1,n = Pn

0

(

‖√n(Pn −P0)ℓ̇
L
θ∗‖2 > Mn

)

→ 0.
Turning to Qn

θ (1− ω1,n) for θ ∈ Θ1, we note that for all θ:

Qn
θ

(

‖(Pn − P0)ℓ̇
L
θ∗‖ ≤

√

Mn/n
)

= Qn
θ

(

sup
v∈S

vT (Pn − P0)ℓ̇
L
θ∗ ≤

√

Mn/n
)

≤ inf
v∈S

Qn
θ

(

vT (Pn − P0)ℓ̇
L
θ∗ ≤

√

Mn/n
)

,

where S is the sphere of unity in Rd. With the choice v = (θ − θ∗)/‖θ − θ∗‖ as
an upper bound for the r.h.s. in the above display, we note that:

Qn
θ

(

(θ − θ∗)T (Pn − P0)ℓ̇
L
θ∗ ≤

√

Mn

n
‖θ − θ∗‖

)

= Qn
θ

(

(θ∗ − θ)T (Pn − Q̃θ)ℓ̇
L
θ∗ ≥ (θ − θ∗)T (Q̃θ − Q̃θ∗)ℓ̇Lθ∗ −

√

Mn

n
‖θ − θ∗‖

)

,
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where we have used the notation (for all θ ∈ Θ1 with small enough ǫ > 0) Q̃θ =
‖Qθ‖−1Qθ and the fact that P0 = Qθ∗ = Q̃θ∗ . By straightforward manipulation,
we find:

(θ − θ∗)T
(

Q̃θ − Q̃θ∗

)

ℓ̇Lθ∗

=
1

P0(pθ/pθ∗)
(θ − θ∗)T

(

P0

(

(pθ/pθ∗ − 1)ℓ̇Lθ∗

)

+
(

1− P0(pθ/pθ∗)
)

P0ℓ̇
L
θ∗

)

.

In view of lemma 3.4 and conditions (2.8), (2.9), (P0(pθ/pθ∗) − 1) is of order
O(‖θ − θ∗‖2) as (θ → θ∗), which means that if we approximate the above
display up to order o(‖θ− θ∗‖2), we can limit attention on the r.h.s. to the first
term in the last factor and equate the first factor to 1. Furthermore, using the
differentiability of θ 7→ log(pθ/pθ∗), condition (2.8) and lemma 3.4, we see that:

P0

∥

∥

∥

( pθ
pθ∗

− 1− (θ − θ∗)T ℓ̇θ∗

)

ℓ̇Lθ∗

∥

∥

∥

≤ P0

∥

∥

∥

( pθ
pθ∗

− 1− log
pθ
pθ∗

)

ℓ̇Lθ∗

∥

∥

∥
+ P0

∥

∥

∥

(

log
pθ
pθ∗

− (θ − θ∗)T ℓ̇θ∗

)

ℓ̇Lθ∗

∥

∥

∥
,

which is o
(

‖θ−θ∗‖
)

. Also note that sinceMn → ∞ and for all θ ∈ Θ1, ‖θ−θ∗‖ ≥
Mn/

√
n, −‖θ−θ∗‖

√

Mn/n ≥ −‖θ−θ∗‖2(Mn)
−1/2. Summarizing the above and

combining with the remark made at the beginning of the proof concerning the
choice of L, we find that for every δ > 0, there exist choices of ǫ > 0, L > 0 and
N ≥ 1 such that for all n ≥ N and all θ in Θ1:

(θ − θ∗)T
(

Q̃θ − Q̃θ∗

)

ℓ̇Lθ∗ −
√

Mn/n‖θ − θ∗‖
≥ (θ − θ∗)TP0

(

ℓ̇θ∗ ℓ̇Tθ∗

)

(θ − θ∗)− δ‖θ − θ∗‖2.

