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Abstract In this paper we present a novel mechanism to
obtain enhanced gaze estimation for subjects looking at a
scene or an image. The system makes use of prior knowl-
edge about the scene (e.g. an image on a computer screen),
to define a probability map of the scene the subject is gaz-
ing at, in order to find the most probable location. The pro-
posed system helps in correcting the fixations which are er-
roneously estimated by the gaze estimation device by em-
ploying a saliency framework to adjust the resulting gaze
point vector. The system is tested on three scenarios: using
eye tracking data, enhancing a low accuracy webcam based
eye tracker, and using a head pose tracker. The correlation
between the subjects in the commercial eye tracking data
is improved by an average of 13.91%. The correlation on
the low accuracy eye gaze tracker is improved by 59.85%,
and for the head pose tracker we obtain an improvement of
10.23%. These results show the potential of the system as a
way to enhance and self-calibrate different visual gaze esti-
mation systems.
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1 Introduction

Visual gaze estimation is the process which determines the
3D line of sight of a person in order to analyze the location
of interest. The estimation of the direction or the location
of interest of a user is key for many applications, spanning
from gaze based HCI, advertisement (Smith et al. 2008), hu-
man cognitive state analysis, attentive interfaces (e.g. gaze
controlled mouse) to human behavior analysis.

Gaze direction can also provide high-level semantic cues
such as who is speaking to whom, information on non verbal
communications (e.g. interest, pointing with the head/with
the eyes) and the mental state/attention of a user (e.g.
a driver). Overall, visual gaze estimation is important to
understand someone’s attention, motivation and intentions
(Hansen and Ji 2010).

Typically, the pipeline of estimating visual gaze mainly
consists of two steps (see Fig. 1): (1) analyze and transform
pixel based image features obtained by sensory information
(devices) to a higher level representation (e.g. the position
of the head or the location of the eyes) and (2) map these
features to estimate the visual gaze vector (line of sight),
hence finding the area of interest in the scene.

There is an abundance of research in the literature con-
cerning the first component of the pipeline, which princi-
pally covers methods to estimate the head position and the
eye location, as they are both contributing factors to the final
estimation of the visual gaze (Langton et al. 2004). Nowa-
days, commercial eye gaze trackers are one of the most suc-
cessful visual gaze devices. However, to achieve good detec-
tion accuracy, they have the drawback of using intrusive or
expensive sensors (pointed infrared cameras) which cannot
be used in daylight and often limit the possible movement
of the head, or require the user to wear the device (Bates
et al. 2005). Therefore, recently, eye center locators based
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Fig. 1 The visual gaze
estimation pipeline, extended as
proposed in this paper

solely on appearance are proposed (Cristinacce et al. 2004;
Kroon et al. 2008; Valenti and Gevers 2008) which are
reaching reasonable accuracy in order to roughly estimate
the area of attention on a screen in the second step of the
pipeline. A recent survey (Hansen and Ji 2010) discusses the
different methodologies to obtain the eye location informa-
tion through video-based devices. Some of the methods can
be also used to estimate the face location and the head pose
in geometric head pose estimation methods. Other methods
in this category track the appearance between video frames,
or treat the problem as an image classification one, often
interpolating the results between known poses. The survey
collected by Murphy-Chutorian and Trivedi (2009) gives a
good overview of appearance based head pose estimation
methods.

Once the correct features are determined using one of
the methods and devices discussed above, the second step
in gaze estimation (see Fig. 1) is to map the obtained in-
formation to the 3D scene in front of the user. In eye gaze
trackers, this is often achieved by direct mapping of the eye
center position to the screen location. This requires the sys-
tem to be calibrated and often limits the possible position
of the user (e.g. using chinrests). In case of 3D visual gaze
estimation, this often requires the intrinsic camera parame-
ters to be known. Failure to correctly calibrate or comply to
the restrictions of the gaze estimation device may result in
wrong estimations of the gaze.

