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Abstract

We show that verification of object-oriented programs by means of the asser-
tional method can be achieved in a simple way by exploiting a syntax-directed
transformation from object-oriented programs to recursive programs. This
transformation suggests natural proofs rules and its correctness helps us to es-
tablish soundness and relative completeness of the proposed proof system. One
of the difficulties is how to properly deal in the assertion language with the
instance variables and aliasing. The discussed programming language supports
arrays, instance variables, failures and recursive methods with parameters. We
also explain how the transformational approach can be extended to deal with
other features of object-oriented programming, like classes, inheritance, subtyp-
ing and dynamic binding.

1. Introduction

1.1. Background and motivation

Ever since its introduction in [14] the assertional method has been one of
the main approaches to program verification. Initially proposed for the modest
class of while programs, it has been extended to several more realistic classes
of programs, including recursive programs (starting with [15]), programs with
nested procedure declarations (see [19]), parallel programs (starting with [23]
and [24]), and distributed programs based on synchronous communication (see
[4]). At the same time research on the theoretical underpinnings of the pro-
posed proof systems resulted in the introduction in [10] of the notion of relative
completeness and in the identification of the inherent incompleteness for a com-
prehensive ALGOL-like programming language (see [9]).
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However, (relative) completeness of proof systems proposed for current object-
oriented programming languages (see the related work section below) remained
largely beyond reach because of the many intricate and complex features of lan-
guages like Java. In this paper we present a transformational approach to the
formal justification of proof systems for object-oriented programming languages.
We focus on the following main characteristics of objects:

• objects possess (and encapsulate) their own (so-called instance) variables,
and

• objects interact via method calls.

The execution of a method call involves a temporary transfer of control from
the local state of the caller object to that of the called object (also referred to
by callee). Upon termination of the method call the control returns to the local
state of the caller. The method calls are the only way to transfer control from
one object to another. We illustrate our approach by a syntax-directed transfor-
mation of the considered object-oriented programs to recursive programs. This
transformation naturally suggests the corresponding proof rules. The main re-
sult of this paper is that the transformation preserves (relative) completeness.

To make this approach work a number of subtleties need to be taken care
of. To start with, the ‘base’ language needs to be appropriately chosen. More
precisely, to properly deal with the problem of avoiding methods calls on the
null object we need a failure statement. In turn, to deal in a simple way with
the call-by-value parameter mechanism we use parallel assignment and block
statement. Further, to take care of the local variables of objects at the level of
assertions we need to appropriately define the assertion language and deal with
the substitution and aliasing.

We introduced this approach to the verification of object-oriented programs
in our recent book [3] where we proved soundness. The aim of this paper is to
provide a systematic and self-contained presentation which focuses on (relative)
completeness and to explain how to extend this approach to other features of
object-oriented programming. Readers interested in example correctness proofs
may consult [3, pages 226–237].

1.2. Related work

The origins of the proof theory for recursive method calls presented here can
be traced back to [12]. However, in [12] the transformational approach to sound-
ness and relational completeness was absent and failures were not dealt with.
In [25] an extension to the typical object-oriented features of inheritance and
subtyping is described. There is a large literature on assertional proof methods
for object-oriented languages, notably for Java. For example, [17] discusses a
weakest pre-condition calculus for Java programs with annotations in the Java
Modeling Language (JML). JML can be used to specify Java classes and inter-
faces by adding annotations to Java source files. An overview of its tools and
applications is provided in [8]. In [16] a Hoare logic for Java with abnormal
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termination caused by failures is described. However, this logic involves a ma-
jor extension of the traditional Hoare logic to deal with failures for which the
transformational approach breaks down.

Object-oriented programs in general give rise to dynamically evolving pointer
structures as they occur in programming languages like Pascal. This leads to the
problem of aliasing. There is a large literature on logics dealing with aliasing.
One of the early approaches, focusing on the linked data structures, is described
in [21]. A more recent approach is that of separation logic described in [28]. In
[1] a Hoare logic for object-oriented programs is introduced based on an explicit
representation of the global store in the assertion language. In [5] restrictions on
aliasing are introduced to ensure encapsulation of classes in an object-oriented
programming language with pointers and subtyping.

Recent work on assertional methods for object-oriented programming lan-
guages (see for example [6]) focuses on object invariants and a corresponding
methodology for modular verification. In [22] also a class of invariants is intro-
duced which support modular reasoning about complex object structures.

Formal justification of proof systems for object-oriented programming lan-
guages have been restricted to soundness (see for example [30] and [18]). Be-
cause of the many intricate and complex features of current object-oriented
programming languages (relative) completeness remained largely beyond reach.
Interestingly, in the above-mentioned [1] the use of the global store model is
identified as a potential source of incompleteness.

1.3. Technical contributions

The proof system for object-oriented programs presented in our paper is
based on an assertion language comparable to JML. This allows for the specifi-
cation of dynamically evolving object structures at an abstraction level which co-
incides with that of the programming language: in this paper the only operations
on objects we allow are testing for equality and dereferencing. Our transforma-
tion of the considered object-oriented programs to recursive programs preserves
this abstraction level. As a consequence we have to adapt existing completeness
proofs to recursive programs that use variables ranging over abstract data types,
e.g., the type of objects.

In this paper we focus on strong partial correctness which requires absence of
failures. Note that absence of failures is naturally expressed by a corresponding
condition on the initial state, that is, by a corresponding notion of weakest
precondition. Similarly, total correctness of recursive programs is also naturally
expressed by weakest preconditions, see [2].

To express weakest preconditions over abstract data types in an assertion
language [29] use a coding technique that requires a weak second-order language.
In contrast, we introduce here a new state-based coding technique that allows
us to express weakest preconditions over abstract data types in the presence of
infinite arrays in a first-order assertion language.

Further, we generalize the original completeness proof of [13] for the partial
correctness of recursive programs to weakest preconditions in order to deal with
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strong partial correctness. The completeness proof of [13] is based on the ex-
pression of the graph of a procedure call in terms of its strongest postcondition
of a precondition which “freezes“ the initial state by some fresh variables. If
we use instead weakest preconditions to express the graph of a procedure call
these freeze variables are used to denote the final state. Because of possible
divergence or failures however we cannot eliminate in the precondition these
freeze variables by existential quantification. As such the completeness proof of
[13] breaks down. We show in this paper how to restore completeness by the
introduction of weakest preconditions which explicitly model divergence and
failures.

1.4. Plan of the paper

In the next section we introduce a kernel language that consists of while
programs augmented with the parallel assignment, the failure statement and
the block statement, and describe its operational semantics. In Section 3 we
extend this kernel language to a small object-oriented language that forms the
subject of our considerations. In Section 4 we define an operational semantics
of this language.

Then, in Section 5 we introduce a class of recursive programs, define a trans-
formation of the object-oriented programs to recursive programs, and prove
correctness of this transformation in an appropriate sense.

Next, in Section 6 we introduce the assertion language for object-oriented
programs and extend the substitution operation to instance variables. In Sec-
tion 7 we introduce the proof system that allows us to prove correctness of the
considered object-oriented programs. Subsequently, in Section 8 we explain how
soundness and relative completeness of this system can be established by reduc-
ing it to the analysis of a corresponding proof system for recursive procedures.

In Section 9 we prove relative completeness of our proof system for object-
oriented programs on the basis of the transformation, addressing the issues
described above. Finally, in Section 10 explain how this approach can be ex-
tended to deal with other features of object-oriented programming, like classes,
inheritance and subtyping, and with total correctness. In the appendix we list
the rules defining the semantics of the kernel language, the introduced proof
rules and the introduced proof systems.