We denote ∆(θ) = (θ − θ∗)TP0(ℓ̇θ∗ ℓ̇Tθ∗)(θ − θ∗) and since P0(ℓ̇θ∗ ℓ̇Tθ∗) is strictly
positive definite by assumption, its smallest eigenvalue c is greater than zero.
Hence, −δ‖θ − θ∗‖2 ≥ −δ/c∆(θ). and there exists a constant r(δ) (depending
only on the matrix P0(ℓ̇θ∗ ℓ̇Tθ∗) and with the property that r(δ) → 1 if δ → 0)
such that:

Qn
θ (1 − ω1,n) ≤ Qn

θ

(

(θ∗ − θ)T (Pn − Q̃θ)ℓ̇
L
θ∗ ≥ r(δ)∆(θ)

)

,

for small enough ǫ, large enough L and large enough n, demonstrating that the
type-II error is bounded above by the (unnormalized) tail probability Qn

θ (W̄n ≥
r(δ)∆(θ)) of the mean of the variablesWi = (θ∗−θ)T (ℓ̇Lθ∗(Xi)−Q̃θ ℓ̇

L
θ∗), (1 ≤ i ≤

n). so that Q̃θWi = 0. The random variables Wi are independent and bounded
since:

|Wi| ≤ ‖θ − θ∗‖
(

‖ℓ̇Lθ∗(Xi)‖+ ‖Q̃θ ℓ̇
L
θ∗‖

)

≤ 2L
√
d‖θ − θ∗‖.

The variance of Wi under Q̃θ is expressed as follows:

VarQ̃θ
Wi = (θ − θ∗)T

[

Q̃θ

(

ℓ̇Lθ∗(ℓ̇Lθ∗)T
)

− Q̃θ ℓ̇
L
θ∗Q̃θ(ℓ̇

L
θ∗)T

]

(θ − θ∗).
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Using that P0ℓ̇θ∗ = 0 (see (2.11)), the above can be estimated like before, with
the result that there exists a constant s(δ) (depending only on (the largest
eigenvalue of) the matrix P0ℓ̇θ∗ ℓ̇Tθ∗ and with the property that s(δ) → 1 as
δ → 0) such that:

VarQ̃θ
(Wi) ≤ s(δ)∆(θ),

for small enough ǫ and large enough L. We apply Bernstein’s inequality (see,
for instance, Pollard (1984) [15], pp. 192–193) to obtain:

Qn
θ (1− ω1,n) = ‖Qθ‖n Q̃n

θ

(

W1 + . . .+Wn ≥ nr(δ)∆(θ)
)

≤ ‖Qθ‖n exp
(

−1

2

r(δ)2 n∆(θ)

s(δ) + 3
2L

√
d‖θ − θ∗‖r(δ)

)

.
(3.8)

The factor t(δ) = r(δ)2(s(δ) + 3
2L

√
d‖θ − θ∗‖r(δ))−1 lies arbitrarily close to 1

for sufficiently small choices of δ and ǫ. As for the n-th power of the norm of
Qθ, we use lemma 3.4, (2.8) and (2.9) to estimate the norm of Qθ as follows:

‖Qθ‖ = 1 + P0 log
pθ
pθ∗

+ 1
2P0

(

log
pθ
pθ∗

)2

+ o(‖θ − θ∗‖2)

≤ 1 + P0 log
pθ
pθ∗

+ 1
2 (θ − θ∗)TP0

(

ℓ̇θ∗ ℓ̇Tθ∗

)

(θ − θ∗) + o(‖θ − θ∗‖2)

≤ 1− 1
2 (θ − θ∗)TVθ∗(θ − θ∗) + 1

2u(δ)∆(θ),

(3.9)

for some constant u(δ) such that u(δ) → 1 if δ → 0. Because 1 + x ≤ ex for all
x ∈ R, we obtain, for sufficiently small ‖θ − θ∗‖:

Qn
θ (1− ω1,n) ≤ exp

(

−n
2
(θ − θ∗)TVθ∗(θ − θ∗) +

n

2

(

u(δ)− t(δ)
)

∆(θ)
)

. (3.10)

Note that u(δ)− t(δ) → 0 as δ → 0 and ∆(θ) is upper bounded by a multiple of
‖θ − θ∗‖2. Since Vθ∗ is assumed to be invertible, we conclude that there exists
a constant C > 0 such that for large enough L, small enough ǫ > 0 and large
enough n:

Qn
θ (1− ω1,n) ≤ e−Cn‖θ−θ∗‖2

. (3.11)