In this paper, we propose to add a third component in
the visual gaze estimation pipeline, which has not been ad-
dressed in the literature before: the analysis of the area of
interest. When answering the question “what am I looking
at?”, the visual gaze vector can be resolved from a combina-
tion of body/head pose and eyes location. As this is a rough
estimation, the obtained gaze line is then followed until an
uncertain location in the gazed area. In our proposed frame-
work, the gaze vector will be steered to the most probable
(salient) object which is close to the previously estimated
point of interest. In the literature, it is argued that salient
objects might attract eye fixations (Spain and Perona 2008;
Einhauser et al. 2008), and this property is extensively used
in the literature to create saliency maps (probability maps
which represent the likelihood of receiving an eye fixation)

to automate the generation of fixation maps (Judd et al.
2009; Peters et al. 2005). In fact, it is argued that predicts
where interesting parts of the scene are, therefore is trying
to predict where a person would look. However, now that ac-
curate saliency algorithms are available (Valenti et al. 2009;
Itti et al. 1998; Ma and Zhang 2003; Liu et al. 2007), we
want to investigate whether saliency could be used to adjust
uncertain fixations. Therefore, we propose that gaze estima-
tion devices and algorithms should take the gazed scene into
account to refine the gaze estimate, in a way which resem-
bles the way humans resolve the same uncertainty.

In our system, the gaze vector obtained by an existing vi-
sual gaze estimation system is used to estimate the foveated
area on the scene. The size of this foveated area will depend
on the device errors and on the scenario (as will be explained
in Sect. 2). This area is evaluated for salient regions using
the method described in Sect. 3, and filtered so that salient
regions which are far away from the center of the fovea will
be less relevant for the final estimation. The obtained prob-
ability landscape is then explored to find the best candidate
for the location of the adjusted fixation. This process is re-
peated for every estimated fixation in the image. After all the
fixations and respective adjustments are obtained, the least-
square error between them is minimized in order to find the
best transformation from the estimated sets of fixations to
the adjusted ones. This transformation is then applied to the
original fixations and future ones, in order to compensate for
the found device error.

The novelty in this paper is the proposed third component
of the visual gaze estimation pipeline, which uses informa-
tion about the scene to correct the estimated gaze vector.
Therefore, the contributions of this paper are the following:

– We propose a method to improve visual gaze estimation
systems.

– When a sequence of estimations is available, the obtained
improvement is used to correct the previously erroneous
estimates. In this way, the proposed method allows to re-
calibrate the tracking device if the error is constant.

– We propose to use the found error to adjust and recali-
brate the gaze estimation devices at runtime, in order to
improve future estimations.
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– The method is used to fix the shortcoming of low quality
monocular head and eye trackers improving their overall
accuracy.

The rest of the paper is structured as follows. In the next
section, we describe the errors affecting visual gaze estima-
tion. In Sects. 3 and 4, the methodology used to extract the
salient regions and to correct the fixation points is discussed.

In Sect. 5, the procedure and the scenarios used for the
experiments are described. Section 6 discusses the obtained
results. After some additional discussion on the findings in
Sect. 7, the conclusions are given in Sect. 8.

2 Device Errors, Calibration Errors, Foveating Errors

Visual gaze estimators have inherent errors which may oc-
cur in each of the components of the visual gaze pipeline.
In this section, we describe these errors, to derive the size
of the area where we should look for interesting locations.
To this end, we identify three errors which should be taken
into account when estimating visual gaze (one for each of
the components of the pipeline): the device error, the cali-
bration error and the foveating error. Depending on the sce-
nario, the actual size of the area of interest will be computed
by cumulating these three errors (εtotal) and mapping them
to the distance of the gazed scene.

2.1 The Device Error εd

This error is attributed to the first component of the visual
gaze estimation pipeline. As imaging devices are limited in
resolution, there are a discrete number of states in which im-
age features can be detected and recognized. The variables
defining this error are often the maximum level of details
which the device can achieve while interpreting pixels as
the location of the eye or the position of the head. There-
fore, this error mainly depends on the scenario (e.g. the dis-
tance of the subject from the imaging device, more on this
on Sect. 5) and on the device that is being used.

2.2 The Calibration Error εc

This error is attributed to the resolution of the visual gaze
starting from the features extracted in the first component.
Eye gaze trackers often use a mapping between the position
of the eye and the corresponding locations on the screen.
Therefore, the tracking system needs to be calibrated. In
case the subject moves from his original location, this map-
ping will be inconsistent and the system may erroneously es-
timate the visual gaze. Chinrests are often required in these
situations to limit the movements of the users to a minimum.
Muscular distress, the length of the session, the tiredness of
the subject, all may influence the calibration error. As the

calibration error cannot be known a priori, it cannot be mod-
eled. Therefore, the aim is to isolate it from the other errors
so that it can be estimated and compensated (Sect. 4).

