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Escherichia coli is attracted by pyrroloquinoline quinone (PQQ), and chemotaxis toward glucose is enhanced
by the presence of PQQ. A ptsI mutant showed no chemotactic response to either glucose or PQQ alone but did
show a chemotactic response to a mixture of glucose and PQQ. A strain lacking the methylated chemotaxis
receptor protein Tar showed no response to PQQ.

In Escherichia coli, the uptake of many sugars is catalyzed by
the phosphoenolpyruvate-sugar-phosphotransferase system,
PTS (15). In Klebsiella pneumoniae, another member of the
family Enterobacteriaceae, glucose can also be metabolized af-
ter periplasmic oxidation by the pyrroloquinoline quinone
(PQQ)-dependent glucose dehydrogenase, GLD (13). E. coli
can synthesize the apoenzyme of GLD (3), but it is seemingly
unable to synthesize PQQ (7, 8, 21). However, the enzyme can
be easily reconstituted to a functional dehydrogenase by the
presence of PQQ in the environment because its active center
faces the periplasm (8). In view of this rather curious depen-
dency on PQQ, it could be advantageous for E. coli, which is
motile, to be attracted to PQQ.
In E. coli, there are several sensory mechanisms that operate

to control motility (19). Most research has been focused on a
family of methylated chemotaxis receptor proteins designated
Tsr, Tar, Tap, and Trg (19, 20). Responses to oxygen (aero-
taxis) depend on the presence of the electron transport system
(16). Chemotaxis toward glucose depends on the PTS (11, 15)
in which enzyme II acts as a receptor (2, 11, 19). Chemotaxis of
E. coli (strains given in Table 1) toward PQQ was investigated
both by using swarm plates and by the capillary assay (12). In
all cases, cells were pregrown on mineral medium (MM) (per
liter; 1 g of (NH4)2SO4, 10.5 g of K2HPO4, 4.5 g of KH2PO4,
0.2 g of MgCl2, 38 mg of EDTA, 15 mg of thiamine, and 0.9 mg
of FeSO4; carbon source, 0.5%; pH 6.8) with glycerol as the
carbon source to ensure high GLD activities. E. coli YMC10
showed an increased chemotactic activity in the presence of 50
and 100 mM PQQ when incubated on tryptone swarm plates
(1.3% tryptone, 0.7% NaCl, 0.3% agar). The swarm rate (in-
crease in radius of the colony with time) increased with in-
creasing concentrations of PQQ. Specifically, at 0 mM PQQ,
the swarm rate was 1.796 0.11 mm/h. When the concentration
of PQQ was increased to 10, 50, and 100 mM, respectively, the
swarm rates were 1.82 6 0.13, 2.03 6 0.08, and 2.75 6 0.07
mm/h. When E. coli YMC10 was incubated on MM plates
(MM plus 0.3% agar) with different sugars as the energy
source, the presence of PQQ had a stimulating effect on the
respective swarm rates (Table 2). This effect generally in-
creased with increasing concentrations of PQQ.
More-detailed experiments were performed with the capil-

lary assay (1, 12). Again we found that PQQ was sensed by E.

coli YMC10. For this assay, cells were harvested in the expo-
nential phase at an optical density at 590 nm of 0.2. After the
cells were washed twice in the chemotaxis buffer (20 mM K-Pi,
1 mM MgSO4, 0.1 mM EDTA), the assay was performed as
described by Adler (1). The glucose concentration in all cases
was 1 mM, and the PQQ concentration was as indicated in
Table 2. All assays were performed in triplicate. Although the
observed chemotactic activities in the absence of an energy
source were low, the differences in response to different con-
centrations of PQQ were significant (Table 3, rows 1, 2, and 3).
The addition of glucose to both the capillary and the chemo-
taxis chamber with the cell suspension (supplying an energy
source without creating a glucose gradient) resulted in a higher
response to PQQ (rows 4, 5, and 6). A concentration of 10 mM
PQQ was apparently sufficient for a maximal chemotactic re-
sponse. This also seemed the case when both PQQ and glucose
were used as attractants (rows 7 and 8). The addition of PQQ
to both the buffer and the attractant (rows 9, 10, and 11)
resulted in a remarkable increase in chemotactic activity to-
ward glucose: with 100 mMPQQ, it was about twice the activity
determined in the absence of PQQ.
In a ptsI mutant (Lin225), a strain missing the central non-