Concerning the range ‖θ − θ∗‖ > ǫ, an asymptotically consistent test-sequence
of P0 versus Qθ exists by assumption, what remains is the exponential power;
the proof of lemma 3.3 demonstrates the existence of a sequence of tests (ω2,n)
such that (3.12) holds. The sequence (ψn) is defined as the maximum of the
two sequences defined above: ψn = ω1,n ∨ ω2,n for all n ≥ 1, in which case
Pn
0 ψn ≤ Pn

0 ω1,n + Pn
0 ω2,n → 0 and:

sup
θ∈An

Qn
θ (1− ψn) = sup

θ∈Θ1

Qn
θ (1 − ψn) ∨ sup

θ∈Θ2

Qn
θ (1− ψn)

≤ sup
θ∈Θ1

Qn
θ (1 − ω1,n) ∨ sup

θ∈Θ2

Qn
θ (1− ω2,n).

Combination of the bounds found in (3.11) and (3.12) and a suitable choice for
the constant D > 0 lead to (3.7).
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The following lemma shows that for a sequence of tests that separates P0 from
a fixed model subset V , there exists a exponentially powerful version without
further conditions. Note that this lemma holds in non-parametric and paramet-
ric situations alike.

Lemma 3.3. Suppose that for given measurable subset V of Θ, there exists a
sequence of tests (φn) such that:

Pn
0 φn → 0, sup

θ∈V
Qn

θ (1− φn) → 0.

Then there exists a sequence of tests (ωn) and strictly positive constants C,D
such that:

Pn
0 ωn ≤ e−nC , sup

θ∈V
Qn

θ (1− ωn) ≤ e−nD. (3.12)

Proof. For given 0 < ζ < 1, we split the model subset V in two disjoint parts V1
and V2 defined by V1 = {θ ∈ V : ‖Qθ‖ ≥ 1 − ζ}, V2 = {θ ∈ V : ‖Qθ‖ < 1− ζ}.
Note that for every test-sequence (ωn),

sup
θ∈V

Qn
θ (1− ωn) ≤ sup

θ∈V1

Qn
θ (1 − ωn) ∨ (1− ζ)n. (3.13)

Let δ > 0 be given. By assumption there exists an N ≥ 1 such that for all
n ≥ N + 1, Pn

0 φn ≤ δ and supθ∈V Q
n
θ (1 − φn) ≤ δ. Every n ≥ N + 1 can

be written as an m-fold multiple of N (m ≥ 1) plus a remainder 1 ≤ r ≤ N :
n = mN + r. Given n ≥ N , we divide the sample X1, X2, . . . , Xn into (m − 1)
groups of N consecutive X ’s and a group of N + r X ’s and apply φN to the
first (m− 1) groups and φN+r to the last group, to obtain:

Y1,n = φN
(

X1, X2, . . . , XN

)

,

Y2,n = φN
(

XN+1, XN+2, . . . , X2N

)

,

...

Ym−1,n = φN
(

X(m−2)N+1, X(m−2)N+2, . . . , X(m−1)N

)

,

Ym,n = φN+r

(

X(m−1)N+1, X(m−1)N+2, . . . , XmN+r

)

,

which are bounded, 0 ≤ Yj,n ≤ 1 for all 1 ≤ j ≤ m and n ≥ 1. From that we
define the test-statistic Y m,n = (1/m)(Y1,n + . . .+ Ym,n) and the test-function
ωn = 1{Y m,n ≥ η}, based on a critical value η > 0 to be chosen at a later stage.
The Pn

0 -expectation of the test-function can be bounded as follows:

Pn
0 ωn = Pn

0

(

Y1,n + . . .+ Ym,n ≥ mη
)

= Pn
0

(

Z1,n + . . .+ Zm,n ≥ mη −
m−1
∑

j=1

Pn
0 Yj,n − PN+r

0 Ym,n

)

≤ Pn
0

(

Z1,n + . . .+ Zm,n ≥ m(η − δ)
)

,
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where Zj,n = Yj,n−Pn
0 Yj,n for all 1 ≤ j ≤ m−1 and Zm,n = Ym,n−PN+r

