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Simultaneity and Asymmetry of Returns and
Volatilities: The Emerging Baltic States” Stock
Exchanges™

Kurt Bréinnis, Jan G. De Gooijer, Carl Lonnbark, and Albina Soultanaeva

Abstract

The paper suggests a nonlinear and multivariate time series model framework that enables
the study of simultaneity in returns and in volatilities, as well as asymmetric effects arising from
shocks and exogenous variables. The model is employed to study the three closely related Baltic
States’ stock exchanges and the influence exerted by the Russian stock exchange. Using daily
data, we find recursive structures with returns in Riga directly depending on returns in Tallinn
and Vilnius, and Tallinn on Vilnius. For volatilities, both Riga and Vilnius depend on Tallinn. In
addition, we find evidence of asymmetric effects of shocks arising in Moscow and in Baltic States
on both returns and volatilities.

*Stefan Mittnik, Johan Lyhagen, the editor and an anonymous referee are thanked for comments
and suggestions. The financial support from the Wallander-Hedelius foundation to the first three
authors and from the Nordea foundation to Albina Soultanaeva are gratefully acknowledged.
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1. Introduction

The main motivation for this study is the importance of simultaneity in finan-
cial assets or markets for various investment and risk management decisions.
Portfolio or fund managers, for example, often invest in several markets at
the same time. This investment strategy may not provide the diversification
and risk reduction that managers are seeking, if there are strong linkages be-
tween markets. In addition, risk managers need to understand the nature of
cross market linkages in order to appropriately assess their risk exposures and
capital adequacy (Fleming et al., 1998).

Cross market linkages or information spillovers are of two types. The
first is the common information that simultaneously affects expectations in
more than one market. The second type of information spillovers is caused by
cross-market hedging. Fleming et al. (1998) argue that information spillovers
are strongest when linkages between markets are not limited by institutional
constraints, and other practical considerations. These include, for example, a
common trading platform, and other factors that lower the settlement risk and
information costs for investors. Fazio (2007) argues that investors following an
international diversification strategy may be exposed to unhedged risk when
assuming that different countries are unrelated. He also finds that countries
belonging to the same region are more likely to suffer from dependence in the
case of extreme market movements. This implies that countries located in the
same region may have stronger linkages than anticipated by investors. Also,
Koch and Koch (1991) find simultaneity in returns within geographic regions
but not across regions.

Another lesson from the intra-day trading literature concerning some
marketplaces is that information processing is very fast (e.g., Engle and Rus-
sell, 1998). Even if there are unidirectional causations within the day, a study
based on a daily sampling frequency cannot but find an average effect that may
go both ways. The sampling frequency scenario is in fact a main motivation in
macro-econometrics for employing structural systems which can incorporate
simultaneous endogenous effects. More recently, Rigobon and Sack (2003)
and others have reported on model-based studies allowing for simultaneity in
returns.

Obviously, and perhaps more interestingly from a risk management
point of view, there is also reason to expect simultaneous effects in volatil-
ities. Rigobon and Sack (2003) were the first ones to find simultaneity in
volatilities. But, as in the studies of De Wet (2006) and Lee (2006), the si-
multaneity arises in a very restrictive way, and only as a consequence of the
simultaneity in returns. Gannon and Choi (1998) and Gannon (2004, 2005)
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detect simultaneity for some Asian markets using realized volatilities. Engle
and Kroner (1995) suggested a related framework but focus theoretically on
simultaneity in returns only.

Here, our main focus will be on the joint modelling of, and the al-
lowance for, simultaneity in both returns and volatilities along with asymme-
try, and exogenous effects. The model platform is the univariate ARasMA-
asQGARCH of Brinnés and De Gooijer (1994, 2004). This model combines an
asymmetric ARMA model with an asymmetric and quadratic GARCH model
and it is here given its first multivariate form. Notably, extensions of this type
introduce additional parameters into an already richly parameterized model.
Kroner and Ng (1998), De Goeij and Marquering (2005) and others discussed
ways of parameterizing, in particular, the volatility functions for models to be
estimable. To allow for simultaneity we will have to be restrictive in terms
of correlation structure, lag lengths, and asymmetric effects. We employ the
methodology to jointly study the closely related Baltic States’ stock market
indices and their potentially asymmetric dependence on the Russian stock
market.

The paper is organized as follows. In Section 2 we introduce the model
and discuss some of its properties. Section 3 presents the estimator along with
the employed stepwise model specification procedure. The section discusses
testing against simultaneous, asymmetric effects, and the impact of exogenous
variables. In addition, the use of the model for portfolio allocation and value
at risk (VaR) studies are outlined. Section 4 introduces the empirical study
and presents the data-set. The empirical findings are given in Section 5. The
final section concludes and relates our findings to other studies.