sugar-specific enzyme I and expressing high GLD activity (124
nmol of Wurster’s Blue reduced z min21 z mg of protein21 (9);
protein concentrations were determined by the method of
Gornall et al. [6]), chemotactic activity was restored when both
glucose (0.5%) and PQQ (50 mM) were present. Without
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TABLE 1. E. coli strains used

E. coli strain Relevant genotype Source and reference

AW405 ara-14 galK2 galT1 lacY1
mtl-1 xyl-5 hisG4 leuB6
thr-1(Am) thi-1 sup
tonA31/T5 tsx-78 rpsL136;
parental strain of AW518,
AW539, and AW701

M. S. Springer (18)

AW518 tsr M. S. Springer (18)
AW539 tar M. S. Springer (18)
AW701 trg H. Kondohl (10)
RP3525 tap M. Slocum (17)
Lin225 ptsI P. W. Postma

(unpublished strain)
PPA297 gcd::cam P. W. Postma

(unpublished strain)
YMC10 endA1 thi-1 hsdR17

supE44 dlacU169 hutCklebs
Y. M. Chen (4)
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PQQ, no activity could be detected, whereas the addition of
PQQ resulted in a swarm rate of 0.41 mm/h (6 0.03). This was
not the case when fructose was used as the carbon source. The
effect of PQQ on the swarm rate of the wild type toward
fructose (Table 2) therefore must have been caused by a PQQ-
sensing system. This was investigated using strains lacking one
of the four known receptors, Tap, Tar, Trg, or Tsr and their
parental strain on tryptone swarm plates with or without PQQ.
From the results shown in Fig. 1, it can be concluded that PQQ
was sensed by the aspartate receptor: the wild-type strain
(AW405) and the strains lacking either Tsr, Trg, or Tap
showed increased chemotactic activity in the presence of PQQ,
whereas strain AW539 (tar-1) was not stimulated by the pres-
ence of this compound.
It has been shown by Galar et al. (5) that several strains of

different Rhizobium and Bradyrhizobium species are attracted
by PQQ. In this study, we have shown that E. coli shows
positive chemotaxis toward PQQ (Tables 2 and 3). In this
chemotaxis, the methylated chemotaxis protein Tar plays an
essential role, because a mutant devoid of this protein was no

longer attracted by PQQ (Fig. 1). The presence of PQQ also
increased chemotaxis to glucose (Table 3).
The wild-type strain YMC10 showed high GLD and PTS-

glucose activities when grown on MM-glycerol (102 nmol of
Wurster’s Blue reduced z min21 z mg of protein21 [9] and 40
nmol of sugar phosphorylated. min21 z mg21 [dry weight] [14],
respectively). It has been shown previously that simultaneous
degradation of glucose via the PTS and GLD in the presence
of PQQ results in a faster consumption of glucose (8). Adler
and Epstein (2) showed that E. coli cells started to swim as
soon as the glucose concentration was below 100 mM and that
the chemotactic activity was optimal between 1 and 10 mM
(our initial glucose concentration was 28 mM). The faster
consumption of glucose therefore could be responsible for the
increased chemotactic response toward glucose in the presence
of PQQ. It cannot be ruled out, however, that reoxidation of
PQQH2 or reconstitution of GLD by PQQ also played a role.
The involvement of GLD in chemotaxis to PQQ could not be
tested because the gcd mutant of E. coli (PPA297) that was
available to us was no longer motile. But whatever role the
GLD plays in the physiology of organisms such as E. coli, it is
of substantial benefit to this organism if it can reconstitute its
enzyme to a functional protein by swimming toward PQQ.
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