2. Preliminaries

2.1. A kernel language

We assume at least two basic types, integer and Boolean, and for each
n ≥ 1 the higher types T1 × . . . × Tn → T , where T1, . . ., Tn, T are basic types.
T1, . . ., Tn are called argument types and T the value type. Simple variables
are of a basic type and array variables of a higher type. By Var we denote
the set of variable declarations. Usually, we omit the typing information and
identify a variable declaration with the variable name. Out of typed variables
and typed constants typed expressions are constructed. To deal with aliasing we
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use conditional expressions of the form if B then t1 else t2 fi. A subscripted
variable is an expression a[t1, . . ., tn] for a suitably typed array variable a.

In this section we introduce the following small kernel programming lan-
guage:

S ::= skip | u := t | x̄ := t̄ | S1; S2 | if B then S1 else S2 fi | if B → S1 fi |

while B do S1 od | begin local x̄ := t̄;S1 end

where S stands for a typical statement or program, u for a simple or subscripted
variable, t for an expression (of the same type as u), and B for a Boolean
expression. Further, x̄ := t̄ is a parallel assignment, with x̄ = x1, . . . , xn a
non-empty sequence of distinct simple variables and t̄ = t1, . . . , tn a sequence
of expressions of the corresponding types. The parallel assignment plays a
crucial role in our modelling of the parameter passing. The failure statement
if B → S1 fi is used to check the condition B during the exexution. It raises a
failure if B is not satified. Thus it differs from the abbreviation if B then S fi ≡
if B then S else skip fi. To distinguish between local and global variables,
we use a block statement begin local x̄ := t̄;S1 end, where x̄ is a non-empty
sequence of simple distinct local variables, all of which are explicitly initialized
by means of a parallel assignment x̄ := t̄. We assume that the sets of local and
global variables are disjoint.

For an expression t, we denote by var(t) the set of all simple and array
variables in t. Analogously, for a program S, we denote by var(S) the set
of all simple and array variables in S, and by change(S) the set of all global
simple and array variables that can be modified by S, i.e., the set of variables
that appear on the left-hand side of an assignment in S outside of a subscript
position of a subscripted variable.

2.2. . . . and its semantics

We define the operational semantics of the kernel language in a standard
way, using a structural operational semantics in the sense of Plotkin [27]. A
configuration C is a pair < S, σ > consisting of a statement S that is to be
executed and a state σ, i.e., a mapping that assigns to each variable (including
local variables) of type T a value drawn from the set DT denoted by type T .

Given a state σ and an expression t, we define in a standard way its semantics
σ(t), the value assigned to it by σ. Further, given a sequence of expressions t̄

(in particular, a sequence of variables x̄), we denote by σ(t̄) the corresponding
sequence of values assigned to t̄ by σ.

We denote the set of states by Σ. Unless stated otherwise, the letters σ, τ

range over Σ. We use a special state fail to represent an abnormal situation in
a program execution, a failure in an execution of a program. We stipulate that
fail 6∈ Σ. Sometimes to avoid confusion we refer to the elements of Σ as proper
states.

We use the notion of a state update of a proper state σ, written as σ[u := d],
where u is a simple or subscripted variable of type T and d is an element of type
T . If u is a simple variable then σ[u := d] is the state that agrees with σ except
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for u where its value is d. If u is a subscripted variable, say u ≡ a[t1, . . ., tn], then
σ[u := d] is the state that agrees with σ except for the variable a where the value
σ(a)(σ(t1), . . ., σ(tn)) is changed to d. For the special state we define the update
by fail[u := d] = fail. Further, the parallel update σ[u1, . . . , un := d1, . . . , dn]
of distinct simple variables is the state that agrees with σ except for ui where
its value is di, for i ∈ {1, . . . , n}.

A transition is a step C → C′ between configurations. To express termina-
tion we use the empty statement E; a configuration < E, σ > denotes termi-
nation in the state σ. Transitions are specified by transition axioms and rules.
The only transition axioms that are somewhat non-standard deal with the block
statement and the failure statement. We write here σ |= B to denote that B is
true in the state σ.

• < if B → S fi, σ > → < S, σ >, where σ |= B,

• < if B → S fi, σ > → < E, fail >, where σ |= ¬B,

• < begin local x̄ := t̄;S end, σ > → < x̄ := t̄;S; x̄ := σ(x̄), σ >.

The last axiom ensures that the local variables are initialized as prescribed
by the parallel assignment and that upon termination the local variables are
restored to their initial values, held at the beginning of the block statement.
This way we implicitly model a stack discipline for, possibly nested, blocks.
The other transition axioms and rules are standard (see Appendix A).

The partial correctness semantics is a mapping M[[S]] : Σ→P(Σ) defined
by

M[[S]](σ) = {τ ∈ Σ |< S, σ > →∗ < E, τ >},

where →∗ denotes the reflexive, transitive closure of → . The strong partial
correctness semantics is a mapping Msp [[S]] : Σ→P(Σ ∪ {fail}) defined by

Msp [[S]](σ) = {τ ∈ Σ ∪ {fail} |< S, σ > →∗ < E, τ >}.

So for all S and σ we have fail 6∈ M[[S]](σ), while for some S and σ we can have
fail ∈ Msp [[S]](σ). In the latter case we say that S can fail when started in σ.
We extend these semantic mappings to sets of states, X ⊆ Σ, by collecting all
results obtained for the individual states σ ∈ X .

3. Object-oriented programs: syntax

To define the syntax of the considered object-oriented programming language
we introduce a new basic type object which denotes an infinite set of objects
Dobject.
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3.1. Expressions

An expression of type object denotes an object. Simple variables of type
object and array variables with value type object are called object variables.
We distinguish the simple object variable this which in each state denotes the
currently executing object.

Besides the set Var of variable declarations defined in Section 2 we now in-
troduce a new set IVar of instance variable declarations (so Var ∩ IVar = ∅).
An instance variable can be a simple variable or an array variable. Thus we
now have two kinds of variable declarations: the up till now considered decla-
rations of normal variables (Var), which are shared, and the new declarations
of instance variables (IVar), which are owned by objects. As before we identify
each variable declaration with the variable name. Out of instance array vari-
ables we construct, as in the case of normal array variables, subscripted instance
variables.

For simplicity we assume that each object owns the same set of instance
variables. Each object has its own local state which assigns values to the instance
variables. We stipulate that this is a normal variable, that is, this ∈ Var.

The only operation of a higher type which involves the basic type object
(as argument type or as value type) is the equality =object (abbreviated by =).
Finally, we use the constant null of type object to represent the void reference,
a special construct which does not have a local state.

Summarizing, the set of expressions defined in Section 2 is extended by the
introduction of the basic type object, the constant null of type object, and
the set IVar of (simple and array) instance variables. Object expressions, i.e.,
expressions of type object, can only be compared for equality. A variable is
either a normal variable (in Var) or an instance variable (in IVar). Simple
variables (in Var ∪ IVar) can now be of type object. Also the argument and
the value types of array variables (in Var∪IVar) can be of type object. Finally,
we have the distinguished normal object variable this.

3.2. Programs

For object-oriented programs we extend the syntax of the kernel language
introduced in Section 2. Assignments to instance variables are introduced as
follows:

S ::= u := t,

where u ∈ IVar is a simple or subscripted (instance) variable. Method calls are
described by the clause

S ::= s.m(t1, . . . , tn),

where n ≥ 0. Here the object expression s denotes the called object, the iden-
tifier m denotes a method and t1, . . . , tn are the actual parameters, which are
expressions of a basic type. A method is defined by means of a declaration

m(u1, . . . , un) :: S,
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where the formal parameters u1, . . . , un ∈ Var are of a basic type and S is a
statement called the method body. Since the statements now include method
calls, we allow for mutually recursive methods. However, the declarations can-
not be nested, so we do not allow for nested methods.