2. A Structural Vector ARasMA-asQGARCH Model

2.1 The Model

Consider an m-dimensional time series y; = (yiz,-.-,Ymt)’- In this study
{y:} contains the variables of interest, i.e. the returns at time ¢ of m stock
market indices. The vector time series process {y;} is assumed to be weakly
stationary. Let x;, = (214, ..., k) denote a vector of exogenous variables that
may affect the process {y;}; see Section 4 for more details on these series. To
introduce the asymmetric structure of the proposed model we first need to
define an m-dimensional vector discrete-time stochastic process generated by
w; = (g, ..., Upe) defined by

ES
u; = HtEt;
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where {e;} ~ WN(0,1I), Hf = {h};,} (i,j = 1,2,...,m), and with F; ,
denoting the history of the time series up to and including time ¢ — 1. The
conditional variance is V(u|F;—1) = HfH; = H;. Now a simultaneous or

structural vector ARasMA model can be defined as

p q
Agyr = Z Ay +u + Z (Bfwf; +Biu;) +co
=1 =1

,
+ Z (C;rxttz' + C;X;—i) , (1)

i=0
where u = max(0,u;), u;, = min(0,w;), x;; = max(0,x%;), and x;, =

min(0,%;). Model (1) accounts for asymmetric effects unless for all i, B =
B; and C/ = C;. If appropriate, the threshold level for the exogenous
process {x;} may be set at another value than 0. It is easy to see that the
threshold levels in {u/} and {u, } can be accommodated by the vector of
constants cg.

The m X m non-symmetric matrix Ag in (1) contains the simultaneity

parameters,
0 0
](_) a12 DY aém
A — ayp 1 - ay,
0~ : : : ’
0 0
Apm1 G2 1

where an assumption of normalization has been imposed, i.e. coefficients along
the diagonal are equal to 1. Assume A is nonsingular. Then the conditional

mean (return) of {y;} follows directly from the conditional reduced form of
(1) as

p q
E(y|Fi—1) = Z AT Ay i+ Z Ayt (Bfu ; +Biu, )
1=1 1=1
+Ag e+ Y A (Cixf, +Crx )
i=0
Similarly, the conditional variance (volatility or risk) is given by
V(yel Fir) = Ag"Hy(Ag )

from which, e.g., the conditional correlation matrix can be obtained. Various
options are available to specify an asymmetric model for H;; see De Goeij
and Marquering (2005). The specifications for H; suggested by these authors
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contain off-diagonal elements. Thus there are conditional and possibly un-
conditional correlations among the elements of {u;}, and consequently among
those of {y;}. There is no simultaneity in conditional volatility behavior in
the sense that the conditional variance of, say, u; would be a direct function of
the corresponding conditional variance of u;; (i # j) in the same time period.

As we wish to have simultaneity in conditional volatility as an integral
part of the model we need to consider an extension of the univariate asQ-
GARCH model. One avenue that appears feasible is to view the structures
of De Goeij and Marquering (2005) as “reduced forms”. Note that structural
forms may make economic sense but that only the reduced form gives the
conditional variance interpretation. The situation resembles closely that of
the simultaneous and reduced forms in classical macro-econometrics. Simi-
larly, we view simultaneity to arise mainly due to the relatively low sampling
frequency of one day while real trading occurs in continuous time, and partly
due to common investors on different stock exchanges.

Our general simultaneous specification for the conditional variance is
very much in the same spirit as model (1). Given a vector time series process
{z:} of exogenous variables, the vector asQ GARCH model for h; = vech(H;)
is given by

P Q Q
Doh, = > Db+ (Ffuf +Fu )+ ) K,
i=1 i=1 i=1

R
+g0+ ) (Gl75 +Giz ), (2)
i=0
where go is an gm(m + 1) x 1 vector of constants, z; = max(0,z), z, =
min(0, z;), and the vector u** has elements u2 (i = 1,...,m).

The reduced form of (2) is

jo Q 0
hy = Y Dy'Dib i+ > Dy (Ffuf,+ Flug,) + Y Dy'Koup?
=1 i=1

=1

R
+D;'go + > Dyt (Giz, + Gz, ) (3)

1=0

from which the corresponding H; matrix can be obtained. The matrix Dy
captures simultaneity, whereas the matrices D; (i > 1) are useful to represent
persistence and possible cyclical features in the process {h,}. Also asymmetric
effects are characterized through the matrices F; (F; ) and G;" (G; ). Empiri-
cally, it is important to realize that the estimation of (3) may become infeasible
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with too generously parameterized specifications. Reducing lag lengths and
introducing sparse matrix specifications are two ways of reducing the number
of parameters; see Section 3 for a data-driven model specification procedure.
Note also that the specification in (2) allows for time-varying covariances. Ad-
ditional simplifications include setting these to constants, by restricting the
parameter matrices.