0 Ym,n.
Furthermore, the variables Zj,n are bounded aj ≤ Zj,n ≤ bj where bj − aj = 1.
Imposing η > δ we may use Hoeffding’s inequality to conclude that:

Pn
0 ωn ≤ e−2m(η−δ)2 . (3.14)

A similar bound can be derived for Qθ(1− ωn) as follows. First we note that:

Qn
θ (1 − ωn) = Qn

θ

(

Z1,n + . . .+ Zm,n > −mη +
m−1
∑

j=1

QN
θ Yj,n +QN+r

θ Ym,n

)

,

where, in this case, we have used the following definitions for the variables Zj,n:

Zj,n = −Yj,n +QN
θ Yj,n, Zm,n = −Ym,n +QN+r

θ Ym,n,

for 1 ≤ j ≤ m − 1. We see that aj ≤ Zj,n ≤ bj with bj − aj = 1. Choosing
ζ ≤ 1 − (4δ)1/N (for small enough δ > 0) and η between δ and 2δ, we see that
for all θ ∈ V1:

m−1
∑

j=1

QN
θ Yj,n +QN+r

θ Ym,n −mη ≥ m
(

(1− ζ)N − 3δ
)

≥ mδ > 0.

Hoeffding’s inequality then provides the bound,

Qn
θ (1 − ωn) ≤ exp

(

− 1
2m

(

‖Qθ‖ − 3δ
)2

+m log ‖Qθ‖N
)

.

In the case that ‖Qθ‖ < 1, we see that Qn
θ (1 − ωn) ≤ e−

1
2mδ2 . In the case

that ‖Qθ‖ ≥ 1, we use the identity log q ≤ q − 1 and the fact that − 1
2 (q −

3δ)2 + (q − 1) has no zeroes for q ∈ [1,∞) if we choose δ < 1/6, to conclude
that the exponent is negative and bounded away from 0: Qn

θ (1 − ωn) ≤ e−mc.
for some c > 0. Combining the two bounds leads to the assertion, if we notice
that m = (n − r)/N ≥ n/N − 1, absorbing eventual constants multiplying the
exponential factor in (3.7) by a lower choice of D.

The following lemma is used in the proof of theorem 3.3 to control the be-
haviour of ‖Qθ‖ in neighbourhoods of θ∗.

Lemma 3.4. Assume that P0(pθ/pθ∗) and −P0 log(pθ/p0) are finite for all θ
in a neighbourhood U ′ of θ∗. Furthermore, assume that there exist a measurable
function m such that,

∣

∣

∣
log

pθ
pθ∗

∣

∣

∣
≤ m‖θ − θ∗‖, (P0 − a.s .). (3.15)

for all θ ∈ U ′ and such that P0(e
sm) <∞ for some s > 0. Then,

P0

∣

∣

∣

pθ
pθ∗

− 1− log
pθ
pθ∗

− 1

2

(

log
pθ
pθ∗

)2∣
∣

∣
= o

(

‖θ − θ∗‖2
)

.
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Proof. The function R(x) defined by ex = 1+ x+ 1
2x

2 + x2 R(x) increases from
− 1

2 in the limit (x→ −∞) to ∞ as (x→ ∞), with R(x) → R(0) = 0 if (x→ 0).
We also have |R(−x)| ≤ R(x) ≤ ex/x2 for all x > 0. The l.h.s. of the assertion
of the lemma can be written as

P0

(

log
pθ
pθ∗

)2∣
∣

∣
R
(

log
pθ
pθ∗

)∣

∣

∣
≤ ‖θ − θ∗‖2P0

(

m2R(m‖θ − θ∗‖)
)

.

The expectation on the r.h.s. of the above display is bounded by P0m
2
θR(ǫmθ)

if ‖θ − θ∗‖ ≤ ǫ. The functions m2R(ǫm) are dominated by esm for sufficiently
small ǫ and converge pointwise to m2R(0) = 0 as ǫ ↓ 0. The lemma then follows
from the dominated convergence theorem.