The instance variables appearing in the body S of a method declaration
are owned by the executing object, which is denoted by the variable this. To
ensure correct use of the variable this we disallow assignments to the variable
this. However, when describing the semantics of method calls, we do use ‘aux-
iliary’ block statements in which the variable this is used as a local variable, so
in particular, it is initialized (and hence modified). Further, to ensure that in-
stance variables are permanent, we require that in each block statement instance
variables are not used as local variables.

Apart from denoting the callee of a method call, object expressions can
appear in Boolean expressions. Further, we allow for assignments to object
variables.

An object-oriented program consists of a main statement S built according
to the syntax of this section and a given set D of method declarations such
that each method used has a unique declaration in D and each method call
refers to a method declared in D. We assume that method calls are well-typed,
i.e., the numbers of formal and actual parameters agree and for each parameter
position the types of the corresponding actual and formal parameters coincide.
As before, name clashes between local variables and global variables are resolved
by assuming that no local variable of S or D occurs freely (i.e., as a global
variable) in S orD. If D is clear from the context we refer to the main statement
as an object-oriented program.

Example 3.1. Consider the object-oriented program

S ≡ this.f ind(z)

in the context of the recursive method declaration

find(u) :: if u 6= this then next.find(u) fi.

We assume that the actual parameter z, the formal parameter u, and the in-
stance variable next are of type object. The idea is that S checks whether
a list of objects linked via the pointer next contains an object stored in the
actual parameter z. The search through the list starts at the object stored in
the variable this. ✷

4. Object-oriented programs: semantics

In this section we define the semantics of the introduced object-oriented
programs. We first define the semantics of expressions. It requires an extension
of the definition of state. Subsequently we introduce a revised definition of
an update of a state and provide transition axioms concerned with the newly
introduced programming constructs.
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4.1. Semantics of expressions

The main difficulty in defining the semantics of expressions is of course how
to deal properly with the instance variables. Each instance variable has a differ-
ent version (‘instance’) in each object. Conceptually, when defining the seman-
tics of an instance variable u we view it as a variable of the form this.u, where
this represents the current object. So, given a proper state σ and a simple in-
stance variable x we first determine the current object o, which is σ(this). Then
we determine the local state of this object, which is σ(o), or σ(σ(this)), and
subsequently apply this local state to the considered instance variable x. This
means that given a proper state σ the value assigned to the instance variable x

is σ(o)(x), or, written out in full, σ(σ(this))(x). This two-step procedure is at
the heart of the definition of semantics of an expression given below.

Next, we introduce a value null ∈ Dobject. So in each proper state each
variable of type object equals some object of Dobject, which can be the null
object. A proper state σ now additionally assigns to each object o ∈ Dobject

its local state σ(o). In turn, a local state σ(o) of an object o assigns a value
of appropriate type to each instance variable. Note that by definition a proper
state also assigns to null a local state. However, by Lemma 4.2 from Subsection
4.3 below this state is not reachable in any computation.

Note that the local state of the current object σ(this) is given by σ(σ(this)).
Further, note that in particular, if an instance variable x is of type object, then
for each object o ∈ Dobject, σ(o)(x) is either null or an object o′ ∈ Dobject,
whose local state is σ(o′), i.e., σ(σ(o)(x)). This application of σ can of course
be nested, to get local states of the form σ(σ(σ(o)(x))(x)), etc.

To illustrate the notion of a state consider Figure 1. The current object is
represented by a pointer to its memory region. Each occurrence of the variable
x is here an instance variable of a different object. In contrast, the normal
variables, in particular this, form the global component of the state.

Figure 1: A state.
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We need to extend the semantics σ(s) of an expression s in a proper state σ

(cf. Subsection 2.2) by the following clauses:

• if s ≡ null then σ(s) = null, so the meaning of the constant null (repre-
senting the void reference) is the null object,

• if s ≡ x for some simple instance variable x then σ(s) = σ(o)(x), where
o = σ(this), so in expanded form this is

σ(x) = σ(σ(this))(x). (1)

• if s ≡ a[s1, . . . , sn] for some instance array variable a then

σ(s) = σ(o)(a)(σ(s1), . . . , σ(sn)),

where o = σ(this).

4.2. Updates of states

Next, we revise the definition of a state update for the case of instance
variables. Consider a proper state σ, a simple instance variable x, and a value
d belonging to the type of x. To perform the corresponding state update of σ
on x to d, written as σ[x := d], we first identify the current object o, which is
σ(this) and its local state, which is σ(o), or σ(σ(this)), that we denote by τ .
Then we perform the appropriate update on the state τ . So the desired update
of σ is achieved by modifying τ to τ [x := d].

In general, let u be a (possibly subscripted) instance variable of type T and
τ a local state. We define for d ∈ DT

τ [u := d]

analogously to the standard definition of state update for normal variables.
Furthermore, we define for an object o ∈ Dobject and local state τ , the state
update σ[o := τ ] by

σ[o := τ ](o′) =

{

τ if o = o′

σ(o′) otherwise.

We are now in a position to define the state update σ[u := d] for a (possibly
subscripted) instance variable u of type T and d ∈ DT , as follows:

σ[u := d] = σ[o := τ [u := d]],

where o = σ(this) and τ = σ(o). Note that the state update σ[o := τ [u := d]]
assigns to the current object o the update τ [u := d] of its local state τ . In its
fully expanded form we get the following difficult to parse definition of a state
update:

σ[u := d] = σ[σ(this) := σ(σ(this))[u := d]].
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Example 4.1. Let x be a Boolean instance variable, o = σ(this), and τ = σ(o).
Then

σ[x := true](x)

= {(1) with σ replaced by σ[x := true]}

σ[x := true](σ[x := true](this))(x)

= {by the definition of state update, σ[x := true](this) = σ(this) = o}

σ[x := true](o)(x)

= {definition of state update σ[x := true]}

σ[o := τ [x := true]](o)(x)

= {definition of state update σ[o := τ [x := true]]}

τ [x := true](x)

= {definition of state update τ [x := true]}

true.

✷

4.3. Semantics of programs

For the operational semantics of the considered programs we introduce two
transition axioms that deal with assignments to simple or subscripted instance
variables u and with method calls s.m(t̄), where t̄ is the list of actual parameters.

• < u := t, σ > → < E, σ[u := σ(t)] >,

• < s.m(t̄), σ >→< if s 6= null→ begin local this, ū := s, t̄; S fi end, σ >,

where m(ū) :: S ∈ D.

This clarifies that we use the stack discipline to handle the method calls.
Indeed, the method body S is executed in the state in which the current ob-
ject (denoted by the variable this) becomes σ(s), and upon termination of the
method body S the current object is restored to its previous value σ(this) using
the parallel assignment σ[this, ū := σ(s, t̄)]. The use of the failure statement
implies that if in the considered state σ the called object s equals the void
reference (it equals null), then the method call yields a failure.

Lemma 4.2. (Safety) For every statement S that can arise during an exe-
cution of an object-oriented program and every proper state σ, the following
holds.

(i) Absence of null Reference: if σ(this) 6= null and < S, σ > → <

S1, τ >, then τ(this) 6= null.

