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Abstract

This paper describes a forecasting exercise of close-to-open returns on
major global stock indices, based on high-frequency price patterns that have
become available in foreign markets overnight. Generally speaking, out-of-
sample forecast performance depends on the forecast method as well as the
information that the forecasts are based on. In this paper both aspects are
considered. The fact that the close-to-open gap is a scalar response variable
to a functional variable, namely an overnight foreign price pattern, brings the
prediction exercise in the realm of functional data analysis. Both parametric
and non-parametric functional data analysis are considered, and compared with
a simple linear benchmark model. The information set is varied by dividing
global markets into three clusters, Asia-Pacific, Europe and North-America, and
including or excluding price patterns on a per-cluster basis. The overall best
performing forecast is nonparametric using all available information, suggesting
the presence of nonlinear relations between the overnight price patterns and the
opening gaps.

Keywords: Close-to-open gap forecasting, functional data analysis,
international stock markets, nonparametric modeling.

JEL Classification: C14, C53, F37, G17.

∗University of Amsterdam; e-mail: j.g.degooijer@uva.nl
†University of Amsterdam; e-mail: c.g.h.diks@uva.nl
‡University of Amsterdam; e-mail: gatarek@tlen.pl

23 J.G. De Gooijer, et al.
CEJEME 1: 23-44 (2012)



Jan G. De Gooijer, et al.

1 Introduction
Empirical research in finance has traditionally focused on the analysis of daily stock
returns, usually measured as changes in closing prices. However, since trading can
be thought of as a continuous-time process, it is also natural to consider returns over
other than daily intervals. Recently, some interest has been developed into dividing
daily returns into overnight (close-to-open) returns and daytime returns. There is
considerable empirical evidence that return dynamics are different over non-trading
periods than during trading periods (French and Roll, 1986; Lockwood and Linn,
1990; Hasbrouck, 1991, 1993; and Madhavan, Richardson, Roomans 1997; George
and Wang, 2001; Cliff, Cooper, Gulen, 2008). Accordingly, a number of models have
been proposed to quantify this phenomenon, often using stocks traded on a particular
stock market; see, e.g., Oldfield and Rogalski (1980) and Hong and Wang (2000).
The information revealed in consecutive overnight and day-time returns can also be
employed for prediction. In this vein, Zhong (2007) considered predicting daytime
volatility of stock prices based on the preceding overnight returns. As far as we know,
there have been no attempts to explore the price evolution in a set of foreign stock
markets as a result of the information content revealed during non-trading periods of
a home market. The economic justification for potential existence of such relations
is based on abundant evidence in causality and linkages among the markets based
on trading hours returns, see for instance De Gooijer and Sivarajasingham (2007).
Furthermore there are a few attempts to explain the relations between overnight
returns and subsequent daily returns within the same market, see Branch and Ma
(20012), Cliff, Cooper, Gulen (2008), Berkman, Koch, Tuttle, Zhang (2012). The
natural consequence is an attempt to broaden the scope of this research to the intra-
markets day-night return causalities.
Accurate forecasts of the opening gap, based on foreign information, could be
exploited, for instance, by trading futures prior to the opening of the market. With
this in mind, one of the aims of this study is to predict the overnight return on an
individual stock index of a home market, based on the information content revealed
in a set of foreign markets during non-trading hours of the home market.
The formation of price in the non-trading hours might have some implications for
the understanding of potential features of prediction mechanism for opening gap. For
general introduction to the literature on price discovery and informed trading in pre-
open period we refer to Gerety and Mulherin (1994), Biais, Hillion, Spatt (1997) and
(1999) or Barclay and Hendershott (2003) and (2004).
In addition to predictability of the opening gaps, we investigate if global markets are
informationally efficient in the sense that adding information from clusters of stock
indices traded further in the past into the information set does not improve predictive
ability.
The final objective is to test the performance of the functional data analysis with
respect to its applicability in modeling of financial time series. In the study we
employ the benchamrk model of linear regression and we contrast it with complexity
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of parametric and nonparametric functional data analysis (P-FDA and NP-FDA)
techniques. FDA is a natural alternative to linear regression in this setting, because
overnight foreign price patterns can be viewed as continuous functions of time. For
background on FDA we refer to Ramsay and Silverman (2005). The appplications of
FDA to economic time series can be found in Malfait and Ramsay (2003) and Ramsay
and Ramsey (2001). Within empirical finance, where the explanatory variables
often depend on some continuous parameter (e.g. price patterns), functional data
often arise. For instance, Benko (2006) applies parametric FDA techniques to the
analysis of implied volatility functions and yield curve dynamics. Also Mueller, Sen,
Stadtmueller (2001) and Mueller, Stadtmueller, Yao (2006) discuss the methods of
functional modeling of financial volatility.
This paper is organized as follows. Section 2 formalizes the prediction problem.
Section 3 describes the various FDA methods considered in this paper, as well as their
corresponding predictive intervals (PIs). The measures used for evaluating the out-of-
sample predictions are described in Section 4, and Section 5 provides a description of
the data. Section 6 describes the results obtained, and Section 7 discusses the results
and concludes. To avoid confusion we like to stress that the adjective ‘functional’
refers to the form of the data and ‘parametric/nonparametric’ to the form of the
constraints imposed on the model.