Various moment properties, and distributional results for ARasMA
models have been reported by Briinnds and De Gooijer (1994) and Brinnés
and Ohlsson (1999), and for univariate ARasMA-quadratic GARCH models
by Brinnis and De Gooijer (2004). Since V(y;) = Ay Er_, (H)(AyY) +
Vr_, [E(y¢|Fi—1)] by a decomposition of the variance, obtaining an explicit
expression for the unconditional variance of {y,} is a far from trivial problem.

3. Estimation and Model Use
Given a multivariate normality assumption on {&;} the prediction error
vi — E(ye|Fio1) = Ag'uy = Ag'Hje, = vy

is conditionally N(0,T}) distributed with T'; = Ay H;(A;')’; recall (3). Here,
H; is the conditional variance expression in reduced form, containing among
other things the Dy matrix. Given observations up till time 7', the log-
likelihood function takes the form

1 e

InlL _§ZIH|Ft|_§ZV£F;1Vt
t=s t=s
T

1
x (T —s)In|Aq| — 5 Z (In |H,| + wiH, "),

t=s

where s = max(p,q,r, P,Q, R) + 1. For practical quasi maximum likelihood
estimation we use the RATS 6.0 package and employ robust standard errors.

To obtain the final model specification we advocate the following step-
wise procedure.

1. Restrict all matrices in the mean and variance equations to be diagonal
and select the model that minimizes AIC or some other appropriate
model selection criterion. In this step we implicitly assume that there
are no interactions between the series. It is equivalent to finding the
"best" univariate ARasMA-asQGARCH models.
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2. Take the model from step 1 and expand to non-diagonal matrices in the
mean equation. First allow for simultaneity, i.e. estimate Ay. Consider
thereafter the expansion of the remaining matrices. Choose the specifi-
cation that minimizes AIC. The A, is the final parameter matrix to be
reduced. The volatility functions obtained in step 1 are taken as given,
but {@;} changes in the iterative steps.

3. Take the {{i; }-sequence from step 2 as given and expand to non-diagonal
matrices in the variance equation. First allow for simultaneity, i.e. esti-
mate Dgy. Consider thereafter the expansion of the remaining matrices.
Choose the specification that minimizes AIC. The Dy is the final para-
meter matrix to be reduced.

4. In a final step all parameters are estimated jointly.

Given the estimated model, it is of interest to test hypotheses about
simultaneity and asymmetric effects in the x and z variables. Given the like-
lihood framework and our specification procedure, Wald and likelihood ratio
(LR) test statistics are relatively easy to implement.

We first consider tests of simultaneity and do so in terms of the Ag
matrix. The reasoning with respect to Dy is analogous. We say that there is
a simultaneous effect between markets i and j if (Ag);; # 0 and (Ag);; # 0.
When (Ay);; # 0 but (Ay);; = 0 there is a recursive structure and causation
is unidirectional from market j to market . When (Ay);; = (Ag);; = 0 there
is no causation between returns. When all off-diagonal elements equal zero
Ay =1 and the structural and reduced forms are identical.

Next we consider testing against asymmetric effects and do so in terms
of the B and B; matrices. We may form BY = Bf —B; (i = 1,...,q),
and test whether this matrix is equal to zero or whether it is nonzero. We
then make no distinction between the case of both matrices having nonzero
parameters (B} );; and (B;);; in all places and the case where, say, (B; );; =
0. Testing against asymmetric effects of exogenous variables is in terms of
the parameter matrices C; and C; (i = 1,...,r). For asymmetric effects
in volatility the parameter matrices F;” and F; as well as G and G; are
focused.

For no effects of exogenous variables on returns all matrices C; and
C; must be identical to a zero matrix, while for volatility all G;” and G;
must be zero.

When we wish to use or, as here, evaluate the model in financially
interesting and meaningful ways, portfolio allocation and VaR measures are
of obvious interest. Two problems both stemming from the use of index series
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arise; how to get back to the index and what price related to the index should
we consider.

First, the index is determined from the inverse of the change variable
Yy = 100 - In(l;/L;y—1), ie. as Iy = I 1exp(y;/100) for stock market i.
We get E(Iit|Fi-1) = Li-1E(exp(yir/100)[Fe1) ~ Li—1(1 + E(yu|F-1)/100)
where the first order approximation of the exponential function is reasonable
for the small values of y;;/100. Using the same first order approximation we
get V(L[ Fi1) =TI V(y¢|Fi_1)I7_,/100%, where I is a matrix with elements
I;; on the diagonal and zeroes elsewhere. These expressions are useful if we
wish to forecast the index and to give its forecast variance. Second, trading is
not directly in terms of the index. The presence of index funds and standard
options tied to the index are reasonable justifications for using the index as a
price. The chosen approach is to use the return series as is and then emphasize
the return as an indicator of market risk (e.g., McNeil and Frey, 2000).