(ii) Type Safety: if S is well-typed and < S, σ > → < S1, τ > holds, then
also S1 is well-typed.
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Proof. (i) If S 6≡ E then any configuration < S, σ > has a successor in the
transition relation → . To prove the preservation of the assumed property
of the state it suffices to consider the execution of an assignment this := s.
Each such assignment arises only within the context of the block statement
in the corresponding transition axiom and is activated in a state σ such that
σ(s) 6= null. This yields a state τ such that τ(this) 6= null.

(ii) Except for method calls, the statements on the right-hand side of the transi-
tion axioms are composed of the substatements of the statement on the left-hand
side of the transition axiom, which are well-typed by assumption. Further, by
the second transition axiom above, well-typed method calls lead to well-typed
parallel assignments in the block statements. ✷

When considering verification of object-oriented programs we shall only con-
sider computations that start in a proper state σ such that σ(this) 6= null, i.e.,
in a state in which the current object differs from the void reference. The Safety
Lemma 4.2 implies that such computations never lead to a proper state in which
this inequality is violated.

The partial correctness semantics M[[S]] and the strong partial correctness
semantics Msp [[S]] of object-oriented programs S are defined as for the kernel
language.

5. Transformation to recursive programs

In this section we show that object-oriented programs introduced in the
previous section can be translated by means of a simple syntax-driven transfor-
mation to recursive programs with parameters. Intuitively, for each method the
current object is made into an explicit parameter of the corresponding recursive
procedure.

5.1. Recursive programs

As a preparation we introduce recursive programs by adding recursive pro-
cedures with call-by-value parameters to the kernel language. Procedure calls
with parameters are introduced by the grammar rule

S ::= P (t1, . . . , tn),

where P is a procedure identifier and t1, . . . , tn, with n ≥ 0, are expressions
called actual parameters. Procedures are defined by declarations of the form

P (u1, . . . , un) :: S,

where u1, . . . , un are distinct simple variables, called formal parameters of the
procedure P and S is the body of the procedure P .

We assume a given set of procedure declarations D such that each procedure
that appears in D has a unique declaration in D. A recursive program consists
of a main statement S built according to the syntax of this section and a given
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set D of procedure declarations such that all procedures whose calls appear
in the considered recursive programs are declared in D. So we allow mutually
recursive procedures but not nested procedures. We assume that procedure calls
are well-typed in the same sense as method calls. As in the case of the object-
oriented programs, name clashes between local variables and global variables
are resolved by assuming that no local variable of S or D occurs freely in S or
D.

Semantics

For recursive programs we extend the operational semantics of the kernel
language by the following transition axiom that describes the call-by-value pa-
rameter mechanism.

< P (t̄), σ > → < begin local ū := t̄;S end, σ >, where P (ū) :: S ∈ D.

This yields for a recursive program S the semantics M[[S]] and Msp [[S]].
Note that thanks to the semantics of the block statement this axiom correctly

handles the clash between formal and actual parameters. For example for P (u) ::
S ∈ D we get, as desired,

< P (u+ 1), σ > →∗ < S;u := σ(u), σ[u := σ(u + 1)] > .

5.2. Transformation

We now define a formal relation between object-oriented programs and re-
cursive programs. We assume the class of recursive programs that use normal
variables whose type may involve the basic type object and the class of object-
oriented programs, as defined in Section 3. Further, we assume for every dec-
laration of an instance variable u of a basic type T a declaration in Var of a
normal array variable u of type

object→ T.

Similarly, we assume for every declaration of an instance variable a of a higher
type T1× . . .×Tn → T a declaration in Var of a normal array variable a of type

object× T1 × . . .× Tn → T.

A normal array variable of type

object→ T

in the recursive program will represent the instance variable of basic type T in
the corresponding object-oriented program, and a normal array variable of type

object× T1 × . . .× Tn → T

in the recursive program will represent an instance variable of the corresponding
object-oriented program of type T1 × . . .× Tn → T .
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Given an ‘object-oriented’ state σ we denote by Θ(σ) the ‘normal’ state
which represents the instance variables as normal variables. On normal variables
of type T the states σ and Θ(σ) agree and are of type Var→DT . For instance
variables of basic type T the state σ is of type

Dobject → (IVar →DT ),

the corresponding state Θ(σ) is of type

Var→ (Dobject →DT ),

and for instance array variables of type T1 × . . .×Tn → T the state σ is of type

Dobject → (IVar→ (DT1
× . . .×DTn

→DT )),

and the corresponding state Θ(σ) is of type

Var→ (Dobject ×DT1
× . . .×DTn

→DT ).

Formally, Θ(σ) is defined as follows:

• Θ(fail) = fail,

• Θ(σ)(x) = σ(x), for every normal variable x,

• Θ(σ)(z)(o) = σ(o)(z), for every object o ∈ Dobject and normal array
variable z of type object→ T on the left-hand side of the equation cor-
responding to an instance variable z of a basic type T on the right-hand
side of the equation,

• Θ(σ)(a)(o, d1, . . . , dn) = σ(o)(a)(d1, . . . , dn), for every object o ∈ Dobject

and normal array variable a of type object × T1 × . . . × Tn → T on the
left-hand side of the equation corresponding to an instance array variable
a of type T1 × . . . × Tn → T on the right-hand side of the equation, and
di ∈ DTi

, for i ∈ {1, . . . , n}.

Next, we define for every expression s of the object-oriented programming
language the ‘normal’ expression Θ(s) of the recursive program by induction on
the structure of s, with the following base cases:

• Θ(x) ≡ x, for every normal variable x,

• Θ(x) ≡ x[this], for every instance variable x of a basic type,

• Θ(a[s1, . . . , sn]) ≡ a[this,Θ(s1), . . . ,Θ(sn)], for every instance array vari-
able a.

The first case in particular yields Θ(this) ≡ this. The following lemma clarifies
the outcome of this transformation.

Lemma 5.1. (Translation) For all proper states σ the following holds.
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(i) For all expressions s,
σ(s) = Θ(σ)(Θ(s)),

where Θ(σ)(Θ(s)) refers to the standard semantics of expressions which
involve only normal variables.

(ii) For all (possibly subscripted) instance variables u and values d of the same
type as u,

Θ(σ[u := d]) = Θ(σ)[Θ(u) := d].

Proof. By straightforward induction on the structure of s and case analysis on
the structure of u. ✷

Next, we extend by structural induction the transformation Θ to statements
of the considered object-oriented language. The failure statement is used to
take care of the method calls on the void reference. We prove then that this
transformation preserves both partial and strong partial correctness semantics.

• Θ(skip) ≡ skip,

• Θ(x̄ := t̄) ≡ x̄ := Θ(t̄),

• Θ(u := s) ≡ Θ(u) := Θ(s),

• Θ(s.m(s1, . . . , sn)) ≡ if Θ(s) 6= null→ m(Θ(s),Θ(s1), . . . ,Θ(sn)) fi,

• Θ(S1; S2) ≡ Θ(S1); Θ(S2),

• Θ(if B then S1 else S2 fi) ≡ if Θ(B) then Θ(S1) else Θ(S2) fi,

• Θ(while B do S od) ≡ while Θ(B) do Θ(S) od,

• Θ(if B → S fi) ≡ if Θ(B)→Θ(S) fi,

• Θ(begin local ū := t̄;S end) ≡ begin local ū := Θ(t̄); Θ(S) end,

where Θ(t̄) denotes the result of applying Θ to the sequence of expressions
t̄.