2 The prediction problem
To formalize the prediction problem some notation and definitions are introduced. Let
the random variable Yi,s denote the close-to-open gap for stock market i at trading
session (trading day) s. The aim is to predict Yi,s based on a pattern of prices
(an ordered set of curves), χi,s, that has been realized within a specific collection
of markets other than i overnight. Note that by concatenating the price patterns of
the different markets in a fixed order we may represent all prices that χi,s contains
by a single piece-wise continuous curve χi,s(t) indexed by a single time variable t.
In practice χi,s(t) can not be observed at all possible times t, and we have to use
a version of it which is sampled at (typically regular) intervals. Following Ferraty
and Vieu (2006) we will denote this discretized version of χi,s, which mathematically
is just a finite-dimensional vector, by xi,s. Here data discretized at regular five-
minute intervals are used throughout. Also the realized close-to-open returns yi,s are
calculated based on discretized observations. If the daily 5-minute price quotes in
market i and session s are given by pi,s(t), t = 1, 2 . . . , Ti, where Ti is the number of
five-minute intervals in a trading day on market i, the close-to-open return for stock
index i in trading session s is given by yi,s = (pi,s(1)− pi,s−1(Ti))/pi,s−1(Ti).
To specify the information set on which predictions of close-to-open gaps are to
be based, it is convenient to introduce a universal ‘background’ time variable that
measures time globally, as opposed to the within-trading session time variable. Time
is measured in five-minute units again, and in addition we assume that the universal
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clock does not run in weekends, between Central European Time (CET) Sat 00:00 and
CET Mon 00:00; a period during which all markets are closed simultaneously. Since a
24 hour day contains 288 five-minute intervals, each observation can be represented as
xi,s(t) = x̃i(288×s+ ci+ t), where 288×s+ ci+ t is the universal time corresponding
to a quote in session s of market i at trading-session time t. The shift ci ∈ 0, . . . , 287
represents the opening time of market i, again in five-minute units. Note that x̃i(·)
is only defined for universal times t at which market i is open, and is not available
otherwise.
The prediction variable of interest is the close-to-open return in market i for trading
session s, given by yi,s = (xi,s(1) − xi,s−1(Ti))/xi,s−1(Ti), where s − 1 denotes the
last session prior to session s during which market i was open. In universal time, yi,s
materializes at time topen

i,s = 288× s+ ci.
Below, several different specifications are considered, which use various amounts of
the information available. Based on trading hours, three global clusters of markets
can be distinguished; in order, the Asian-Pacific markets, the European markets, and
the American markets. If we include or exclude information on a per-cluster basis,
for each home market there are three possible information sets that can be extracted
from the overnight price patterns. For instance, forecasts for the opening gap in each
of the Asian-Pacific markets can be based on the previous overnight price pattern
in the North-American markets, the European markets, or both. In an analogue
way, three different information sets can be defined for the European and the North-
American markets. In general we denote these information sets as ‘cluster(-1)’ (only
the previous cluster), ‘cluster(-2)’ (the second-most recent cluster) and ‘cluster(-1)-
cluster(-2)’ (both the previous cluster and the second most recent cluster). In cases
of missing data as a result of a holiday in either one of the explanatory variables or
the home market of interest, the corresponding explanatory data and opening gap are
excluded from the analysis.
The original sample for each market is split into two sub-samples: a learning sample
containing the units {(xi,s, yi,s)s=1,...,ki}, and a testing sample containing the units
{(xi,s, yi,s)s=ki+1,...,S} where ki (i ∈ 1, . . . ,M) denotes the number of observations
in the learning sample. The learning sample allows us to construct the various
models, while the testing sample is used for making actual predictions and evaluating
predictive performance.

3 Functional data analysis
In our description of functional data analysis we consider predicting the opening gap
for a specific market i. For notational convenience, the subscript i is dropped from the
respective random variables. Let (χs, Ys)s=1,...,k be k = ki pairs of random variables,
identically distributed as (χi, Yi) but not necessarily independent, and taking values
in E × R, where (E , d) is a semi-metric space with semi-metric d. In addition, it is
assumed that (χs, Ys) is strictly stationary. The aim is to predict the unobserved
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scalar response variable Ys from the curve(s) χs (covariates). The idea behind FDA
is that similar patterns χ lead to similar responses y. This can be either modeled
parametrically, for instance through

Y = f(χ;β) + error,

where β is a finite-dimensional parameter, or it can be modeled nonparametrically.
The nonparametric approach does not rely on any specific finite-dimensional
specification, but only exploits the fact that similar patterns have similar responses.
This leads to prediction by analogy: for a given observed pattern χs of overnight
returns, use the data to identify sessions s′ for which the pattern χs′ was close to
χs. The responses ys′ observed for these ‘close’ patterns are good representatives
of Ys given χs. To make this operational it is convenient to introduce a notion of
closeness between patterns, for which many different semi-metrics are being used
in practice. Given a semi-metric, standard nonparametric methods, such as kernel-
weighing methods are readily available to construct predictors consisting of weighted
averages of the responses ys′ for which χs′ was closest to χs. It is beyond the scope
of the present paper to give an in-depth introduction to functional data analysis. For
an exposition of the various available techniques and many applications, please refer
to Ferraty and Vieu (2006).

3.1 Nonparametric FDA
Ferraty and Vieu (2006) emphasize that the object of interest in a nonparametric
functional data analysis need not always be the conditional mean E(Y |χ = χ), and
they propose forecasts based on the conditional median and conditional mode as
well. This problem can be viewed as follows. Suppose that there exists a function
r(·) modeling the relationship between Y and χ and that r(·) is defined through the
conditional distribution. Given a convex loss function `(·) with a unique minimum,
define r(·) such that it minimizes the mean E(`(Y − a)|χ = χ) with respect to a.
A nonparametric estimator of r(·) provides a nonparametric predictor Ŷ in terms
of χ. Using this principle, we consider three nonparametric predictors, based on
different loss functions. Assuming (χs, Ys) is α-mixing, Ferraty and Vieu (2005,
2006) proved almost complete convergence, and established the corresponding rates
of convergence, of these three nonparametric functional predictors, which are also
considered here. Also these authors established the rates of convergence of the
predictors.

Conditional mean: It is well-known that taking `(u) = u2 leads to the
conditional mean function r(χ) = E(Y |χ = χ).
Recall that the model is to be based on the observed k pairs (xs, ys)s=1,...,k of
identically distributed random variables, where xs is a discretized version of the
pattern χs. Let x be an observed curve (overnight foreign price pattern) at which
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one would like to estimate the regression function. Then, using the Nadaraya-Watson
kernel density estimator, the one-step-ahead conditional mean predictor (measured
in five-minute units) is defined as:

ŷmean =
k∑
s=1

ysW (xs,x).

Here W (·), the so-called kernel weight, is defined as:

W (xs,x) = K(d(xs,x)/h)
/ k∑
r=1

K(d(xr,x)/h),

where h denotes the bandwidth, K(·) the kernel function, and d(xs,x) is any
semi-metric between xs and x.