For portfolio allocation we adopt the tangency portfolio (e.g., Campbell
et al., 1997, ch 5). At time 7'+ 1 we have

ary; = V_I(IYT+1|7:T) [E(yra|Fr) — Rel] /A,

where A = UV Y yr1|Fr) - [E(yr+1|Fr) — Rsl], Ry is the risk free rate,
and 1 is a column vector of ones. Hence, 1’'ar,; = 1. For the VaR-measure
under normality, a time invariant allocation vector a, and a probability «,
Gourieroux and Jasiak (2001, ch 16) give:

Rry1 = —a'E(yr1|Fr) + 711 — o) [@'V (yr1 | Fr)a] /2,

where ®(.) is the standard normal distribution function. This VaR measure
is in terms of returns; one in terms of indices can also be devised by simply
replacing yry1 by Iry; and using the expressions given above. Using shock
scenarios in terms of the u; vector or in terms of x:r /= and z:r / ~, the ar; and
Rpy1 can be calculated and then evaluated and subjected to comparisons. To
cast light on effects of simultaneity, the univariate models can be compared to
the simultaneous model system in terms of the portfolio or VaR metrics either
as above or over some historical period. Note, that both measures are subject
to sampling variation in estimated mean return and risk functions. Britten-
Jones (1999) and others have discussed the variation in allocation weights,
while Christoffersen and Gongalves (2005) among others have discussed the
issue for VaR measures.
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4. Empirical Study and Data

The framework described above is used to study the indices of the Baltic
States’ stock exchanges. There are several common features, by which the
Baltic States’ stock exchange indices are likely to move together simultane-
ously. First, these relatively small marketplaces are geographically closely
located. Second, they have the same owner (Nasdag-OMX) and share a com-
mon trading platform. In addition, many of the largest traders are common to
all three marketplaces. In fact, foreign institutional investors, predominately
European ones, represent 40-47 percent of the market value in the Baltic
States’ stock markets, whereas foreign and domestic institutional investors
combined control about 90 percent of the market value.

To study the joint evolution of returns and volatilities in the Baltic
States’ stock markets, we use capitalization weighted daily stock price in-
dices of the Estonian (Tallinn, TALSE), Latvian (Riga, RIGSE), Lithuanian
(Vilnius, VILSE) and Russian (Moscow, RTS) stock markets. All prices are
transformed into Euros from local currencies, except for Estonia where stock
market trading is in Euro. Using a common currency implies that the an-
alyzed return series also contain variation due to exchange rate movements.
Hence, this paper takes an international investor perspective, when interest
is in Euro returns, and the effect of these variations is therefore included in
the analysis. Also, since Estonia and Lithuania joined the ERM II during
2004 and Latvia in 2005 the exchange rates have been rather stable during,
at least, the later parts of the return series.! The data-set covers January 3,
2000 to August 16, 2006, for a total of T = 1729 observations, cf. Figure 1 for
the three Baltic States’ indices. Both indices and exchange rates are collected
from DataStream. The irregularity in the summer of 2001 in the Riga index
(RIGSE) is due to a power struggle in its largest company (Latvijas Gaze).
Instead of elaborating on modelling to contain this irregular period, the Riga
series is adjusted in the following simplistic way: For a speculation period
from July 25 to September 3, 2001, observations are replaced by interpolated
values.

Following Brinnés and Soultanaeva (2010), the Russian stock market
index is used as a exogenous variable that may have an impact on the Baltic

!The Latvian currency was pegged to the SDR basket (the unit of accounting of the
IMF) consisting of the four major currencies: the US dollar, the Euro, the British pound
sterling and the Japanese yen, since February 1994. The fixed exchange rate with the Euro
was implemented on January 1, 2005. The Estonian currency was pegged to the Deutsche
Mark since 1992, and moved to the Euro peg after the introduction of the Euro. Lithuania
introduced a US dollar-based currency board in 1994 and changed the peg to the Euro in
February 2002.
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Figure 1: Indices of the Baltic stock exchanges (December 31, 1999 = 100).