So the translation of a method call s.m(s1, . . . , sn) transforms the called object
s into an additional actual parameter of a call of the procedure m. Additionally
a check for a failure is added. Finally, we transform every method declaration

m(u1, . . . , un) :: S

into a procedure declaration

m(this, u1, . . . , un) :: Θ(S).
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So the distinguished normal variable this is added as an additional formal pa-
rameter of the procedure m. This way the set D of method declarations is
transformed into the set

Θ(D) = {m(this, u1, . . . , un) :: Θ(S) | m(u1, . . . , un) :: S ∈ D}

of the corresponding procedure declarations.

Example 5.2. Consider the object-oriented program

S ≡ y.add(1); y.add(2),

where y is a normal variable of type object, in the context of the declaration

D = {add(x) :: sum := sum+ x},

where the formal parameter x is of type integer and sum is an instance variable,
also of type integer. Then the transformation Θ yields

Θ(S) ≡ if y 6= null→ add(y, 1) fi; if y 6= null→ add(y, 2) fi

and
Θ(D) = {add(this, x) :: sum[this] := sum[this] + x}

as the corresponding recursive program. ✷

5.3. Correctness proof

We have the following crucial correspondence between an object-oriented
program S and its transformation Θ(S).

Lemma 5.3. (Transformation) For all well-typed object-oriented programs
S, all sets of method declarations D, all proper states σ, and all proper or fail
states τ ,

< S, σ > →∗ < E, τ > iff < Θ(S),Θ(σ) > →∗ < E,Θ(τ) > .

Proof. We prove only the (⇒) direction. We proceed by induction on the
number of the axiom and rule applications used in the computation < S, σ >

→∗ < E, τ >.
The only non-trivial case arises when S begins with a method call, that is,

is of the form s.m(t̄);S1. By the assumption,

< s.m(t̄);S1, σ >→< begin local this, ū := s, t̄; S end;S1, σ >→∗ < E, τ >,

where σ(s) 6= null and m(ū) :: S ∈ D. So by the induction hypothesis and
definition of Θ,

< Θ(begin local this, ū := s, t̄; S end); Θ(S1),Θ(σ) >→∗ < E,Θ(τ) > .
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Note that

Θ(s.m(t̄);S1) ≡ if Θ(s) 6= null→ m(Θ(s),Θ(t̄)) fi; Θ(S1),

By the Translation Lemma 5.1(i), we have Θ(σ)(Θ(s)) 6= null. So by definition
of the semantics of recursive programs and definition of Θ,

< if Θ(s) 6= null→ m(Θ(s),Θ(t̄)) fi; Θ(S1),Θ(σ) >

→∗ < Θ(begin local this, ū := s, t̄; S end); Θ(S1),Θ(σ) >,

which concludes the proof. ✷

Finally, the following theorem establishes the correctness of the transforma-
tion Θ as a homomorphism. We extend here Θ to a (possibly empty) set of
states in an obvious way.

Theorem 5.4. (Correctness of Θ) For all well-typed object-oriented pro-
grams S, all sets of method declarations D, and all proper states σ the following
holds:

(i) Θ(M[[S]](σ)) = M[[Θ(S)]](Θ(σ)),

(ii) Θ(Msp [[S]](σ)) = Msp [[Θ(S)]](Θ(σ)),

where S is considered in the context of the set D and the corresponding recursive
program Θ(S) in the context of the set of procedure declarations Θ(D).

Proof. The claim is a direct consequence of the Transformation Lemma 5.3. ✷

6. Assertion language

6.1. Syntax and semantics

Expressions of the programming language only refer to the local state of the
executing object and do not allow us to distinguish between different versions
of the instance variables. In the assertions we need to be more explicit. So we
introduce the set of global expressions which extends the set of expressions of the
object-oriented programming language introduced in Section 3 by the following
additional clauses:

• if s is a global expression of type object and x is an instance variable of
a basic type T then s.x is a global expression of type T ,

• if s is a global expression of type object, s1, . . . , sn are global expressions
of type T1, . . . , Tn, and a is an array instance variable of type T1 × . . .×
Tn → T then s.a[s1, . . . , sn] is a global expression of type T .

In particular, every expression of the programming language is also a global
expression.
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Example 6.1. Consider a normal integer variable i, a normal variable x of type
object, a normal array variable a of type integer → object, and an instance
variable next of type object. Using them we can generate the following global
expressions:

next, next.next, x.next, x.next.next, a[i].next, etc.,

all of type object. In contrast, next.x is not a global expression, since x is not
an instance variable. ✷

We call a global expression of the form s.u a navigation expression since it
allows one to navigate through the local states of the objects. For example,
the global expression next.next refers to the object that can be reached by
‘moving’ to the object denoted by the value of next of the current object this
and evaluating the value of its variable next.

We define the semantics of global expressions by extending the semantics of
expressions given in Subsection 4.1 as follows:

• for a simple instance variable x of type T ,

σ(s.x) = σ(o)(x),

where σ(s) = o,

• for an instance array variable a with value type T ,

σ(s.a[s1, . . . , sn]) = σ(o)(a)(σ(s1), . . ., σ(sn)),

where σ(s) = o.

So for a simple or subscripted instance variable u the semantics of u and
this.u coincide, that is, for all proper states σ we have σ(u) = σ(this.u). In
other words, we can view an instance variable u as an abbreviation for the global
expression this.u.

Note that this semantics also provides meaning to global expressions of the
form null.u. However, such expressions are meaningless when specifying cor-
rectness of programs because the local state of the null object can never be
reached in computations starting in a proper state σ such that σ(this) 6= null
(see the Safety Lemma 4.2).

Example 6.2. If x is an object variable and σ a proper state with σ(x) 6= null,
then for all simple instance variables y we have σ(x.y) = σ(σ(x))(y). ✷

Assertions are constructed from global Boolean expressions by adding quan-
tification over simple normal variables. We use p, q as typical letters for asser-
tions. For a state σ and a assertion p we write σ |= p if σ satisfies p. Let [[p]]
denote the set of proper states satisfying p, so [[p]] = {σ ∈ Σ | σ |= p}. So σ |= p

iff σ ∈ [[p]].
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6.2. Substitution and aliasing

We write s[u := t] for the result of substituting an expression t for a simple
or subscripted normal variable u in an expression s. We call [u := t] a substi-
tution. For a simple variable u this is defined in the customary way. Also it is
straightforward how to define the simultaneous substitution s[x̄ := t̄] involving
a sequence of simple variables.

However, for a subscripted variable u, the problem of aliasing, i.e., when
syntactically different subscripted variables denote the same location, has to be
taken care of. Following [11] we handle it using the conditional expressions. For
example,

min(a[x], y)[a[1] := 2] ≡ if x = 1 then min(2, y) else min(a[x], y) fi.

The conditional expression checks whether a[x] and a[1] are aliases of the same
location. If so, the substitution of 2 for a[1] results in a[x] being replaced by 2,
otherwise the substitution has no effect.

Intuitively, in a given state σ the substituted expression s[u := t] describes
the same value as the expression s evaluated in the updated state σ[u := σ(t)],
which arises after the assignment u := t has been executed in σ. We shall later
need the details of the definition of s[u := t], so let us recall it here. It proceeds
by induction on the structure of s. The cases dealing with subscripted variables
are as follows:

• if s ≡ a[s1, . . ., sn] for some array a, and u is a simple variable or a sub-
scripted variable b[t1, . . ., tm] with a 6≡ b, then

s[u := t] ≡ a[s1[u := t], . . ., sn[u := t]],

• if s ≡ a[s1, . . ., sn] for some array a and u ≡ a[t1, . . ., tn] then

s[u := t] ≡ if
∧n

i=1 s′i = ti then t else a[s′1, . . ., s
′
n] fi

where s′i ≡ si[u := t] for i ∈ {1, . . . , n}.