Conditional median: In this case the loss function is given by `(u) = |u|.
Then the conditional median function is given by:

r(χ) = inf{y : F (y|χ = χ) ≥ 1/2},

where F (·|·) is the conditional distribution function of Y given χ = χ. Consequently,
the one-step-ahead nonparametric functional predictor of the conditional median is
defined as

ŷmed = inf
{
y : F̂ (y|χ) ≥ 1/2

}
,

where

F̂ (y|χ) =
k∑
s=1

W (xs,x)1{ys≤y},

with 1{A} denoting the indicator function of set {A}, is the estimated conditional
cumulative distribution function (CDF) of Y given χ = χ.

Conditional mode: In this case we have a non-convex loss function with a
unique minimum `(u) = 0 when u = 0, and `(u) = 1 otherwise. The loss function
becomes:

r(χ) = arg max
y∈R

f(y|χ = χ),

where f(·|·) denotes the conditional density function of Y given χ = χ. Hence, g
Given the observed data, the nonparametric functional predictor of the conditional
mode is given by:

ŷmode = arg max
y∈R

k∑
s=1

K(|y − ys|/h)W (xs,x),

J.G. De Gooijer, et al.
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where, for ease of notation, we assume that the same kernel function K(·) and
bandwidth h apply in the y direction.
Thus the predictive conditional density of y given the observed curve x can be
represented as the probability measure over the observations ys{s=1,...,k} . This
measure distributes the probability over ys{s=1,...,k} proportionaly to the distance of
respective xs from x quantified via W (xs,x). Thus we can predict by conditional
mean, median or mode of this distribution. If the sample is dense enough, any
quantile (percentile) predictor can be specified in similar way as prediction via
conditional median. Due to the construction of the predictors, in the testing
subsample we can apply any prediction evaluation criteria. In each period the
observed curve x. Thus the prediction can be obtained conditional on this curve.
Then the predicted y can be compared with the observable counterpart in the testing
sample.

Semi-metric: As a measure of closeness a standard semi-metric based on
functional principal component analysis (FPCA) is used. FPCA builds upon ideas
from classical principal component analysis. Assuming E(

∫
χ2(t)dt) < ∞, it can be

shown that the functional random variable χ can be written as:

χ =
∞∑

k=1

∫
χs(t)ek(t)dtek,

where ek are orthonormal eigenfunctions of the covariance operator

Γχ(t, t′) = E(χ(t)χ(t′))

associated with the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0. A truncated version of this
expansion forms the basis of the FPCA semi-metric. In particular, the empirical
version of this semi-metric is defined, in the case x is an observed pattern of a single
variable consisting of T consecutive observations, as

dq(xs,x) =

√√√√
q∑

k=1

( T∑

j=1
(xs(j)− x(j))[êk]j

)2
, (1)

where, q denotes the number of retained principal components in the FPCA
expansion, with q much smaller than T . It is straightforward to generalize (1) into
a semi-metric suitable for multiple covariates. In that case, the parameter q need
to be chosen. Comparing the prediction performance using the evaluation measures
introduced in the next section, we noticed that values of q ≥ 6 did not alter the
results. Hence, we fixed q at 5 for each market.

Implementation: For general NP-FDA prediction R/S+-routines are available
at the website: http://www.lsp.ups-tlse.fr/staph/npfda; see also Ferraty and Vieu

29 J.G. De Gooijer, et al.
CEJEME 1: 23-44 (2012)



Jan G. De Gooijer, et al.

(2006, Chapter 7) for some details. We modified these routines for our purpose. The
resulting R-codes, the datasets, and a brief description can be obtained from the
authors. Two relatively “simple” practical aspects, concern the choice of the kernel
function and the associated bandwidth. Throughout the analysis we employed the
quadratic kernel: K(u) = 1 1

2 (1 − u2)[0,1](u). The quadratic kernel was proven to be
the leading one with respect to the statistical significance of the results investigated
by bootstrapping. The bandwidth choice follows the data-driven procedure as
described in Ferraty, Vieu (2005, Section 4.4), i.e. h is chosen in order to minimize∑k
s=1

∣∣∣ŷ(.)
s − y(.)

s

∣∣∣, where ŷ(.)
s denotes the value of a predictor based on one of the

FDA methods discussed above.
Another practical issue is that price levels may differ considerably across trading
days. To obtain price patterns that are comparable across trading days all price
patterns in x are expressed relative to the opening price of that day.

3.2 Functional Parametric Regression
To enable comparisons with a predictor based on parametric functional data analysis
we consider a functional parametric regression model. The simplest of these models
establishes a linear relationship between a functional covariate χs(t) and the response
variable Ys, according to

Ys = β0 +
∫ T

0
χs(t)β(t)dt+ ε, (2)

where {ε} is a sequence of i.i.d. random variables such that E(ε|χs(t)) = 0 and
E(ε2|χs(t)) = σ2 <∞.
A popular approach to reduce the number of degrees of freedom in (2) is to use a
truncated functional basis expansion, similar to the truncation applied in the NP-FDA
case. There are three prominent examples of functional bases: Fourier, Polynomial
and B-spline. Here, following Ramsay and Silverman (2005, Chapter 15), we adopt a
set of Fourier (orthonormal) basis function θk(t), i.e.

β(t) =
Kβ∑

k=1
bkθk(t) = b′θ(t), (3)

where θ2k−1(t) = sin kωt and θ2k(t) = sin kωt, Kβ denotes the length of the set,
and where θ(t) = (θ1(t), . . . , θKβ (t))′ and b = (b1, . . . , bKβ )′. Similarly, χs(t) can be
expanded in another set of Fourier basis function ψk,s(t) of length Kz as follows

χs(t) =
Kz∑

k=1
cs,kψk(t) = c′sψ(t), (4)
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where ψ(t) = (ψ1(t), . . . , ψKz (t))′ and cs = (cs,1, . . . , cs,Kz )′. Inserting (3) and (4)
into (2), and using the data in the learning sample, yields

Ys = β0 +CsJb+ εs, (s ∈ 1, . . . , k),

where J is a Kz ×Kβ matrix defined by J =
∫
ψ(t)θ′(t)dt, and where the k ×Kz

matrix is given by C = {cs,k : s = 1, . . . , k, k = 1, . . . ,Kz}. The notation can be
further simplified by defining a (Kβ+1)-vector ξ = (β0 b