States’ stock markets. In general, spillovers from the Russian stock market
can be explained by economic, historical and political ties between the coun-
tries (e.g., Koch and Koch, 1991). Pajuste et al. (2000) find, for example,
that East European countries are likely to be affected by news coming from
Russia. Moreover, Briannis and Soultanaeva (2010) demonstrated that good
and bad news arriving from Russia (Moscow) have asymmetric impacts on
the volatility in the Baltic States’ stock markets. Thus, within the context
of the empirical analysis, the time series processes {x; } and {x; } represent
positive and negative returns at time ¢ in the Russian Stock Exchange (RTS)
index, whereas the series {z,} will enter (2) as the demeaned moving variance
series of the RTS index. In more detail, to obtain the z; variable, we construct
a new series by obtaining moving variances of Moscow returns for a window
length of 10 observations and deduct the mean. The z" then takes on positive
values and is indicative of high-risk, and 2~ in a corresponding way takes on
negative values and indicates a lower risk in Moscow.

Published by De Gruyter, 2012



10 Sudiesin Nonlinear Dynamics & Econometrics Vol. 16 [2012], No. 1, Article 4

Table 1: Descriptive statistics for return series.

Exchange Mean Variance Min/Max Skewness Kurtosis LBqg
Riga 0.10 1.77 -9.27/10.29 0.18  10.72 45.93
Tallinn 0.10 1.05 -5.87/12.02 1.09 1594 51.43
Vilnius 0.09 1.05 -12.12/5.32 -0.91  13.82 46.87
Moscow (.12 4.93 -11.92/10.23 -0.47 3.27 16.37
Note: LBqg is the Ljung-Box statistic evaluated at 10 lags.

Table 2: Cross correlations for Baltic stock markets returns and squared re-
turns.

Returns Squared Returns

Riga Tallinn Vilnius Riga Tallinn Vilnius

Riga 1 1
Tallinn  0.134 1 0.161 1
Vilnius  0.141  0.208 1 0.023 0.032 1

Table 3: Auto and cross correlations for Baltic stock markets returns (in the
order Riga, Tallinn and Vilnius). Significant entries are indicated by signs
and subindex indicates lag.

1 + + - .. ..+ + ..
L+, . .+ o)+
+ 1)/, + +/, +/, )

+4

Due to some differences in holidays for the involved countries the series
have different shares of days for which index stock price are not observable.
Linear interpolation was used to fill the gaps for all series. The resulting series
are then throughout for a common trading week. All returns are calculated
as y; = 100 - In(I;/I;_1), where I; is the daily price index. Table 1 reports de-
scriptive statistics for the daily returns. The Ljung-Box statistics for 10 lags
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2 0
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-10 :
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10 . 10
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o
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Figure 2: Cross plots for Baltic returns series. One negative outlier for Vilnius
is outside the figure and three positive ones for Tallinn.

(LBjp) indicate significant serial correlations. The large kurtoses for Riga,
Tallinn and Vilnius indicate leptokurtic densities. Table 2 presents cross cor-
relations for the Baltic States’ return series and for a squared returns. Table
3 gives auto and lagged cross correlations. For instance, the table indicates
that Tallinn is positively affected by Vilnius both within the day and with up
to three lags. There appears to be no impact from Riga.

Figure 2 gives scatterplots for pairs of returns series with a nonpara-
metric regression line (LOWESS). Visual inspection indicates that there is
weak dependence between Riga and Tallinn for the majority of observations,
while for the other plots there appear to be positive relationships.

5. Results

The empirical results are presented first in terms of the return function and
later in terms of the volatility function. Table A in the Appendix contains
estimated univariate models. The empirical specifications are obtained by the
steps outlined in Section 3.
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For the return function of {y;}, cf. eq (1), when returns are in the
order Riga, Tallinn and Vilnius, the estimated function is

1 —0.06 —0.09 0
(0.034)  (0.043)

0 1 —0.11 o, — 0

(0025) Y 0

0 0

—0.17
(0.050)

I
0 0.15

(0. 048)

0 ) 0 0.12 0.08
(0.046)  (0.041)

0
-~ 0 0
0

0.07 0.09 0.07 -
T 0023 (. 048) (©. 026) 4+ 0

0

0.21
(0.043) 80%%

12
+ (8.026)

0.14
(0.027)

0.07
(0.024)

+ (gbol% Ty + (g.'oqg)) T

0
0.12 0 0
(0.016)

With respect to simultaneity, the A, matrix indicates a recursive structure;
the returns of the Riga index depends within the day positively on both the
index returns of Tallinn and Vilnius, while returns in Tallinn are positively
influenced by those of Vilnius. Riga returns have no impact on the returns
of neither Tallinn nor Vilnius, and Tallinn returns have no influence on those
of Vilnius. The only lagged influence arises for Vilnius at lag two, cf. the A,
matrix.