4. Consistency and testability

The conditions for the theorems concerning rates of convergence and limiting
behaviour of the posterior distribution discussed in the previous sections include
several requirements on the model involving the true distribution P0. Depending
on the specific model and true distribution, these requirements may be rather
stringent, disqualifying for instance models in which −P0 log pθ/pθ∗ = ∞ for θ in
neighbourhoods of θ∗. To drop this kind of condition from the formulation and
nevertheless maintain the current proof(s), we have to find other means to deal
with ‘undesirable’ subsets of the model. In this section we show that if Kullback-
Leibler neighbourhoods of the point of convergence receive enough prior mass
and asymptotically consistent uniform tests for P0 versus such subsets exist,
they can be excluded from the model beforehand. As a special case, we derive a
misspecified version of Schwartz’ consistency theorem (see Schwartz (1965) [16]).
Results presented in this section hold for the parametric models considered in
previous sections, but are also valid in non-parametric situations.

4.1. Exclusion of testable model subsets

We start by formulating and proving the lemma announced above, in its most
general form.

Lemma 4.1. Let V ⊂ Θ be a (measurable) subset of the model Θ. Assume that
for some ǫ > 0:

Π
(

θ ∈ Θ : −P0 log
pθ
pθ∗

≤ ǫ
)

> 0, (4.1)

and there exist constants γ > 0, β > ǫ and a sequence (φn) of test-functions
such that:

Pn
0 φn ≤ e−nγ , sup

θ∈V
Qn

θ (1− φn) ≤ e−nβ, (4.2)

for large enough n ≥ 1. Then Π(V |X1, X2, . . . , Xn) → 0, P0 − a.s.
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Proof. Due to the first inequality of (4.2), Markov’s inequality and the first
Borel-Cantelli lemma suffice to show that φn → 0, P0-almost-surely. We split
the posterior measure of V with the test function φn and calculate the limes
superior,

lim sup
n→∞

Π
(

V |X1, X2, . . . , Xn

)

= lim sup
n→∞

Π
(

V |X1, X2, . . . , Xn

)

(1− φn),

P0-almost-surely. Next, consider the subsetKǫ = {θ ∈ Θ : −P0 log(pθ/pθ∗) ≤ ǫ}.
For every θ ∈ Kǫ, the strong law of large numbers says that:

∣

∣

∣
Pn log

pθ
pθ∗

− P0 log
pθ
pθ∗

∣

∣

∣
→ 0,

P0-almost-surely. Hence for every α > ǫ and all θ ∈ Kǫ, there exists an N ≥ 1
such that for all n ≥ N ,

∏n
i=1(pθ/pθ∗)(Xi) ≥ e−nα, Pn

0 -almost-surely. Therefore,

lim inf
n→∞

enα
∫

Θ

n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ) ≥ lim inf
n→∞

enα
∫

Kǫ

n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ)

≥
∫

Kǫ

lim inf
n→∞

enα
n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ) ≥ Π(Kǫ),

by Fatou’s lemma. Since by assumption, Π(Kǫ) > 0 we see that:

lim sup
n→∞

Π
(

V |X1, X2, . . . , Xn

)

(1− φn)

≤
lim sup
n→∞

enα
∫

V

n
∏

i=1

pθ
pθ∗

(Xi) (1 − φn)(X1, X2, . . . , Xn) dΠ(θ)

lim inf
n→∞

enα
∫

Θ

n
∏

i=1

pθ
pθ∗

(Xi) dΠ(θ)

≤ 1

Π(Kǫ)
lim sup
n→∞

fn(X1, X2, . . . , Xn),

(4.3)

where we use the notation fn : X n → R:

fn(X1, X2, . . . , Xn) = enα
∫

V

n
∏

i=1

pθ
pθ∗

(Xi) (1− φn)(X1, X2, . . . , Xn) dΠ(θ).

Fubini’s theorem and the assumption that the test-sequence is uniformly expo-
nential, guarantee that for large enough n, Pn

0 fn ≤ e−n(β−α). Markov’s inequal-
ity can then be used to show that:

P∞
0

(

fn > e−
n
2 (β−ǫ)

)

≤ en(α−
1
2 (β+ǫ)).