′)′ and a k×(Kβ+1) matrix
Z = [1 CJ ]. Thus, the resulting functional regression model has the same structure
as the classical linear regression model. Consequently, the augmented parameter
vector ξ can be estimated by least squares, i.e. ξ̂ = (Z ′Z)−1Zy. Clearly, the
above setup can be easily modified into a specification with more than one functional
covariate. The choice of the numbers of basis functions, Kz and Kβ , is a trade-off
between information loss and computational costs. In the present study Kz and Kβ

were set equal to 15. For the specific data used in the present study we verified that
there was no gain in performance by increasing the number of basis functions beyond
this number.
Given ξ̂ and the set of basis functions θ(t), estimates β̂(t) of β(t) can be obtained.
Then, using (2), the predictor for Ys may be constructed as

ŷ0
s = β̂0 +

∫ T

0
χs(t)β̂(t)dt,

where s runs over the collection of available out-of-sample sessions, denoted as S.
The number of evaluation sample points available (size) will be denoted by |S|. One
feature of above setup is that the conditioning takes place on the same information
set as used in predicting a response variable via NP-FDA.

3.3 Linear regression model
To include a benchmark model to compare both the parametric and nonparametric
FDA results with, we consider a linear regression model which uses as the explanatory
variables a constant plus the total overnight returns of the foreign stock indices.
The use of overnight returns rather than the complete set of 5-minute observations
ensures that the model is parsimonious. Although there are other ways to construct
a parsimonious linear model, we have chosen to focus on overnight returns, since,
at least if markets are close to being informationally efficient, these are expected to
reflect most of the relevant information regarding the development of fundamentals
underlying the respective indices.

3.4 Predictive intervals
Following De Gooijer and Gannoun (2000) we consider two types of PIs: the
conditional percentile interval (CPI) and the shortest conditional modal interval
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(SCMI). The CPI with nominal coverage probability γ is given by
(
ξ 1−γ

2
(χ), ξ 1+γ

2
(χ)
)
,

where ξα(χ) denotes the α-th quantile of the conditional distribution of Y given χ = χ
i.e. the solution of F (ξα(y|x)) = α with respect to y. A natural estimator for the
CPI is

(
ξ̂ 1−γ

2
(x), ξ̂ 1+γ

2
(x)
)
, where the estimated quantiles satisfy F̂ (ξ̂α(x)|x) = α.

The SCMI with nominal coverage probability γ is:

(a, b) = arg min
(c,d)

{d− c | F (d|x)− F (c|x) ≥ γ},

and a natural estimator for the SCMI is:

(â, b̂) = arg min
(c,d)

{
d− c | F̂ (d|x)− F̂ (c|x) ≥ γ

}
,

where, as before, the estimated conditional CDF is given by

F̂ (y|χ) =
k∑
s=1

W (xs,x)1{ys≤y}.

The SCMI is particularly suitable when the predictive density is asymmetric. For
symmetric and unimodal distributions SCMI reduces to CPI.

4 Prediction evaluation measures
Four prediction evaluation criteria will be adopted. The first two criteria are measures
for evaluating point predictions, while the latter two are concerned with evaluation
of the PIs. The first measure is the mean-squared prediction error, given by

MSE = |S|−1
∑

s∈S
(ŷ(.)
s − ys)2,

where ŷ(.)
s denotes the value of a predictor based on the respective NP-FDA, P-FDA

approaches discussed above, or based on predictions obtained from the benchmark
linear (multivariate) regression model.
From a practical point of view there often is some interest in predicting the sign
of a return on the index rather than its precise value. For instance, many trading
strategies are based on sign predictions. The following measure evaluates the point
predictions by comparing the predicted and realized signs of the close-to-open gaps:

dsgn = |S|−1
∑

s∈S
1{sgn(ŷ(.)

s )6=sgn(ys)}.

This measures the fraction of cases where the sign of the predicted close-to-open
return and the actual return differ. Up to a constant factor, this is a generalization
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of the mean-squared prediction error applied to the signs of ŷ(.)
i,s and yi,s rather than

the actual values.
The remaining two criteria are used to evaluate the PIs. We compute the average
width of PIs, as well as the empirical coverage probability. Denote by ˆ̀

i and ûi
the estimated lower and upper interval limits, respectively, obtained with one of the
specific methods described in section 3.4 (CPI or SCMI). The (root-mean-squared)
average width of the corresponding PIs is calculated as

v =
√
|S|−1

∑

s∈S
(û− ˆ̀)2.

The empirical coverage probability is computed as

pc = |S|−1
∑

s∈S
1{ys∈(ˆ̀,û)}.

Ideally, a PI has coverage probability equal to the nominal coverage probability, while
having the smallest possible average width. As an overall measure of the capability
of the intervals to ‘capture much probability’ while having a small width, we also
calculate the average PI length divided by the average coverage probability, q = v̄/p̄c.

5 Data
The data consist of intra-day quotations of the following nine (M = 9) major stock
market indices: the All Ordinary Composite Stock Index (AU), the Nikkei 225 Stock
Index (JP), the Hang Seng Stock Index (HK), the FTSE 100 Share Index (UK), the
Frankfurt DAX 30 Composite Stock Index (DE), the CAC 40 Composite Stock Index
(FR), the Zurich Swiss Market Composite Index (CH), the Dow Jones Industrial
Average (US), and the Toronto 300 Composite Stock Index (CA). All indices are
retrieved from the Bloomberg data bank. The period covered is from 24th September
2007 to 8th May 2008. Bloomberg offers one, five, and 15-minute quotations. In the
case of one-minute quotations the market microstructure noise is more pronounced.
Hence, we decided to use five-minute quotes.
For each of the y-variables, i.e. a close-to-open gap of one of the 9 stock indices, we
consider various specifications, differing in terms of the information included in x.
To limit the number of possible specifications, information is added to the x-variable
cluster-wise, where the three global clusters are the Asian-Pacific cluster (JP, AU,
HK), the European cluster (DE, FR, CH, UK), and the North-American cluster (US,
CA). The first specification only contains the stock index patterns from the ‘previous’
cluster, for instance using the Asian-Pacific cluster to predict the opening gap of FR.
This specification is referred to as ‘Cluster(-1)’. The second specification only uses
information from the before-last cluster. For instance, using the North-American
cluster to predict the opening gap of FR. This is denoted by ‘Cluster(-2)’. Finally,
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specification ‘Cluster(-1)–Cluster(-2)’ contains the patterns from the last two clusters
in the x-variable.
For specifications with one explanatory functional variable the dataset is organized in
the form of a matrix. The predictions are based on the explanatory functional variable
(xi,s(t)/xi,s(1)) × 100 which resulted in MSEs that were at least twice as small as
for three alternative transformations. When the session overlaps the opening gap is
predicted with the information set spanning over the quotation in the foreign market
up to 5-minutes before the opening. Table 1 provides an overview of the respective