2.3 The Foveating Error εf

As this error is associated with the new component proposed
in the pipeline, it is required to analyze the properties of the
fovea to define it. The fovea is the part of the retina respon-
sible for accurate central vision in the direction in which it
is pointed. It is necessary to perform any activities which
require a high level of visual details. The human fovea has
a diameter of about 1.0 mm with a high concentration of
cone photoreceptors which account for the high visual acu-
ity capability. Through saccades (more than 10,000 per hour
according to Geisler and Banks 1995), the fovea is moved
to the regions of interest, generating eye fixations. In fact, if
the gazed object is large, the eyes constantly shift their gaze
to subsequently bring images into the fovea. For this reason,
fixations obtained by analyzing the location of the center of
the cornea are widely used in the literature as an indication
of the gaze and interest of the user.

However, it is generally assumed that the fixation ob-
tained by analyzing the center of the cornea corresponds to
the exact location of interest. While this is a valid assump-
tion in most scenarios, the size of the fovea actually per-
mits to see the central two degrees of the visual field. For
instance, when reading a text, humans do not fixate on each
of the letters, but one fixation permits to read and see the
multiple words at once.

Another important aspect to be taken into account is the
decrease in visual resolution as we move away from the cen-
ter of the fovea. The fovea is surrounded by the parafovea
belt which extends up to 1.25 mm away from the center, fol-
lowed by the perifovea (2.75 mm away), which in turn is
surrounded by a larger area that delivers low resolution in-
formation. Starting at the outskirts of the fovea, the density
of receptors progressively decreases, hence the visual reso-
lution decreases rapidly as it goes far away from the foveal
center (Rossi and Roorda 2009). We model this by using a
Gaussian kernel centered on the foveated area, with standard
deviation as a quarter of the estimated foveated area. In this
way, areas which are close to the border of the foveated area
are of lesser importance. In our model, we consider this re-
gion as the possible location for the interest point. As we
are going to increase the foveated area by the projection
of εtotal , the tail of the Gaussian of the foveated area will
aid to balance the importance of a fixation point against the
distance from the original fixation point (Fig. 2(d)). As the
point of interest could be anywhere in this limited area, the
next step is to use saliency to extract potential fixation can-
didates.
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Fig. 2 (a) An example image; (b) the saliency map of the image ob-
tained as in Valenti et al. (2009); (c) the saliency map used in the pro-
posed method. The latter displays less local maxima and retains more

energy towards the center of image structures, therefore is fit for our
purposes. (d) is the saliency map filtered by the Gaussian kernel mod-
eling the fovea decrease in resolution

3 Determination of Salient Objects in the Foveated
Area

The saliency is evaluated on the interest area by using a
customized version of the saliency framework proposed by
Valenti et al. (2009). The framework uses isophote curva-
ture to extract the displacement vectors, which indicate the
center of the osculating circle at each point of the image.
In Cartesian coordinates, the isophote curvature κ is defined
as:

κ = −L2
yLxx − 2LxLxyLy + L2

xLyy

(L2
x + L2

y)
3/2

.

Where Lx represent the first order derivative of the lumi-
nance function in the x direction, Lxx the second order
derivative on the x direction, and so on. The isophote curva-
ture is used to estimate points which are closer to the center
of the structure it belongs to, therefore the isophote curva-
ture is inverted and multiplied by the gradient. The displace-
ment coordinates D(x,y) to the estimated centers are then
obtained by:

D(x,y) = − {Lx,Ly}(L2
x + L2

y)

L2
yLxx − 2LxLxyLy + L2

xLyy

.

In this way every pixel in the image gives an estimate
of the potential structure it belongs to. To collect and rein-
force this information and to deduce the location of the ob-
jects, D(x,y)’s are mapped into an accumulator, weighted
according to their local importance defined as the amount of
image curvature and color edges. The accumulator is then
convolved with a Gaussian kernel so that each cluster of
votes will form a single estimate. This clustering of votes
in the accumulator gives an indication of where the centers
of interesting or structured objects are in the image.

In their work, Valenti et al. use multiple scales. Here,
since the scale is directly related to the size of the foveated
area, the optimal scale can be determined once and then
linked to the foveated area itself. Furthermore, Valenti et al.

add the color and curvature information to the final saliency
map, while here this information is discarded. The reasoning
behind this choice is that this information is mainly useful to
enhance objects on their edges, while the isocentric saliency
is fit to locate the adjusted fixations closer to the center of
the objects, rather than on their edges. Figure 2 shows the
difference between the saliency map obtained by the frame-
work proposed by Valenti et al. and the single isocentric-
only saliency map used in this paper. While removing this
information from the saliency map might reduce the overall
response of salient objects in the scene, it brings the abil-
ity to use the saliency maps as smooth probability density
functions.