Since β > ǫ, we can choose α such that ǫ < α < 1
2 (β + ǫ) so that the series

∑∞
n=1 P

∞
0 (fn > exp−n

2 (β − ǫ)) converges. The first Borel-Cantelli lemma then
leads to the conclusion that:

P∞
0

(

∞
⋂

N=1

⋃

n≥N

{

fn > e−
n
2 (β−ǫ)

}

)

= P∞
0

(

lim sup
n→∞

(

fn − e−
n
2 (β−ǫ)

)

> 0
)

= 0.

Since fn ≥ 0, we see that fn → 0, P0-almost-surely, to conclude the proof.
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In many situations, (4.1) is satisfied for every ǫ > 0. In that case the construc-
tion of uniform exponentially powerful tests from asymptotically consistent tests
(as demonstrated in the proof of lemma 3.3) can be used to fulfill (4.2) under
the condition that an asymptotically consistent uniform test-sequence exists.

Corollary 4.1. Let V ⊂ Θ be a (measurable) subset of the model Θ. Assume
that for all ǫ > 0 (4.1) is satisfied and that there exists a test-sequence (φn) such
that:

Pn
0 φn → 0, sup

θ∈V
Qn

θ (1− φn) → 0. (4.4)

Then Π(V |X1, X2, . . . , Xn) → 0, P0-almost-surely.

In this corollary form, the usefulness of lemma 4.1 is most apparent. All
subsets V of the model that can be distinguished from P0 based on a charac-
teristic property (formalised by the test functions above) in a uniform manner
(c.f. (4.4)) may be discarded from proofs like that of theorem 3.1. Hence the
properties assumed in the statement of (for instance) theorem 3.1, can be left
out as conditions if a suitable test sequence exist.

Whether or not a suitable test sequence can be found depends on the par-
ticular model and true distribution in question and little can be said in any
generality. The likelihood ratio test is one possibility. The following lemma is
comparable to the classical condition, as in [13].

Lemma 4.2. Let V ∈ Θ be a (measurable) subset of the model Θ. Assume that
for all ǫ > 0 (4.1) is satisfied and suppose that there exists a sequence (Mn) of
positive numbers such that Mn → ∞ and

Pn
0

(

inf
θ∈V

−Pn log
pθ
pθ∗

<
1

n
Mn

)

→ 0. (4.5)

Then Π(V |X1, X2, . . . , Xn) → 0, P0-almost-surely.

Proof. Define the sequence of test functions:

ψn = 1
{

inf
θ∈V

−Pn log
pθ
pθ∗

<
1

n
Mn

}

.

According to assumption (4.5), Pn
0 ψn → 0. Let θ ∈ V be given.

Qn
θ (1− ψn) = Pn

0

( dPn
θ

dPn
θ∗

(1− ψ)
)

= Pn
0

( dPn
θ

dPn
θ∗

1
{

sup
θ∈V

log
dPn

θ

dPn
θ∗

≤ −Mn

})

≤ e−MnPn
0

(

sup
θ∈V

log
dPn

θ

dPn
θ∗

≤ −Mn

)

≤ e−Mn → 0.

Since Mn does not depend on θ, convergence to 0 is uniform over V . Corollary
4.1 then gives the assertion.

Finally, we note that lemma 4.1 can also be used to prove consistency.
Presently, we do not assume the existence of a uniqueminimizer of the Kullback-
Leibler divergence; we define Θ∗ to be the set of points in the model at minimal
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Kullback-Leibler divergence with respect to the true distribution P0, Θ
∗ = {θ ∈

Θ : −P0 log(pθ/p0) = infΘ −P0 log(pθ/p0)}, and we consider the posterior prob-
ability of this set under the conditions of corollary 4.1. We write d(θ,Θ∗) for
the infimum of ‖θ − θ∗‖ over θ∗ ∈ Θ∗.

Corollary 4.2. (Schwartz consistency) Assume that for all ǫ > 0 (4.1) is sat-
isfied and that for all η > 0 there exists a test-sequence (φn) such that:

Pn
0 φn → 0, sup

θ:d(θ,Θ∗)>η

Qn
θ (1− φn) → 0.

Then Π
(

d(θ,Θ∗) > η|X1, X2, . . . , Xn

)

→ 1, P0-almost-surely, for every η > 0.