Table 1: Trading times expressed in CET

yi,s

xis CET AU JP HK UK DE FR CH US CA
AU 00:00-06:05 74 (118) 74 (116) 74 (118) 74 (115) 74 (115) 74 (117)
JP 01:00-06:35 57 (110) 57 (109) 57 (109) 57 (110) 57 (108) 57 (110)
HK 03:00-09:00 50 (114) 50 (113) 50 (115) 50 (113) 51 (111) 51 (113)
UK 09:00-17:30 103 (86) 103 (84) 103 (82) 66 (117) 66 (119)
DE 09:00-17:35 104 (86) 104 (83) 104 (82) 66 (115) 66 (117)
FR 09:00-17:25 102 (86) 102 (84) 102 (82) 66 (117) 66 (119)
CH 09:00-17:30 101 (85) 101 (83) 101 (81) 66 (114) 66 (116)
US 14:30-21:00 79 (85) 79 (84) 79 (81) 79 (86) 79 (85) 79 (85) 79 (85)
CA 14:30-21:05 80 (86) 80 (84) 80 (82) 80 (87) 80 (86) 80 (86) 80 (87)

Total number Ti of 5-minute quotes per trading session s, when predictions are based on a single
explanatory variable, and (in parentheses) the total number ki of 5-minute quotes in the learning
sample.

trading times (expressed in CET). Additionally, it shows information on the total
number Ti of five-minute quotes per trading session when predictions are based on
one explanatory functional variable. In the case of two- or more explanatory functional
variables, the total number of five-minute quotes varies with specifications and trading
times. To safe space, we have not included this information in the paper. Further,
note that Table 1 contains the total number ki of five-minute quotes (in parentheses)
in the learning sample. The testing sample for each specification contains 35 days
(curves). The complete dataset was prepared with great care, taking into account
national holidays in all markets by considering overnight returns.

6 Results
In this section the observed performance measures, MSE and dsgn, are presented and
discussed. To facilitate the interpretation it is convenient to start at the aggregate
level and then look for particular differences between clusters and individual stock
indices.
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6.1 Out-of-sample MSEs

Table 2 shows aggregate out-of-sample MSEs observed for each of the three NP-FDA
and the two P-FDA specifications. Standard errors are given in brackets. The
specifications that performed best in terms of the MSE criterion is indicated by an
underlined entry. The aggregate MSEs quoted are obtained by averaging MSEs for
identical specifications across the varoius y-variable. Global aggregate MSE values
are provided, as well as individual aggregates for the three ‘clusters’ Asia-Pacific,
Europe and North-America. The standard errors of the aggregates are calculated
from the standard errors of the individual MSEs, where these were assumed to be
uncorrelated. The idea behind presenting aggregate MSEs across certain groups of
(x,y)-pairs is that they provide a measure of a method’s average accuracy across
(x,y)-pairs randomly selected from that group.
At the overall aggregate level, the best specification in terms of MSE turned out
to be the mean-based NP-FDA method using information from both overnight
clusters (i.e. all information that has become available overnight). Notably, the
average MSE (0.47) observed for that specification is considerably smaller than the
average MSE values observed for the linear model specifications, which suggests the
presence of a nonlinear relation between x and y. For each of the three NP-FDA
methods one can observe that the specification using only information from cluster(-1)
performs better than using that from cluster(-2). This is improved upon by using
cluster(-1)-cluster(-2) suggesting that the information revealed by cluster(-1) is not
reflecting all available information regarding the opening gap. We next consider the
aggregate results at the cluster level. The observed pattern for Europe coincides
with that of the global aggregate level. This is not the case for North-America.
Although the mean-based NP-FDA is again performing very well, the linear model is
performing just as well for North-America, but based on a different information set
(information from Europe only, rather than from Europe and Asia-Pacific). A possible
interpretation might be that although there is extra information in the patterns of
the Asia-Pacific markets that could be exploited for prediction, the linear model is
more parsimonious and therefore able to achieve equal out-of-sample performance for
the small dataset considered here. The aggregate NP-FDA and P-FDA results for
Asia-Pacific suggest that the opening gaps in the Asian markets are determined by
the North-American stock index patterns as well as the European. Note that when
just a linear regression specification is used, the best performing forecast seems to
suggest that Asia-Pacific is only affected by the patterns in the European markets,
which would be highly counterintuitive. The presence of nonlinear dependence of
the Asian-Pacific opening gaps on the observed overnight price patterns may explain
this. Indeed, the mean-based NP-FDA and the P-FDA method achieve smaller out-
of-sample MSEs based on trading patterns in both European and North-American
markets. Table 3 shows the out-of-sample MSE values observed for the individual
markets. It can be observed that the results for the individual European markets
roughly coincide with that of the global aggregate. The best model is the mean-
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Table 2: Average MSEs with standard deviations in parentheses.

nonparametric parametric

xs Mean Median Mode PFDA Lin. reg

Overall aggregate

Cluster(-1) 0.57 (0.05) 0.80 (0.08) 0.65 (0.06) 0.73 (0.11) 0.64 (0.07)

Cluster(-2) 0.70 (0.07) 1.12 (0.11) 0.78 (0.09) 0.67 (0.11) 0.61 (0.07)

Cluster(-1)-cluster(-2) 0.47 (0.05) 0.78 (0.08) 0.65 (0.07) 0.50 (0.12) 0.75 (0.08)

Europe

Cluster(-1) 0.55 (0.09) 0.59 (0.09) 0.61 (0.10) 0.64 (0.06) 0.60 (0.11)