4 Adjustment of the Fixation Points and Resolution of
the Calibration Error

Once the saliency of the foveated region is obtained, it is
masked by the foveated area model as defined in Sect. 2.
Hence, the Gaussian kernel in the middle of the foveated
area will aid in suppressing saliency peaks in its outskirts.
However, there may still be uncertainties about multiple op-
timal fixation candidates.

Therefore, a meanshift window with size corresponding
to the standard deviation of the Gaussian kernel is initialized
on the location of the estimated fixation point (correspond-
ing to the center of the foveated region). The meanshift al-
gorithm will then iterate from that point towards the point of
highest energy. After convergence, the closest saliency peak
on the foveated image is selected as the new (adjusted) fixa-
tion point. This process is repeated for all fixation points on
an image, obtaining a set of corrections. We suggest that an
analysis of a number of these corrections holds information
about the overall calibration error. This allows for estimation
of the current calibration error of the gaze estimation system
which thereafter can be used to compensate it. The highest
peaks in the saliency maps are used to align fixation points
with the salient points discovered in the foveated areas.
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A weighted least-squares error minimization between
the estimated gaze locations and the corrected ones is per-
formed. In this way, the affine transformation matrix T is
derived. The weight is retrieved as the confidence of the ad-
justment, which considers both the distance from the origi-
nal fixation and the saliency value sampled on the same lo-
cation. The obtained transformation matrix T is thereafter
applied to the original fixations to obtain the final fixation
estimates. We suggest that these new fixations should have
minimized the calibration error εc. Note that here we as-
sume that the non linearity of the eye anatomy and the differ-
ence between the visual axis and the optical axis are already
modeled and compensated on the second step of the gaze
estimation pipeline. In fact, we argue that the adjustments
of the gaze estimates should be affine, as the calibration er-
ror mainly shifts or scales the gazed locations on the gazed
plane.

The pseudo code of the proposed system is given in Al-
gorithm 1.

Algorithm 1 Pseudo-code of the proposed system
Initialize scenario parameters
– Assume εc = 0
– Calculate the εtotal = εf + εd + εc

– Calculate the size of the foveated area by projecting
εtotal at distance d as tan εtotal ∗ d

for each new fixation point p do
– Retrieve the estimated gaze point by the device
– Extract the foveated area around each the fixation p

– Inspect the foveated area for salient objects.
– Filter the result by the Gaussian kernel
– Initialize a meanshift window on the center of the
foveated area
while maximum iterations not reached or �p < thresh-
old do

climb the distribution to the point of maximum en-
ergy

end while
– Select the saliency peak closest to the center of the
converged meanshift window as being the correct ad-
justed fixation.
– Store the original fixation and the adjusted fixation,
with weight w found on the same location on the
saliency map
– Calculate the weighted least-squares solution be-
tween all the stored points to derive the transformation
matrix T

– Transform all original fixations with the obtained
transformation matrix
– Use the transformation T to compensate the calibra-
tion error in the device

end for

5 Evaluation

To test our claims, we tested the approach on three different
visual gaze estimation scenarios: (1) using data from a com-
mercial eye gaze tracker, (2) using a webcam based eye gaze
tracker and (3) using a webcam based head pose estimator.
The used measure, the dataset descriptions, the experimen-
tal settings and the size of the foveated areas for each of the
scenarios are discussed in this section.

5.1 Measure and Procedure

The most common evaluation method for gaze estima-
tion algorithms consists in asking the subjects to look at
known locations on a screen, indicated by markers. Unfor-
tunately, this evaluation cannot be performed on the pro-
posed method: as the markers are salient by definition, this
evaluation method will not yield reliable results. This is be-
cause the fixations falling close to the markers would auto-
matically be adjusted to their center, suggesting a gaze es-
timation accuracy close or equal to 100%. Since this tradi-
tional experiment would over-estimate the validity of the ap-
proach, it is necessary to use a different kind of experimental
setup, which makes use of real images. The problem, in this
case, is the acquisition of the ground truth.

When building fixation maps from human fixations, it is
commonly assumed that by collecting the fixation from all
users into an accumulator and by convolving it with a Gaus-
sian kernel has the effect of averaging out outliers, yielding
high values to interesting (e.g. salient) locations. By choos-
ing a Gaussian kernel with the same size as the computed
foveated area, we suggest that this process should average
out the calibration errors of each user. More specifically, one
subject might have a systematic calibration error to the right,
another one to the left, another one to the top etc. We argue
that by averaging all the fixations together it is possible to
create a calibration error free saliency/fixation map.