The most complicated case is the second clause for subscripted variables. Here
the conditional expression

if
∧n

i=1 s′i = ti then . . . else . . . fi

checks whether, for any given proper state σ, the expression s ≡ a[s1, . . ., sn] in
the updated state σ[u := σ(t)] and the expression u ≡ a[t1, . . ., tn] in the state σ
are aliases. For this check the substitution [u := t] needs to applied inductively
to all subscripts s1, . . ., sn of a[s1, . . ., sn]. In case of an alias s[u := t] yields t.
Otherwise, the substitution is applied inductively to the subscripts s1, . . ., sn of
a[s1, . . ., sn].

We now extend the definition of the outcome s[u := t] of the substitution to
the case of instance variables u and global expressions s and t constructed from
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them. Let u be a simple or subscripted instance variable and s and t global
expressions. In general, the substitution [u := t] replaces every possible alias
e.u of u by t. In addition to the possible aliases of subscripted variables, we now
also have to consider the possibility that the global expression e[u := t] denotes
the current object this. This explains the use of conditional expressions below.

Here are the main cases of the definition of the substitution operation s[u :=
t]:

• if s ≡ x ∈ V ar then
s[u := t] ≡ s,

• if s ≡ e.u and u is a simple instance variable then

s[u := t] ≡ if e′ = this then t else e′.u fi,

where e′ ≡ e[u := t],

• if s ≡ e.a[s1, . . . , sn] and u ≡ a[t1, . . . , tn] then

s[u := t] ≡ if e′ = this ∧
∧n

i=1 s
′
i = ti then t else e′.a[s′1, . . . , s

′
n] fi,

where e′ ≡ e[u := t] and s′i ≡ si[u := t] for i ∈ {1, . . . , n}.

The following example should clarify this definition.

Example 6.3. Suppose that s ≡ this.u. Then

this.u[u := t]

≡ if this[u := t] = this then t else . . . fi

≡ if this = this then t else . . . fi.

So this.u[u := t] and t are equal in the sense that for all proper states σ we
have σ(this.u[u := t]) = σ(t).

Next, suppose that s ≡ this.a[x], where x is a simple variable. Then

this.a[x][a[x] := t]

≡ if this[a[x] := t] = this ∧ x[a[x] := t] = x then t else . . . fi

≡ if this = this ∧ x = x then t else . . . fi.

So this.a[x][a[x] := t] and t are equal. ✷

The substitution operation is then extended to assertions by properly taking
care of quantification. We have the following lemma that relates for instance
variables the effect of substitution to the state update.

Lemma 6.4. (Substitution of Instance Variables) For all global expres-
sions s and t, all assertions p, all simple or subscripted instance variables u of
the same type as t, and all proper states σ the following holds:
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(i) σ(s[u := t]) = σ[u := σ(t)](s),

(ii) σ |= p[u := t] iff σ[u := σ(t)] |= p.

Proof. By induction on the structure of s and p. ✷

7. Proof theory for object-oriented programs

We now study (strong) partial correctness of object-oriented programs ex-
pressed by correctness formulas of the form {p} S {q}, where S is a program
and p and q are assertions. The assertion p is the precondition of the correctness
formula and q is the postcondition. A correctness formula {p} S {q} holds in the
sense of partial correctness, abbreviated |= {p} S {q}, if every terminating com-
putation of S that starts in a state satisfying p terminates in a state satisfying
q. And {p} S {q} holds in the sense of strong partial correctness, abbreviated
|=sp {p} S {q}, if |= {p} S {q} and no computation of S that starts in a state
satisfying p ends in a failure.

Using the semantics M and Msp, we formalize these two interpretations of
correctness formulas uniformly as set theoretic inclusions (cf. [3]):

• |= {p} S {q} if M[[S]]([[p]])⊆ [[q]],

• |=sp {p} S {q} if Msp [[S]]([[p]])⊆ [[q]].

Since by definition fail 6∈ [[q]] holds, Msp [[S]]([[p]])⊆ [[q]] implies that S does not
fail when started in a proper state σ satisfying p, as required for strong partial
correctness.

Example 7.1. Consider again the program S ≡ this.f ind(z) of Example 3.1
for finding an object in a linked list. To specify the desired effect of the there
declared method find we introduce a fresh normal array variable a of type
integer→ object that stores a linked list of objects, as expressed by the asser-
tion

p0 ≡ ∀ i ≥ 0 : a[i].next = a[i+ 1].

We take p ≡ this = a[0] ∧ p0 as precondition and q ≡ ∃i ≥ 0 : z = a[i] as
postcondition. Then the correctness formula {p} S {q} holds in the sense of
partial correctness, i.e., upon termination z will store one of the objects in the
list. Note that this is a correct specification since the variable a is not used
(and hence not changed) in the program S. In general, normal auxiliary array
or simple variables have to be used to record the initial values of the program
variables.

However, this correctness formula does not hold in the sense of strong partial
correctness if the list contains the null object before the object stored in the
variable z. To avoid this we strengthen the precondition by adding the assertion

p1 ≡ ∀ i ≥ 0 : a[i] 6= null.
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Then {p ∧ p1} S {q} holds in the sense of strong partial correctness, Finally, if
the list is circular and does not contain the null object or the object stored in
z, the program S diverges. ✷

7.1. Partial correctness

Partial correctness of the programs in the kernel language is proved using
the proof system PK consisting of the group of axioms and rules 1–8, and 10
shown in Appendix B.1.

We now consider partial correctness of object-oriented programs. First, we
introduce the following axiom for assignments to instance variables:

AXIOM 11: ASSIGNMENT TO INSTANCE VARIABLES

{p[u := t]} u := t {p}

where u is a simple or subscripted instance variable.

So this axiom uses the new substitution operation defined in the previous
section. Next, as we shall explain in a moment, we need the following rule
for weakening the precondition of a partial correctness formula concerning a
method call.

RULE 12: WEAKENING

{p ∧ s 6= null} s.m(t̄) {q}

{p} s.m(t̄) {q}

Non-recursive methods

The main issue is how to deal with the parameters of method calls. There-
fore, to focus on it we discuss the parameters of non-recursive methods first. The
following copy rule shows how to prove correctness of non-recursive method calls:

{p} begin local this, ū := s, t̄; S end {q}

{p} s.m(t̄) {q}

where m(ū) :: S ∈ D .

Example 7.2. We prove the partial correctness formula {true} null.m {false},
where m :: skip ∈ D. First, we have

{false} begin local this := null; skip end {false},

so by the above copy rule we get {false} null.m {false}. The desired conclusion
now follows by the above weakening rule and the consequence rule. ✷
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Recursive methods

When we deal only with one recursive method and use the method call as the
considered object-oriented program, the above copy rule needs to be modified
to

{p} s.m(t̄) {q} ⊢PO {p} begin local this, ū := s, t̄; S end {q}

{p} s.m(t̄) {q}

where D = {m(ū) :: S}.

The provability relation ⊢PO here refers to the proof system PO, which is
defined as PK extended with the axiom 11 for assignments to instance vari-
ables, the weakening rule 12, and the auxiliary rules A1–A5 (as introduced in
Appendix B.2). Thus the premise of the rule states that in the proof the cor-
rectness of the block statement we may assume the corresponding correctness
formula concerning the method call.

In the case of an arbitrary program and a set of mutually recursive method
declarations we have the following generalization of the above rule.

RULE 13: RECURSION I

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢PO {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢PO

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.