For Riga returns, Moscow has a quite symmetric and positive effect
within the day. For Tallinn, we instead find asymmetric effects spread over
lags 0 — 2. The effects are much stronger for a negative shock. For Vilnius,
negative shocks out of Moscow appear to have stronger impact than positive
shocks. For shocks arising in the three Baltic States’ stock exchanges we find
that a positive shock in Riga at lag one has a negative impact on current
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returns, and in addition, negative lag two shocks of Tallinn and Vilnius have
negative effects. Positive shocks in Tallinn have stronger effects than equally
sized negative shocks, and there are negative shocks of both Riga and Vilnius
at lag 2. The off-diagonal elements of lagged shocks suggests that there are
some shock-spillovers; Riga returns are negatively influenced by Tallinn and
Vilnius shocks at lag two, while Tallinn is impacted by Riga and Vilnius shocks

at lag one.

For the volatility function the conditional covariances are assumed
time-invariant and insignificantly estimated as hy4, = 0.003 (s.e. = 0.023),
hys = 0.000 (0.033) and hys = 0.000 (0.025). The estimated conditional
variances has the form

1 —-001 O 0.95 0 0
(0.004) (0.006)
no_ 0 0.93 0 h
0 1 0 |h = (0.009) i
0 003 1 0 0 0.82
(0.016) (0.029)
—0.02 0 0 0 0 0
(0.018)
+ 0 0 0 ﬁf_1 + 0 (9,})112) 0 ﬁ;_—2
0 —-0.12 0.27 0 0 0
(0.025)  (0.035)
0.37 0 0 —0.29 0 -0.06
(0%76) 015 0 (0.073) (0.008)
+ (0.0'17) u,_, + 0 0 0
0 0 —0.26 0 0 0
(0.033)
0.36 0 0 —0.31 0 0
(0.039) (0.037)
0 0.13 0 s 5,2 0 —0.14 —-0.01
+ (0.037) u; L + (0.034)  (0.001)
0 0.03 0.12 0 0 —0.13
(0.007)  (0.033) (0.028)
0.02 —0.002 0.08
(0.011) (0.000) (0.017)
—0.02 + -
+ (0.004) + 0 4t (9.'0%) “t
0.07 0.04 0
(0.026) (0.006)

W;_ o

k2
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0 —0.08
(0.016)

+ 0004 z;r_ 1+ 6%’1%;1 Z_q-
(0.006) (9.'0001)

Only two elements in D, are significant, the volatility of Vilnius depends
negatively but weakly on that of Tallinn in the same time period, while Riga
depends positively on Tallinn. As expected volatilities are quite persistent, cf.
the D;-matrix estimates. The patterns for Riga and Tallinn are quite similar
and asymmetric; a higher than average Moscow risk marginally reduces risk
in Riga and there is no effect for Tallinn, and in both cases there is a strong
negative direct effect of a lower than average Moscow risk that turns positive
and then dies out. For Vilnius the direct effects are quite asymmetric and
both are positive. Thereafter the effects are negative and gradually die out.
The effect is an enhancing one for Vilnius.

The model evaluation phase considers formal tests against simultaneity
in returns and in risk as well as tests against asymmetric effects arising from
Moscow or from the innovations of the model system. As a first but informal
test supporting the joint models rests on the likelihoods under the univariate
models and the joint model; the likelihood ratio statistic is then LR = 181.8.
Table 4 summarizes the Wald test results and also gives the serial correlation
properties and the goodness-of-fit for the model. The Wald tests are all sig-
nificant with p-values less than 0.02. There is then evidence of simultaneity
as well as of asymmetric effects. When it comes to serial correlation proper-
ties in standardized and squared standardized residuals there appears to be
remaining serial correlation in only one series, the standardized residuals of
Vilnius. The standardized residuals are nonnormal and leptokurtic.

Next, we consider the estimated volatility functions in some more detail
in Figures 3-4. Figure 3 shows the estimated H;;; functions for the final part
of the series. It is quite clear from this figure that the volatilities of Riga
and Vilnius are larger than those of Tallinn. This pattern reenforces the
sample variance ordering of Table 1. The estimated volatility functions are
positively correlated, cf. Figure 4. Since covariance estimates H;; ; between
the innovations of stock exchanges are very small the resulting time-varying
conditional correlations are also very small and always smaller than 0.05.
The implied estimated conditional correlations between {y;} variables are
much larger and also positive throughout, cf. Figure 5. Average conditional
correlations are relatively close to the sample correlations of Table 2.
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Table 4: Simultaneity and asymmetry tests together with model evaluation

measures.
Hypothesis Wald df Measure Riga Tallinn Vilnius
Simultaneity-Returns 27.0 3 LBqg 10.08  5.82 22.75
Simultaneity-Risk 7.81 2 LB%O 11.77 163 1.14
Asymmetry-Return-Moscow 160.9 6 Skewness  0.47  0.54 -0.30
Asymmetry-Return-Innovation  74.4 8 Kurtosis 433 631  6.06
Asymmetry-Risk-Moscow 92.8 6 JB 1403.7 2936.8 2659.2
Asymmetry-Risk-Innovation 6033 7 R? 0.05 0.18  0.06