Under this assumption, it is possible to evaluate our ap-
proach in a rather simple manner. If, after the proposed gaze
correction, the fixation points of a subject are closer to the
peaks of the calibration free fixation map, then the method
improved the fixation correlation between the current sub-
ject and all the others. Hence, the proposed method helped
in reducing the calibration error for the given subject.

Therefore, in our experimentation, all the fixations (ex-
cept the one for the subject that is being evaluated) are cu-
mulated into a single fixation map. The fixation map is then
convolved with a Gaussian kernel with the same standard de-
viation as used in the foveated area, merging fixations which
are close to each other.

The fixation map F is then sampled at the location of
the ith fixation fi of the excluded subject. To obtain val-
ues which are comparable, the value of each sampled fixa-
tion is divided by the maximum value in the fixation map
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(max(F )). The final value of the measure is the average of
the sampled value at each fixation point:

Cs = 1

n

n∑

i=0

F(fi)

max(F )

The returned value indicates a correlation between the
subject’s fixations and all the others (e.g. how many other
subject had a fixation around the subject’s fixations), it can
be evaluated locally for each fixation, and it provides values
which are comparable even when only one fixation is avail-
able. Note that proposed experimentation procedure consid-
ers the size of the foveated area, is independent of the num-
ber of available fixations and measures the agreement with
the fixations of all other subjects. Hence, we believe that the
described experimentation procedure is a sound validation
for the proposed method.

To better understand the rationale behind the proposed
evaluation procedure, let us use a comparison with a real
world example. We compare the noisy gaze estimates to in-
accurate GPS information. In modern navigation systems,
the noisy GPS information (in our case the raw gaze esti-
mates) is commonly adjusted to fit known street information
(i.e. the ground truth). If we do not have the street informa-
tion (i.e. the real gazed locations), we argue that it is possi-
ble reconstruct it by collecting raw GPS information of cars
which are freely roaming the streets (i.e. the fixations of all
the subjects). Averaging this information will give a good in-
dication of the street locations (i.e. by averaging the raw fix-
ations in the fixation map, we obtain the ground truth of the
important objects in the scene). In our case we will evaluate
whether the adjustment proposed by our system will bring
the raw information closer to the ground truth obtained by
averaging raw information.

5.2 Commercial Eye Gaze Tracker

For this experiment, the eye gaze tracking dataset by Judd
et al. (2009) is used. The dataset consists of fixations ob-
tained from 15 subjects on 1003 images, using a commer-
cial eye tracker. As indicated by Judd et al. the fixations in
this dataset are biased towards the center of an image. This
is often the case as typically the image is shot by a person so
that the subject of interest is in the middle of it. Therefore,
we want to verify if the used measure increase if, instead of
looking at the center of the image, we use the fixation points
of a subject versus the fixation point of all other subjects.
The parameters for this experiment are the following. As the
subjects are sitting at a distance of 750 mm, the projection
of εf = 2.0◦ corresponds to 26.2 mm. εd is usually claimed
to be 0.5◦. While this is a nominal error, this corresponds
to only 6.5 mm on the screen, which is highly unrealistic. In
screen resolution, the projection of εtotal = 2.5◦ is 32.7 mm,
which approximately corresponds to 115 pixels.

5.3 Webcam Based Eye Gaze Tracker

For this experiment, the eye locator proposed by Valenti and
Gevers (2008) is used, which makes use of a standard we-
bcam (without IR) to estimate the location of both eye cen-
ters. Starting from the position of the eyes, a 2D mapping is
constructed as suggested by Zhu and Yang (2002), which
sacrifices some accuracy to assume a linear mapping be-
tween the position of the eyes and the gazed location on the
screen. The user needs to perform a calibration procedure by
looking at several known points on the screen. A 2D linear
mapping is then constructed from the vector between the eye
corners and the iris center and recorded at the known posi-
tion on the screen. This vector is then used to interpolate be-
tween the known screen locations. For example, if we have
two calibration points P1 and P2 with screen coordinates α

and β , and eye-center vector (with the center of the images
as the anchor point) x and y, we can interpolate a new read-
ing of the eye-center vector to obtain the screen coordinates
by using the following linear interpolant:

α = α1 + x − x1

x2 − x1
(α2 − α1),

β = β1 + y − y1

y2 − y1
(β2 − β1).

For the experiment, we asked 15 subjects to look at the
first 50 images (in alphabetical order) of the dataset used in
the previous experiment. Between each image, the subject is
required to look at a dot in the center of the screen. As no
chin rest was used during the experiment, this dot is used to
calculate an average displacement to the center of the image,
which is then used in the next image.