The intuition behind this rule is as follows. Say that a program S is (p, q)-
correct if {p} S {q} holds in the sense of partial correctness. The second
premise of the rule states that we can establish from the assumption of the
(pi, qi)-correctness of the method calls si.mi(t̄i) for i ∈ {1, . . . , n}, the (pi, qi)-
correctness of the procedure bodies Si for i ∈ {1, . . . , n}, which are adjusted as
in the transition axiom that deals with the method calls. Then we can prove
the (pi, qi)-correctness of the method calls si.mi(t̄i) for i ∈ {1, . . . , n} uncondi-
tionally, and thanks to the first premise establish the (p, q)-correctness of the
program S.

To prove partial correctness of object-oriented programs we use the following

PROOF SYSTEM PO+ :

This system is obtained by extending PO by the recursion I rule 13.

7.2. Strong partial correctness

Strong partial correctness of programs in the kernel language is proved using
the proof system SPK consisting of the group of axioms and rules 1–7, 9, and
10 shown in Appendix B.1.

To prove strong partial correctness of method calls we modify the above
recursion rule I. The provability symbol ⊢SPO refers now to the proof system
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SPO, which is defined as SPK augmented with the assignment axiom 11 and
the auxiliary rules A1–A5 introduced in Appendix B.2.

RULE 14: RECURSION II

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢SPO {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢SPO

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . ., n}
(∗) pi → si 6= null, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D, for i ∈ {1, . . . , n}.

Thus compared with the recursion I rule 13, the premises (∗) have been
added. These premises are indeed needed, as the following incorrect derivation
shows.

Example 7.3. Let m :: skip ∈ D. Without the premises (∗), we could derive
from

{true} null.m {true} ⊢ {true} begin local this := null; skip end {true}.

the correctness formula {true} null.m {true}. However, this correctness for-
mula does not hold in the sense of strong partial correctness. ✷

To prove strong partial correctness of object-oriented programs we use the
following

PROOF SYSTEM SPO+ :

This system is obtained by extending SPO by the recursion II rule 14.

8. Formal justification

To prove soundness and completeness of the proof systems PO and SPO for
(strong) partial correctness of object-oriented programs we shall use the trans-
formation given in Section 5, notably the Correctness Theorem 5.4, and reduce
the problem to the analysis of the corresponding proof systems for recursive
programs.

The partial correctness semantics M[[S]] and the strong partial correctness
semanticsMsp [[S]] of recursive programs S are defined as for the kernel language.
We have the following basic semantic invariance property of recursive programs.

Lemma 8.1. (Semantic Invariance) Let N stand for M or Msp. Further,
let z̄ be a sequence of fresh variables which do not appear in the main statement
S (or the given set of declarations D) and d̄ be a corresponding sequence of
values. Then

N [[S]](σ[z̄ := d̄]) = {τ [z̄ := d̄] | τ ∈ N [[S]](σ)}.

Proof. The proof proceeds by induction on the length of the computation. ✷
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8.1. Proof theory for recursive programs

Correctness formulas {p} S {q} for recursive programs S and their inter-
pretation in terms of partial and strong partial correctness is defined as for
object-oriented programs.

In the following rule for recursive programs we use the provability symbol
⊢ to refer to either the proof system PR which consists of the proof system
PK augmented with the auxiliary rules A1–A5 defined in Appendix B.2 or the
proof system SPR which consists of the proof system SPK augmented with the
these rules.

RULE 15: RECURSION III

{p1} P1(x̄1) {q1}, . . . , {pn} Pn(x̄n) {qn} ⊢ {p} S {q},
{p1} P1(x̄1) {q1}, . . . , {pn} Pn(x̄n) {qn} ⊢

{pi} begin local ūi := x̄i;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where Pi(ūi) :: Si ∈ D and var(x̄i) ∩ var(D) = ∅ for i ∈ {1, . . ., n}.

The intuition behind this rule is analogous as in the case of the recursion I
rule introduced in Section 7. For recursive programs we use the following proof
systems.

PROOF SYSTEM PR+ for partial correctness of recursive programs:

This system is obtained by extending PR by the recursion III rule 15.

PROOF SYSTEM SPR+ for strong partial correctness of recursive programs:

This system is obtained by extending SPR by the recursion III rule 15.

8.2. Translation of assertions and proofs

For the reduction to (correctness proofs of) recursive programs we also have
to transform expressions of the assertion language. To this end, we extend
the definition of Θ(s) given in Subsection 5.2 to global expressions introduced
in Subsection 6.1 by adding the following two cases (where x is an instance
variable of basic type and a is an array instance variable):

• Θ(s.x) = x[Θ(s)],

• Θ(s.a[s1, . . . , sn]) = a[Θ(s),Θ(s1), . . . ,Θ(sn)].

Then we extend the transformation Θ(s) to a transformation Θ(p) of asser-
tions by a straightforward induction on the structure of p. Correctness of this
transformation of assertions is stated in the following lemma.

Lemma 8.2. (Assertion) For all assertions p and all proper states σ

σ |= p iff Θ(σ) |= Θ(p).
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Proof. The straightforward proof proceeds by induction on the structure of p.
✷

Corollary 8.3. (Translation I) For all correctness formulas {p} S {q}, where
S is an object-oriented program,

|= {p} S {q} iff |= {Θ(p)} Θ(S) {Θ(q)},

and
|=sp {p} S {q} iff |=sp {Θ(p)} Θ(S) {Θ(q)}.

Proof. It follows directly by the Assertion Lemma 8.2 and the Correctness
Theorem 5.4. ✷

We next show that a correctness proof of an object-oriented program can be
translated to a correctness proof of the corresponding recursive program. We
first need the following lemma which states equivalence between a correctness
proof of a method call from a given set of assumptions and a correctness proof of
the corresponding procedure call from the translated set of assumptions. For a
given set of assumptions A about method calls, we define the set of assumptions
Θ(A) about the corresponding procedure calls by

Θ(A) = {Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)} | {p} s.m(t̄) {q} ∈ A}.

Lemma 8.4. (Translation of Adaptation Correctness Proofs) Let A be
a given set of assumptions about method calls. Then

A ⊢AR {p} s.m(t̄) {q} iff Θ(A) ⊢AR {Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)},

where ⊢AR denotes provability in the proof system consisting of the so-called
adaptation rules: the consequence rule 7 and the auxiliary proof rules introduced
in Appendix B.2.

Proof. The proof proceeds by induction on the length of the derivation. ✷

In order to prove the the equivalence between partial correctness proofs of
a method call from a given set of assumptions and correctness proofs of the
corresponding procedure call from the translated set of assumptions, we need
the following lemma about partial correctness proofs of failure statements.

Lemma 8.5. (Normal Form Partial Correctness Failure Statements)
Let A be a given set of assumptions about procedure calls. If

A ⊢PR {p} if B → S fi {q}

then
A ⊢PR {p ∧B} S {q}.
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Proof. The proof proceeds by induction on the length of the given derivation.
By the form of the proof rules we can restrict to the consequence rule 7, the
auxiliary proof rules introduced in Appendix B.2, and the failure rule 8. We
consider the case of an application of the auxiliary rule A3. Let

A ⊢PR {p′} if B → S fi {q}

and p denote ∃x : p′, where x 6∈ V ar(D) ∪ V ar(S) ∪ free(q). By the induction
hypothesis and an application of the auxiliary rule 8, we have

A ⊢PR {∃x : (p′ ∧B)} S {q}.

Since x does not occur in B, the precondition is logically equivalent to (∃x :
p′) ∧B, so the desired result follows by an application of the consequence rule.
✷

Next, we introduce the following lemmas stating the equivalence between
(strong) partial correctness proofs of a method call from a given set of as-
sumptions and correctness proofs of the corresponding procedure call from the
translated set of assumptions.