6_

—— Riga

Volatility Functions

—e— Tallinn
—=— Vilnius

jun-06

Observation

Figure 3: Estimated volatility functions for the final part of the sample period.
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Riga Volatility

Riga Volatility
Tallinn Volatility

Vilnius Volatility Vilnius Volatility

Figure 4: Plots of estimated volatilities (some outlying volatilities fall outside
the graphs).
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Conditional Correlation
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Figure 5: Estimated conditional correlations between the returns of the stock
markets for the final part of the sample period.
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Table 5: Portfolio and VaR effects of shocks in innovations and Moscow
(Joint), together with a univariate model (Single) case. The VaR is based
on probability 0.025 and a portfolio with weights 0.333 for each index (VaR-
A) and with the weights obtained in the Base case (VaR-B).

Portfolio Allocation VaR
Joint Single A B
Riga Tallinn Vilnius Riga Tallinn Vilnius Joint Single Joint Single
Base case 024 0.66 0.10 0.32 050 0.18 1.23 091 1.66 0.83
Shock-Riga 0.27 064 0.09 0.19 060 021 119 1.15 1.65 0.98
-Tallinn 0.30 054 0.16 035 045 0.19 123 099 1.64 1.06
-Vilnius 026 0.72 0.02 037 058 0.06 142 099 202 0.81
-Moscow(x) 0.23  0.67 0.10 0.31 051 0.18 1.25 0.90 1.67 0.82
-Moscow(z) 0.24 0.62 0.14 0.27 050 0.23 136 1.07 1.77 1.03

Portfolio allocations and VaR measures one-step-ahead are shown in
Table 5. These measures are based on forecast equations

2
E(yr+1lFr) = Ayt |Agyr1+ Z (Bjﬁ;ﬂﬂ' + Bz‘_ﬁ;ﬂﬂ')
=1

2
+¢o + Z <cj_x’__lt—z + Cf"%—i)
i=0

Viyrsi|Fr) = Ag'Hra (Al

and depend on the histories of y;, @;, and x; for the conditional return and
additionally on the histories of H; and z, for the conditional volatility. Since
the impact of Moscow is in the same period we set future values (x7,; and
zpy41) for Moscow close to their values at the end of the series, i.e. as x} =
0.1 and 25, ; = —4. This is the Base case design. For the portfolio allocation
exercise the risk free rate is set at 1.07, which is the level of the Euro market
government bond yield by the end of the sample period.

The allocation for the Tallinn stock exchange is 0.66, while 0.24 of
the portfolio should be placed in Riga and 0.10 in Vilnius. Using the same
setup but using instead the univariate models (Single) of Table A, gives a
much lower allocation for Tallinn and higher ones for both Riga and Vilnius.
The two model forms differ in simultaneity but also with respect to other
features of the dynamic model. Therefore, we cannot infer with certainty that
the differences are due solely to simultaneous effects. The VaR measures for
probability 0.025 are for the simultaneous model with equal weights 1.23 and
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Figure 6: Allocations after shocking the final negative residual for Tallinn (left
exhibit, a value on the x-scale larger than 41 means a larger negative shock).
VaR effects of shocks to Moscow return, for given 2~ = —4 and risk for given
™ = 0.1(right exhibit).

for the univariate models 0.91. For the weights obtained with the weights of
the Base case we get 1.66 and 0.82, respectively.

To study the sensitivity of the Base case results we next shock the
individual elements of iy (the final residuals are individually multiplied by a
factor 3). Note that the underlying sizes of residuals in the univariate models
have not been changed but shocks are throughout in the direction of the joint
model. For shocks in the Tallinn and Vilnius stock markets the allocations for
these markets are reduced. Figure 6 illustrates this for an increasingly negative
shock in Tallinn. With a decrease in the Tallinn weight comes relatively more
weight for Riga than for Vilnius. The allocations obtained using the univariate
models differ from those based on the joint model, mainly such that the weights
for Riga and Vilnius are larger and those for Tallinn are smaller.

We also consider shocks arising in Moscow returns (7, is set to 1).
This appears to have only minor impact. For Moscow risk we change from
Zp. = —4 to zj,; = 4 and note an increase for Vilnius and a reduction for
Tallinn allocations.