While the projection of εf is the same as in the previous
experiment, the device error εd is very high, as there are two
aspects of the device error that should be taken into consid-
eration:

– The resolution of the device: In our experiments, the cal-
ibration shows that the eye shifts of a maximum of 10
pixels horizontally and 8 pixels vertically while looking
at the extremes of the screen. Therefore, when looking at
a point on the screen with a size of 1280 × 1024 pixels,
there will be an uncertainty window of 128 pixels.

– The detection error: to the previously computed estimate,
we should add the possibility of the eye locator to com-
mit a mistake on the eye center location. The system pro-
posed by Valenti and Gevers (2008) claims an accuracy
close to 100% for the eye center being located within 5%
of the interocular distance. With a device resolution of
640 × 480 pixels and a user distance of 750 mm, the in-
terocular distance measures 85 pixels. Therefore, 5% of
the interocular distance of 85 pixels corresponds to 4 pix-
els, hence to an error of 64 pixels in each direction on
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the screen. However, since the tracker does not constantly
make mistakes, we halved the latter figure, obtaining a
foveated region of 160 pixels.

5.4 Head Pose Tracker

For this experiment we used a cylindrical 3D head pose
tracker algorithm based on Lukas-Kanade optical flow
method (Xiao et al. 2002). The depth of the head, which
describes the distance of the head from the screen, is as-
sumed to start from 750 mm from the camera center. The
method assumes a stationary calibrated camera. The gazed
scene is recorded by another camera (also with a resolu-
tion of 640 × 480 pixels) in order to be able to evaluate the
saliency of the area. The subjects are required to look at a
calibration point in the center of the scene before starting
the experiment.

The head pose experiment consists of gazing at different
objects in the scene. To keep the affine assumption for the
gaze adjustment, the objects were placed in the same plane.
The subjects participating in the experiments were requested
to gaze at the center of the objects in a fixed sequence, so that
the expected ground truth for the gaze location is known.
The subjects were instructed to “point with the head”, stop-
ping at the center of the called objects. This generates what
we call “head fixations”, which we evaluate in the same way
as we did in the previous experiments. As the ground truth
of the head fixations is available, we are also able to estimate
the head pose error and check if this can be improved using
the found calibration error.

The device error of the used head tracker is 5.26◦ for the
vertical direction, and 6.10◦ for the horizontal direction. For

simplicity, we fix the device error as the average of the two
errors, therefore εd = 5.8◦. Since the objects are placed at
distance d = 2000 mm, this error gives an uncertainty of
the estimation of approximately 203.1 mm. The contribution
of εf increases to 69.8 mm. Therefore, the final size of the
foveated region will be 272.9 mm. In the scene camera res-
olution, an object measuring 273 mm at 2000 mm distance,
appears approximately 80 pixels wide.

6 Results

6.1 Eye Gaze Tracker

To better understand the improvement obtained by the pro-
posed method over the original fixations, it is necessary to
analyze it in the foveated area context. Therefore, we deter-
mine the maximum improvement obtainable (upperbound)
by selecting the location within the foveated region which
yields the maximum value with respect to the fixations of all
users. This is computed by looking for the highest value in
the fixation map within foveated area, and it indicates which
point in the foveated area should be selected by the gaze
adjustment method to withhold the maximum possible im-
provement on the overall correlation. Once this limit is de-
termined, the percentage of improvement can be obtained as
the increase towards that limit. Table 1 lists the result for
each of the subject in the dataset, averaged over all images.
Note that the average correlation of every subject increased
by an average of 13.91%, with a minimum improvement of
8.24% and a maximum of 18.07%. This figure is reflected

Table 1 Correlation results for
the eye gaze tracker experiment Subject # Fixations Adjusted Fixations Upperbound Improvement # Images Improved

1 33.09 34.49 42.53 14.86% 674/1003

2 28.53 30.33 38.49 18.07% 718/1003

3 34.56 35.82 44.22 13.03% 650/1003

4 32.04 32.95 39.69 11.92% 671/1003

5 32.26 33.94 41.73 17.75% 680/1003

6 37.8 38.9 47.49 11.41% 656/1003

7 32.88 34.24 42.82 13.72% 662/1003

8 25.26 26.9 35.24 16.46% 702/1003

9 29.1 29.77 37.28 8.24% 630/1003

10 38.38 39.65 48.42 12.61% 638/1003

11 32.68 34.24 42.42 16.07% 700/1003

12 35.22 36.91 45.87 15.88% 682/1003

13 38.56 39.4 47.04 9.87% 621/1003

14 36.22 37.28 44.99 12.03% 648/1003

15 31.6 33.4 42.32 16.77% 691/1003

Mean 33.21 34.54 42.70 13.91% 668/1003
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Table 2 Correlation results for
the webcam based eye gaze
tracker experiment