Cluster(-2) 0.60 (0.11) 0.77 (0.12) 0.66 (0.11) 0.69 (0.05) 0.63 (0.11)

Cluster(-1)-cluster(-2) 0.39 (0.07) 0.61 (0.10) 0.53 (0.10) 0.44 (0.05) 0.63 (0.11)

North-America

Cluster(-1) 0.45 (0.08) 0.77 (0.14) 0.45 (0.10) 0.53 (0.05) 0.39 (0.08)

Cluster(-2) 0.56 (0.13) 1.12 (0.19) 0.53 (0.11) 0.53 (0.05) 0.49 (0.10)

Cluster(-1)-cluster(-2) 0.39 (0.10) 0.52 (0.09) 0.45 (0.10) 0.48 (0.07) 0.57 (0.12)

Asia-Pacific

Cluster(-1) 0.67 (0.10) 1.11 (0.18) 0.85 (0.11) 0.98 (0.31) 0.87 (0.15)

Cluster(-2) 0.93 (0.13) 1.60 (0.25) 1.11 (0.19) 0.76 (0.32) 0.67 (0.13)

Cluster(-1)-cluster(-2) 0.64 (0.09) 1.20 (0.18) 0.96 (0.15) 0.61 (0.35) 1.02 (0.16)

based NP-FDA, except for DE, for which P-FDA performs slightly, but insignificantly,
better. The best-performing NP-FDA specification is that using information from
both clusters, while the linear model performs best with a parsimonious specification,
based on information from the latest available cluster only. The best performing
model for the US opening gap is the linear regression model, based on the information
revealed by the European markets overnight, in line with what one would expect for
informationally efficient markets. A similar result holds for Canada, although in
that case the mean-based NP-FDA performed slightly (very insignificantly) better.
The opening in Japan seems to be affected by the North-American markets only,
both in terms of the linear benchmark and the NP-FDA. The P-FDA results might
indicate that Europe also has some effect on Japan, but this is insignificant. The best
performing model for Australia is the linear model based on information from Europe.
However, the observed MSEs for several of the other specifications are almost as small,
and well within the standard error. Likewise, for Hong Kong one of the linear models,
one of the NP-FDA and one of the P-FDA methods perform practically equally well.
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Table 3: Market specific MSEs with standard deviations in parentheses.

nonparametric parametric

xs ys Mean Median Mode PFDA Lin. reg

HK-AU-JP FR 0.60 (0.18) 0.79 (0.19) 0.68 (0.22) 0.75 (0.12) 0.67 (0.25)

US-CA 0.71 (0.25) 0.97 (0.27) 0.71 (0.25) 0.85 (0.14) 0.73 (0.23)

HK-AU-JP-US-CA 0.44 (0.11) 0.65 (0.22) 0.64 (0.22) 0.61 (0.09) 0.75 (0.22)

HK-AU-JP UK 0.44 (0.11) 0.39 (0.08) 0.44 (0.11) 0.44 (0.10) 0.43 (0.12)

US-CA 0.50 (0.16) 0.93 (0.29) 0.59 (0.19) 0.57 (0.09) 0.49 (0.14)

HK-AU-JP-US-CA 0.33 (0.08) 0.47 (0.11) 0.44 (0.11) 0.31 (0.07) 0.51 (0.14)

HK-AU-JP CH 0.63 (0.21) 0.72 (0.27) 0.73 (0.27) 0.79 (0.11) 0.72 (0.30)

US-CA 0.68 (0.29) 0.67 (0.25) 0.75 (0.29) 0.74 (0.10) 0.73 (0.30)

HK-AU-JP-US-CA 0.45 (0.18) 0.84 (0.30) 0.57 (0.27) 0.58 (0.10) 0.71 (0.30)

HK-AU-JP DE 0.54 (0.19) 0.45 (0.12) 0.59 (0.18) 0.59 (0.12) 0.56 (0.17)

US-CA 0.49 (0.14) 0.51 (0.13) 0.57 (0.16) 0.58 (0.10) 0.56 (0.13)

HK-AU-JP-US-CA 0.33 (0.19) 0.46 (0.12) 0.47 (0.18) 0.26 (0.12) 0.56 (0.17)

DE-FR-CH-UK US 0.39 (0.07) 0.83 (0.20) 0.40 (0.08) 0.48 (0.07) 0.35 (0.09)

HK-AU-JP 0.56 (0.15) 1.05 (0.26) 0.53 (0.13) 0.57 (0.07) 0.51 (0.13)

HK-AU-JP-DE-FR-UK-CH 0.37 (0.09) 0.48 (0.10) 0.42 (0.09) 0.40 (0.08) 0.57 (0.16)

DE-FR-CH-UK CA 0.50 (0.15) 0.71 (0.19) 0.49 (0.19) 0.57 (0.08) 0.42 (0.14)

HK-AU-JP 0.55 (0.20) 1.18 (0.29) 0.53 (0.18) 0.49 (0.07) 0.47 (0.16)

HK-AU-JP-DE-FR-UK-CH 0.41 (0.17) 0.56 (0.14) 0.47 (0.17) 0.55 (0.11) 0.57 (0.18)

US-CA JP 0.35 (0.08) 0.63 (0.15) 0.44 (0.10) 0.45 (0.10) 0.50 (0.09)

DE-FR-CH-UK 0.67 (0.10) 1.07 (0.22) 0.70 (0.12) 0.57 (0.14) 0.56 (0.08)

DE-FR-CH-UK-US-CA 0.50 (0.08) 0.63 (0.12) 0.65 (0.13) 0.41 (0.14) 0.63 (0.12)

US-CA AU 0.32 (0.10) 0.42 (0.16) 0.41 (0.13) 0.33 (0.07) 0.28 (0.08)

DE-FR-CH-UK 0.37 (0.08) 0.52 (0.11) 0.39 (0.09) 0.39 (0.12) 0.26 (0.07)

DE-FR-CH-UK-US-CA 0.29 (0.08) 0.28 (0.07) 0.28 (0.07) 0.35 (0.07) 0.32 (0.08)

US-CA HK 1.34 (0.26) 2.28 (0.49) 1.70 (0.29) 2.17 (0.93) 1.83 (0.42)

DE-FR-CH-UK 1.76 (0.36) 3.20 (0.70) 2.25 (0.56) 1.31 (0.95) 1.20 (0.36)

DE-FR-CH-UK-US-CA 1.14 (0.26) 2.68 (0.52) 1.95 (0.41) 1.07 (1.03) 2.10 (0.45)
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Note that for none of the y-variables the median-based NP-FDA or the mode-based
NP-FDA method performed best in terms of the MSE criterion.