5. Appendix: Technical lemmas

The first lemma used in the proof of theorem 2.1 shows that given two sequences
of probability measures, a sequence of balls that grows fast enough can be used
conditionally to calculate the difference in total-variational distance, even when
the sequences consist of random measures.

Lemma 5.1. Let (Πn) and (Φn) be two sequences of random probability mea-
sures on Rd. Let (Kn) be a sequence of subsets of Rd such that,

Πn(R
d \Kn)

P0−→ 0, Φn(R
d \Kn)

P0−→ 0. (5.1)

Then,
∥

∥Πn − Φn

∥

∥−
∥

∥ΠKn
n − ΦKn

n

∥

∥

P0−→ 0. (5.2)

Proof. Let K, a measurable subset of Rd and n ≥ 1 be given and assume that
Πn(K) > 0 and Φn(K) > 0. Then for any measurable B ⊂ Rd we have:

∣

∣Πn(B) −ΠK
n (B)

∣

∣ ≤ 2Πn(R
d \K).

and hence also:
∣

∣

∣

(

Πn(B)−ΠK
n (B)

)

−
(

Φn(B)−ΦK
n (B)

)

∣

∣

∣
≤ 2

(

Πn(R
d \K)+Φn(R

d \K)
)

. (5.3)

As a result of the triangle inequality, we then find that the difference in total-
variation distances between Πn and Φn on the one hand and ΠK

n and ΦK
n on

the other is bounded above by the expression on the right in the above display
(which is independent of B).

Define An, Bn to be the events that Πn(Kn) > 0, Φn(Kn) > 0 respectively.
On Ξn = An∩Bn, Π

Kn
n and ΦKn

n are well-defined probability measures. Assump-
tion (5.1) guarantees that Pn

0 (Ξn) converges to 1. Restricting attention to the
event Ξn in the above upon substitution of the sequence (Kn) and using (5.1)
for the limit of (5.3) we find (5.2), where it is understood that the conditional
probabilities on the l.h.s. are well-defined with probability growing to 1.
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The second lemma demonstrates that the sequence of normals satisfies the
condition of lemma 5.1 when the sequence of centre points ∆n,θ∗ is uniformly
tight.

Lemma 5.2. Let Kn be a sequence of balls centred on the origin with radii
Mn → ∞. Let (Φn) be a sequence of normal distributions (with fixed covariance
matrix V ) located respectively at the (random) points (∆n) ⊂ R

d. If the sequence

∆n is uniformly tight, then Φn(R
d \Kn) = N∆n,V (R

d \Kn)
P0−→ 0.

Proof. Let δ > 0 be given. Uniform tightness of the sequence (∆n) implies the
existence of a constant L > 0 such that:

sup
n≥1

Pn
0 (‖∆n‖ ≥ L) ≤ δ.

For all n ≥ 1, call An = {‖∆n‖ ≥ L}. Let µ ∈ R
d be given. Since N(µ, V ) is

tight, there exists for every given ǫ > 0 a constant L′ such thatNµ,V (B(µ, L′)) ≥
1− ǫ (where B(µ, L′) defines a ball of radius L′ around the point µ). Assuming
that µ ≤ L, B(µ, L′) ⊂ B(0, L+L′) so that withM = L+L′, Nµ,V (B(0,M)) ≥
1 − ǫ for all µ such that ‖µ‖ ≤ L. Choose N ≥ 1 such that Mn ≥ M for all
n ≥ N . Let n ≥ N be given. Then:

Pn
0

(

Φn(R
d \B(0,Mn)) > ǫ

)

≤ Pn
0

(

An

)

+ Pn
0

(

{

Φn(R
d \B(0,Mn) > ǫ

}

∩ Ac
n

)

≤ δ + Pn
0

(

{

N∆n,V (B(0,Mn)
c) > ǫ

}

∩Ac
n

)

.

Note that on the complement of An, ‖∆n‖ < L, so:

N∆n,V (B(0,Mn)
c) ≤ 1−N∆n,V (B(0,M)) ≤ 1− inf

‖µ‖≤L
Nµ,V (B(0,M)) ≤ ǫ,

and we conclude that the last term on the r.h.s. of the previous display equals
zero.
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