Subject # Fixations Adjusted Fixations Upperbound Improvement # Images Improved

1 40.22 44.51 49.15 48.04% 41/50

2 41.71 44.44 50.84 29.9% 34/50

3 28.04 35.52 36.71 86.27% 46/50

4 44.81 47.51 53.71 30.34% 34/50

5 47.96 50.48 56.05 31.15% 34/50

6 35.28 40.79 44.41 60.35% 41/50

7 30.98 37.15 39.92 69.02% 43/50

8 41.29 45.94 50.59 50.00% 38/50

9 34.81 38.23 43.26 40.47% 39/50

10 36.28 41.76 45.57 58.99% 37/50

11 32.81 37.28 40.97 54.78% 41/50

12 45.3 47.23 53.53 23.45% 31/50

13 29.51 36.45 38.7 75.52% 41/50

14 36.65 42.02 45.14 63.25 % 43/50

15 32.68 37.1 40.55 56.16% 43/50

Mean 37.22 41.76 45.94 51.85% 39.07/50

Fig. 3 (a) The fixation map
obtained by the eye gaze tracker;
(b) the one obtained by the
webcam based tracker; (c) the
fixation map obtained by the
adjusted webcam based tracker

in the amount of images in which the overall correlation im-
proved. In fact, using the proposed method, an average of
668 (out of 1003) images were improved. In comparison,
using a random point in the foveated area as the adjusted fix-
ation, only 147 images were improved. An additional test is
performed regarding the discussed center bias of human fix-
ations in the dataset. Therefore, we also compare the accu-
racy obtained by selecting the center of the image as sole fix-
ation. In this case, only 319 images were improved. There-
fore, in this scenario, our method outperforms the bias to the
center.

6.2 Webcam Based Eye Gaze Tracker

The results for this second scenario are listed in Table 2.
When comparing the original fixations correlation obtained
by this system to the one in the previous experiment, it is
possible to notice that it is larger. The reason behind this lies
in the size of the foveated area which is larger in this exper-
iment than in the previous one. As a consequence, the blur-
ring kernel on the fixation map is larger. Therefore, given the
smoothness of the fixation map, less gaps exists between the

fixations. Hence, when evaluating a fixation, it is more likely
that will hit a tail of a Gaussian of a close fixation. Further-
more, as the eye locator commits mistakes while estimating
the center of the eyes, some of the fixations are erroneously
recorded, increasing the overall value on uninteresting loca-
tions. This effect can be seen in Fig. 3, which compares the
fixation map obtained by the foveated area of the previous
experiment (a) and the one used in this experiment (b) on
the same image.

6.3 Head Pose Tracker

In this scenario, only one image is available for each sub-
ject, that is, the image taken by the scene camera. Note that
all objects were placed on the same plane so that the ad-
justment obtained by the proposed method can still be lin-
ear. Table 3 shows the mean results between all subjects.
Although all the subjects were asked to gaze at the same
objects and the subject correlation is expected to be high,
the small size of the foveated area gives the fixation map a
very small space for improvement. However, the head fix-
ations still improved the subject correlation on 11 subjects
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Table 3 Correlation results for
the head pose tracker
experiment

Subject # Fixations Adjusted Fixations Upperbound Improvement # Subjects Improved

Mean 17.50 18.87 27.27 10.23% 11/15

Fig. 4 (a) The system setup consisting of a “subject camera” (white)
and a “scene camera” (black); (b) the displacements (red) between
the original location of the “head fixations” (black) and the adjusted

fixations (white); (c) the correction of wrongly estimations of the head
pose tracker (blue arrow to the right is adjusted to the center)

out of 15, with an average improvement of 10.23% towards
the upperbound. Additionally to the correlation test, in this
scenario we analyzed the possibility of adjusting the cali-
bration error of the device. The transformation matrix ob-
tained by our system is fed back to the head pose estimator
and it is used to adjust the estimated horizontal and vertical
angles of the head pose. In our experimentation, using the
object location as a ground truth, the tracking accuracy im-
proved by an average of 0.5◦ on the vertical axis and 0.6◦
on the horizontal one. Analyzing the results, we found that
while gazing at a certain location, the system would always
converge to the closest salient region. This behavior can be
seen in Fig. 4(b), where the clouds of the original fixations
(black) are always adjusted (red) to the closest salient object
(white). The results of this experiment hint that it is possible
to create self-calibrating system which uses known salient
locations on the scene to find the right parameters in case
the initialization was erroneous.