Table 4: Aggregate performance measure dsgn for the sign predictions

xs Mean Median Mode PFDA Lin. reg

Overall aggregate

Cluster(-1) 0.27 (0.02) 0.31 (0.03) 0.40 (0.03) 0.32 (0.03) 0.26 (0.02)

Cluster(-2) 0.36 (0.03) 0.39 (0.03) 0.28 (0.02) 0.37 (0.03) 0.35 (0.03)

Cluster(-1)-cluster(-2) 0.31 (0.03) 0.30 (0.03) 0.37 (0.03) 0.36 (0.03) 0.38 (0.03)

Europe

Cluster(-1) 0.22 (0.03) 0.25 (0.04) 0.54 (0.04) 0.32 (0.04) 0.19 (0.03)

Cluster(-2) 0.31 (0.04) 0.36 (0.04) 0.15 (0.03) 0.33 (0.04) 0.34 (0.04)

Cluster(-1)-cluster(-2) 0.29 (0.04) 0.23 (0.04) 0.33 (0.04) 0.37 (0.04) 0.37 (0.04)

North-America

Cluster(-1) 0.43 (0.06) 0.39 (0.06) 0.41 (0.06) 0.44 (0.06) 0.39 (0.06)

Cluster(-2) 0.43 (0.06) 0.45 (0.06) 0.26 (0.05) 0.42 (0.06) 0.39 (0.06)

Cluster(-1)-cluster(-2) 0.29 (0.05) 0.37 (0.06) 0.33 (0.05) 0.34 (0.06) 0.46 (0.06)

Asia

Cluster(-1) 0.25 (0.04) 0.31 (0.05) 0.31 (0.05) 0.26 (0.04) 0.27 (0.04)

Cluster(-2) 0.38 (0.05) 0.41 (0.05) 0.48 (0.05) 0.38 (0.05) 0.33 (0.05)

Cluster(-1)-cluster(-2) 0.34 (0.05) 0.36 (0.05) 0.47 (0.05) 0.34 (0.05) 0.35 (0.05)

Standard deviations in parentheses.

6.2 Sign forecast performance
Interestingly, this picture changes rather substantially if we consider the performance
measure, dsgn, for the sign predictions of the opening gap. Table 4, providing the
aggregate values, show that at the global aggregate level the linear model based
on information from the last cluster performs best, closely (with an insignificant
difference) followed by the mode-based NP-FDA using information of the before-last
cluster. The sign of the close-to-open gap in the European stock indices appears to
be mainly determined by the overnight price patterns in the North-American

markets, and the mode-based NP-FDA method picks up this structure best.
Across the different prediction methods, the sign of the opening gap of the North-
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Table 5: Market specific performance measure dsgn for the sign predictions

xs ys Mean Median Mode PFDA Lin. reg

HK-AU-JP FR 0.17 (0.06) 0.29 (0.08) 0.54 (0.08) 0.34 (0.08) 0.17 (0.06)

US-CA 0.31 (0.08) 0.34 (0.08) 0.26 (0.07) 0.31 (0.08) 0.31 (0.08)

HK-AU-JP-US-CA 0.29 (0.08) 0.26 (0.07) 0.34 (0.08) 0.40 (0.08) 0.37 (0.08)

HK-AU-JP UK 0.23 (0.07) 0.23 (0.07) 0.49 (0.08) 0.29 (0.08) 0.20 (0.07)

US-CA 0.37 (0.08) 0.37 (0.08) 0.06 (0.04) 0.40 (0.08) 0.34 (0.08)

HK-AU-JP-US-CA 0.29 (0.08) 0.17 (0.06) 0.31 (0.08) 0.43 (0.08) 0.31 (0.08)

HK-AU-JP CH 0.23 (0.07) 0.31 (0.08) 0.57 (0.08) 0.34 (0.08) 0.20 (0.07)

US-CA 0.34 (0.08) 0.37 (0.08) 0.20 (0.07) 0.31 (0.08) 0.37 (0.08)

HK-AU-JP-US-CA 0.34 (0.08) 0.31 (0.08) 0.34 (0.08) 0.37 (0.08) 0.46 (0.08)

HK-AU-JP DE 0.23 (0.07) 0.17 (0.06) 0.54 (0.08) 0.29 (0.08) 0.20 (0.07)

US-CA 0.23 (0.07) 0.34 (0.08) 0.09 (0.05) 0.31 (0.08) 0.34 (0.08)

HK-AU-JP-US-CA 0.23 (0.07) 0.17 (0.06) 0.31 (0.08) 0.29 (0.08) 0.34 (0.08)

DE-FR-CH-UK US 0.51 (0.08) 0.43 (0.08) 0.51 (0.08) 0.51 (0.08) 0.49 (0.08)

HK-AU-JP 0.37 (0.08) 0.46 (0.08) 0.29 (0.08) 0.43 (0.08) 0.40 (0.08)

HK-AU-JP-DE-FR-UK-CH 0.29 (0.08) 0.34 (0.08) 0.54 (0.08) 0.34 (0.08) 0.46 (0.08)

DE-FR-CH-UK CA 0.34 (0.08) 0.34 (0.08) 0.31 (0.08) 0.37 (0.08) 0.29 (0.08)

HK-AU-JP 0.49 (0.08) 0.43 (0.08) 0.23 (0.07) 0.40 (0.08) 0.37 (0.08)

HK-AU-JP-DE-FR-UK-CH 0.29 (0.08) 0.40 (0.08) 0.11 (0.05) 0.34 (0.08) 0.46 (0.08)

US-CA JP 0.20 (0.07) 0.26 (0.07) 0.29 (0.08) 0.20 (0.07) 0.23 (0.07)