The VaR measure changes little for shocks in Tallinn but responds more
to shocks in Vilnius and in Moscow risk. The VaR:s based on the univariate
models are smaller than the corresponding measures for the joint model. When
the weights of the Base case are used the VaR:s increase markedly throughout.
Figure 6 studies the impacts on VaR of Moscow shocks in more detail. Changes
in risk have rather small effects, while Moscow return changes have a more
sizeable and asymmetric effect.
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6. Conclusion

The paper has introduced simultaneity into a multivariate and nonlinear time
series model framework to study jointly the indices of the Baltic States’ stock
exchanges. Unlike previous studies (e.g., Rigobon and Sack, 2003, De Wet,
2006, Lee, 2006), we allow for simultaneity in returns and volatility sepa-
rately. The model allows us to capture "within a day" information transmis-
sion between the stock markets under study. Since information transmission
between markets is virtually instantaneous (e.g., Engle and Russell, 1998) a
study based on daily sampling frequency should take into account simulta-
neous reactions to movements in other relevant assets or markets. Moreover,
the model is able to capture asymmetric impacts of lagged positive and neg-
ative shocks on returns and volatility processes. We argue that measuring
simultaneous and asymmetric spillovers is important for a number of reasons,
including optimal portfolio allocation and risk management.

In summary, the empirical analysis provides support for the simultane-
ity in return and volatility. Accounting for simultaneity is of particular im-
portance for markets located in the same geographic region or closely related
due to institutional structure or other practical considerations as for example
common trading platform. Given the fact that investors diversify their hold-
ings across markets in order to reduce the risk of the portfolio, accounting for
information which simultaneously alters the expectations of different markets
is important for asset allocation and risk management strategies.

Empirically, we illustrate the importance of simultaneity with respect
to Baltic States’ stock markets. In these closely related markets simultaneity
is likely to arise due to geographical proximity, common institutional setup as
well as common large traders, among other things. We found strong evidence
of simultaneous effects in both returns and volatility. In returns, Riga is de-
pendent on the indices of Tallinn and Vilnius, Tallinn is dependent on Vilnius,
while Vilnius is not influenced by the other two markets. For volatility, we find
within a day spillovers from Tallinn to both Riga and Vilnius. In addition, we
found asymmetric effects of Moscow returns on the index returns in the Baltic
States’ exchanges, and asymmetric effects of Moscow risk on volatilities.

To illustrate the importance of simultaneous interaction between mar-
kets we obtain the portfolio allocations and value at risk measures for the
multivariate and univariate models. Portfolio allocation results indicate that
optimal portfolio weights are more sensitive to shocks when simultaneity is
not accounted for. VaR measures indicate that the variability in losses that
may occur due to shocks to the market are larger when simultaneity is not
accounted for.
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The simultaneous and dynamic econometric model generalizes previ-
ous univariate models by allowing for simultaneity but also for cross-effects
of innovations. As in any simultaneous model we can therefore talk about
direct, indirect and total effects in the return and volatility functions. The
direct effects can be seen in the estimation results, while the portfolio and
value at risk results build on total effects. To estimate the model we employ
full information maximum likelihood. The suggested stepwise specification
procedure resulted in a model with important deviations from corresponding
univariate models. Estimation of the final model does not result in numerical
problems despite the fact that the model is quite richly parametrized.

Table A: Estimation results for univariate models.

Riga Tallinn Vilnius
Variables Return Risk Return Risk Return Risk
Yt—2 0.057 0.021
u;[l -0.146 0.048 -0.072 0.018  0.252 0.041 0.162 0.045 0.273 0.030
u 0.117 0.037  0.021 0.022
U;rfa
Uy_q 0.394 0.071 0.119 0.046 -0.190 0.181 -0.279 0.023
Up_y -0.283 0.064
hi_1 0.944 0.005 0.917 0.009 0.829 0.024
u? 0.389 0.034 0.113 0.034 0.093 0.031
u? -0.322 0.031 -0.135 0.031 -0.113 0.026
T, 27 0.050 0.021 -0.001 0.001 0.034 0.005
T, z;r_l 0.046 0.0167 -0.032 0.005
T, 2y 0.105 0.021  0.121 0.0167  0.120 0.011  0.046 0.012  0.126 0.015 0.007 0.004
T,2; -0.114 0.0167  0.046 0.012 -0.050 0.012
T,2,_ 0.029 0.013
Constant 0.177 0.033 0.079 0.012  0.114 0.027 -0.035 0.004  0.141 0.027 0.004 0.020
AIC 2086.9 1164.5 1446.8
InL, R? -1029.5 0.03 -566.87 0.16 -709.41 0.06
LByg 10.84 8.83 7.01 1.53 21.57 1.53
Skew, Kurt, JB 0.43 5.60 2303.5 0.439 6.86 3446.6 -0.23  6.48 3030.7
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