Figure 4(c) shows the difference between the pose esti-
mated by the incorrectly initialized head pose tracker (arrow
to the right) and the suggested correction (arrow in the cen-
ter).

7 Discussion

The fact that the correlation is improved by 51.85% indi-
cates that it is possible to achieve almost the same accuracy
of an (uncorrected) commercial eye tracker. Figure 3(c) is
an example of this effect. The corrected correlation between
15 subjects is in fact very similar to the one obtained by the
eye gaze tracker. Since the system uses saliency, it is impor-
tant to mention the system could fail when used on subjects
which does not have “normal” vision. In fact, if a color-blind
person is faced with a color blind test, he might not be able to
successfully read the colored text at the center of the image.

However, if the subject fixates to the center of the image, the
system will probably think that he is looking at the text, and
will suggest an erroneous correction. Nonetheless, if other
fixations are available, the system might find that the best
fit is obtained by not correcting that specific fixation, and
might still be able to find the calibration error and improve
the overall correlation.

By analyzing the obtained results, we realize where the
system breaks down. For instance, when analyzing the fix-
ations on a face, the average fixation (mouth, nose, eye)
would have the center of the face as the maximum value
for correlation between the subjects. However, if a fixation
occur at the center of a face, the most salient regions around
it (e.g. the eyes, the mouth) will attract the fixation, drop-
ping the correlation. Also, if the foveated region is too big,
the fixation will always be attracted by the most salient ob-
ject in the scene. This might either result in a very good
improvement or in a decrease in correlation, as the saliency
algorithm might be wrong. Figure 5 shows some examples
of success and failure of the proposed method. The blue line
shows the location of the fixations obtained by the eye gaze
tracker, the white line is the suggested adjustment and the
black is the final adjustment by the derived transformation
matrix. In Fig. 5 (top-left) it is clear that the subject fixated
the sea lion on the right, although the fixation is found in
the water. The white line shows the fixations adjusted by
the proposed method. The transformation matrix obtained
by this adjustment is then used on the original fixation point,
obtaining the black line, which now spans between both sea
lions. The same argument holds for the face image, where
the real fixations were clearly targeted the eyes instead of
two undefined points between the eyes and the eyebrows,
while the corrected fixations cover both eyes and the mouth.
In the images containing text this behavior is more evident,
since it is clear that the real fixations were targeted at the
text, but the ones recorded by the eye tracker have a clear
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Fig. 5 Example of success and
failure while adjusting the
fixations on the eye gaze
tracking dataset. The blue line
indicates the original fixations,
the green line are the fixations
corrected by the proposed
method, while the red line
represent the location of the
original fixations transformed
by the found calibration error

constant offset, which is fixed by the proposed method. Al-
though the method is shown to bring improvement to 668
pictures in the dataset, there are still 335 cases in which the
method fails. This is the case of the bottom-right image in
Fig. 5: while the original fixation ends in an irrelevant loca-
tion in the sky and the adjusted points span both structures,
the transformation matrix obtained by the least-squares min-
imization is not sufficient to stretch both original fixations to
that extent, hence dropping the subject correlation. However,
note that this does not happen very often, as the proposed
system is still capable of improving the correlation with the
other subjects in two thirds of the full dataset.

We foresee this method to be used for automatic adjust-
ment of the calibration, and in situations in which the accu-
racy of the visual gaze estimation device is not enough to
clearly distinguish between objects. Furthermore, we fore-
see the proposed method to pave the way to self-calibrating
systems and to contribute in loosening the strict constraints
of current visual gaze estimation methods.

8 Conclusions

In this paper we proposed to add a third step in the visual
gaze estimation pipeline, which considers salient parts of
the gazed scene in order to compensate for the errors which
occurred in the previous steps of the pipeline. The saliency
framework is used as a probability density function, so that it
can be climbed using the meanshift algorithm. We tested the
proposed approach on three different visual gaze estimation
scenarios, where we successfully improved the gaze corre-
lation between the subjects. We believe that the proposed
method can be used in any existing and future gaze estima-
tion devices to lessen the movement constraints on the users
and to compensate for errors coming from an erroneous cal-
ibration.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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