DE-FR-CH-UK 0.51 (0.08) 0.51 (0.08) 0.54 (0.08) 0.37 (0.08) 0.37 (0.08)

DE-FR-CH-UK-US-CA 0.43 (0.08) 0.37 (0.08) 0.57 (0.08) 0.29 (0.08) 0.31 (0.08)

US-CA AU 0.26 (0.07) 0.37 (0.08) 0.34 (0.08) 0.29 (0.08) 0.31 (0.08)

DE-FR-CH-UK 0.34 (0.08) 0.31 (0.08) 0.43 (0.08) 0.43 (0.08) 0.37 (0.08)

DE-FR-CH-UK-US-CA 0.29 (0.08) 0.34 (0.08) 0.43 (0.08) 0.43 (0.08) 0.40 (0.08)

US-CA HK 0.29 (0.08) 0.31 (0.08) 0.31 (0.08) 0.29 (0.08) 0.26 (0.07)

DE-FR-CH-UK 0.29 (0.08) 0.40 (0.08) 0.46 (0.08) 0.34 (0.08) 0.26 (0.07)

DE-FR-CH-UK-US-CA 0.31 (0.08) 0.37 (0.08) 0.40 (0.08) 0.31 (0.08) 0.34 (0.08)

Standard deviations in parentheses.
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Table 6: Coverage probabilities, predictive interval widths, and q

Cov. prob. Width q

CPI SCMI CPI SCMI CPI SCMI

Overall aggregate

Cluster(-1) 0.76 0.72 2.02 1.87 2.65 2.58

Cluster(-2) 0.72 0.71 1.89 1.79 2.62 2.52

Cluster(-1)-cluster(-2) 0.67 0.63 1.57 1.47 2.35 2.35

Europe

Cluster(-1) 0.80 0.73 1.96 1.75 2.45 2.39

Cluster(-2) 0.67 0.69 1.50 1.43 2.25 2.07

Cluster(-1)-cluster(-2) 0.67 0.65 1.31 1.27 1.96 1.95

North-America

Cluster(-1) 0.74 0.76 1.96 1.83 2.66 2.43

Cluster(-2) 0.83 0.80 2.03 1.92 2.45 2.40

Cluster(-1)-cluster(-2) 0.83 0.77 1.68 1.56 2.02 2.03

Asia-Pacific

Cluster(-1) 0.73 0.69 2.13 2.03 2.94 2.96

Cluster(-2) 0.73 0.68 2.33 2.18 3.21 3.23

Cluster(-1)-cluster(-2) 0.73 0.50 1.82 1.82 3.30 3.34

q denotes overall predictive interval quality measure. Nominal coverage is 0.90.

American indices appears to be determined by the Asian-Pacific as well as the
European patterns, although the prediction method that performed best (mode-based
NP-FDA) did so using the Asian-Pacific stock index patterns only. The Asian-Pacific
aggregate results show that both the linear model and the mean-based NP-FDA both
perform well, using patterns from the North-American indices only.
The results for the individual indices, shown in Table 5 roughly follow the structure
already reflected by the aggregate results. An exception is FR, as it is the only
European market for which the sign of the opening gap is determined by the Asian-
Pacific patterns only. For the other European indices the sign is determined by
the North-American index patterns. A possible explanation for the fact that the
conditional mean based and median-based NP-FDA sign forecasts are outperformed
by the mode-based NP-FDA forecast is skewness in the conditional distribution of
the opening gap.
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6.3 CPI and SCMI
Table 6 shows the results obtained for the CPI and the SCMI predictive intervals. For
ease of presentation only the aggregate results are provided, which closely coincide
with the individual results. It can be observed that all coverage probabilities are
smaller than the nominal value of 90%. In all cases the coverage probabilities of CPI
are better in the sense that they are closer to the nominal value. On the other hand,
on average the SCMIs are shorter than the CPIs. This indicates that the CPI is more
sensitive to the position in the state-space from which predictions are being made
than the SCMI. The overall quality measure q corresponding with the ratio of the
average length and the average coverage probabilities are very similar for both types
of intervals.

7 Summary and conclusions
The aggregate results for the MSE show that the best FDA specification, mean-based
NP-FDA with Cluster(-1)-Cluster(-2), on average performs much better than any
of the linear models. This suggests that the NP-FDA method successfully exploits
nonlinearities in the relation between x and y. This result is in line with the huge
empirical evidence for nonlinear dependence in daily stock returns. In a recent
systematic model-based prediction exercise, Guidolin, Hyde, McMillan (2009), found
that stock and bond returns from the G7 countries, and in particular UK and US,
appear to require nonlinear modelling.
The three clusters seem to be governed by different types of dynamics. For
the European and Asian-Pacific markets the specification using information from
Cluster(-1) gives the smallest MSE among the linear models. For the US this is
also the overall best performing specification. In contrast, for the European markets
the MSE obtained with the mean-based NP-FDA using the Cluster(-1)-Cluster(-2)
specification was substantially better than any linear specification, suggesting the
presence of nonlinear dynamics. The best specification for JP is based on Cluster(-1)
only. Also for JP a substantial improvement in the MSE is obtained in going from the
linear to the mean-based NP-FDA specification, suggesting the presence of a nonlinear
relation between the North-American price patterns and JP. Further, the results have
shown that in none of the cases P-FDA outperforms NP-FDA. This holds for the MSE
as well as for the dsgn measure. Among the NP-FDA methods considered, the best
MSEs were obtained with the mean-based NP-FDA, while the mode-based NP-FDA
performed best in terms of the sign forecast evaluation measuer dsgn in many cases.
As far as we are aware, exploring the information in the intra-day stock price patterns
in foreign markets to predict the opening of an index in a home-market, using NP-
FDA, has not been a topic of earlier research. The present study recognizes the fact
that traders in a home market may use any information revealed overnight in a foreign
market due to fast transmission of information worldwide.
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Although our present data set did not allow us to take into account trading in stocks of
the home market after closing hours, we think this would be be an interesting future
extension of our research. In addition, the nonlinear dependence between global
markets suggested by our results could be investigated in more detail in a future
study. For instance, one might test for causal relationships using nonparametric
Granger causality tests before and after linear filtering of the data, as was done in an
exchange rate setting by Bekiros and Diks (2008).
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