Lemma 8.6. (Translation of Partial Correctness Proofs) Let A be a
given set of assumptions about method calls. Then

A ⊢PO {p} s.m(t̄) {q}

iff
Θ(A) ⊢PR {Θ(p)} if Θ(s) 6= null→m(Θ(s),Θ(t̄)) fi {Θ(q)}.

Proof. Note that by the form of the proof rules we can restrict the rules of PO
to the proof system AR extended with the weakening rule 12 and restrict the
rules of PR to the proof system AR extended with the failure rule 8.
(⇒) We prove the claim by induction on the length of the derivation. For the
base case assume that {p} s.m(t̄) {q} ∈ A. By definition of Θ(A),

{Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)} ∈ Θ(A),

so
Θ(A) ⊢PR {Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)}.

By a trivial application of the consequence rule, we get

Θ(A) ⊢PR {Θ(p) ∧Θ(s) 6= null} m(Θ(s),Θ(t̄)) {Θ(q)}.

Now by the failure rule, we get the desired result.
For the induction step we treat the case when the last rule applied is the

weakening rule. Then it is applied to

A ⊢PO {p ∧ s 6= null} s.m(t̄) {q}.
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By the induction hypothesis,

Θ(A) ⊢PR {Θ(p) ∧Θ(s) 6= null} if Θ(s) 6= null→m(Θ(s),Θ(t̄)) fi {Θ(q)}.

By Lemma 8.5, it follows that

Θ(A) ⊢PR {Θ(p) ∧Θ(s) 6= null ∧Θ(s) 6= null} m(Θ(s),Θ(t̄)) {Θ(q)},

so by the consequence and failure rules we get the desired result, the right-hand
side of the statement of the lemma.

(⇐) We prove the claim by induction on the length of the derivation. We only
treat the main case of the induction step when the last rule applied is the failure
rule. Then it is applied to

Θ(A) ⊢PR {Θ(p) ∧Θ(s) 6= null} m(Θ(s),Θ(t̄)) {Θ(q)}.

In this derivation in ⊢PR the failure rule has not been applied. Thus we can
replace ⊢PR by ⊢AR. By the Translation Lemma 8.4, we get

A ⊢AR {p ∧ s 6= null} s.m(t̄) {q}.

Applying the weakening rule we get the desired result, the left-hand side of the
statement of the lemma. ✷

Lemma 8.7. (Translation of Strong Partial Correctness Proofs) Let A
be a given set of assumptions about method calls such that p′ → s′ 6= null holds
for all {p′} s′.m′(t̄′) {q′} ∈ A. Then

A ⊢SPO {p} s.m(t̄) {q}

iff
Θ(A) ⊢SPR {Θ(p)} if Θ(s) 6= null→m(Θ(s),Θ(t̄)) fi {Θ(q)}.

Proof.
(⇒) We prove the claim by induction on the length of the derivation. We only
treat the base case, that is when {p} s.m(t̄) {q} ∈ A. By definition of A, the
implication p → s 6= null holds. By definition of Θ(A),

{Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)} ∈ Θ(A).

Furthermore, by the Assertion Lemma 8.2, we have Θ(p) → Θ(s) 6= null. So
we conclude the desired result by an application of the failure II rule.

(⇐) We prove the claim by induction on the length of the derivation. We only
treat the main case of the inductive step, an application of the failure II rule.
So Θ(p) → Θ(s) 6= null holds and the rule is applied to

Θ(A) ⊢SPR {Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)}.
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In this derivation in ⊢SPR the failure II rule has not been applied. So we can
replace ⊢SPR by ⊢AR. Thus by the Translation Lemma 8.4,

A ⊢AR {p} s.m(t̄) {q}.

from which the desired result follows. ✷

In order to extend the above lemmas from method calls to arbitrary state-
ments we need the following lemma which states that the transformation on
assertions is a homomorphism with respect to the substitution operation.

Lemma 8.8. (Homomorphism) For all global expressions or assertions p,
all expressions t of the programming language, and all simple or subscripted
variables u,

Θ(p[u := t]) ≡ Θ(p)[Θ(u) := Θ(t)].

Proof. We treat the case of a global expression s and a simple instance variable
u. By definition, Θ(u) ≡ u[this]. It suffices to prove

Θ(s[u := t]) ≡ Θ(s)[u[this] := Θ(t)]

by induction on the structure of the global expression s. We treat the case of
s ≡ e.u.

Θ(e.u[u := t])

≡ {by definition of the substitution [u := t]}

Θ(if e[u := t] = this then t else e[u := t].u fi)

≡ {by definition of Θ}

if Θ(e[u := t] = this) then Θ(t) else Θ(e[u := t].u) fi

≡ {by definition of Θ}

if Θ(e[u := t]) = this then Θ(t) else u[Θ(e[u := t]) fi

≡ {by induction hypothesis about e}

if Θ(e)[u[this] := Θ(t)] = this then Θ(t) else u[Θ(e)[u[this] := Θ(t)]] fi

≡ {by definition of the substitution [u[this] := Θ(t)]}

u[Θ(e)][u[this] := Θ(t)]

≡ {by definition of Θ}

Θ(e.u)[u[this] := Θ(t)]

✷

Lemma 8.9. (Translation of Correctness Proofs Statements) Let A be
a set of assumptions about method calls and {p} S {q} be a correctness formula
of an object-oriented statement S. Then

A ⊢ {p} S {q} iff Θ(A) ⊢ {Θ(p)} Θ(S) {Θ(q)},

where
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• in case of partial correctness ⊢ on the left-hand-side denotes provability in
the proof system PO, and ⊢ on the right-hand-side denotes provability in
the proof system PR, and

• in case of strong partial correctness ⊢ on the left-hand-side denotes prov-
ability in the proof system SPO, and ⊢ on the right-hand-side denotes
provability in the proof system SPR. Additionally, we assume that p′ → s 6=
null holds for all {p′} s.m(t̄) {q′} ∈ A.

Proof. The proof proceeds by induction on the length of the derivation. The
case of an assignment statement follows by the Homomorphism Lemma 8.8. The
case of a method call follows by the Translation Lemma 8.7. The cases of other
program statements follow directly by the induction hypothesis. In particular,
in the cases of the consequence rule and the rules for conditionals and loops,
the Assertion Lemma 8.2 is used. ✷

Finally, we arrive at the main result of this section.

Theorem 8.10. (Translation II) For all correctness formulas {p} S {q}, where
S is an object-oriented program,

(i) {p} S {q} is derivable in the proof system PO+ iff {Θ(p)} Θ(S) {Θ(q)} is
derivable in PR+,

(ii) {p} S {q} is derivable in the proof system SPO+ iff {Θ(p)} Θ(S) {Θ(q)}
is derivable in SPR+.

Proof. The proof proceeds by an induction on the length of the derivation. The
case of the assignment axioms is taken care of by the above Lemma 8.8. The case
of the recursion rules is taken care of by the Translation Lemma 8.9. The case of
the other axioms and rules follows immediately from the induction hypothesis
(using the Assertion Lemma 8.2 in case of the rules for the conditional and while
statements). Note that in the premises of the recursion rules we cannot apply
the recursion rule again. ✷

From the above theorem it immediately follows that the proof systems PO+

and SPO+ are sound and (relative) complete if and only if the corresponding
proof systems PR+ and SPR+ are sound and (relative) complete. For proofs of
soundness of the systems PR+ and SPR+, that is, for every correctness formula
{p} S {q} about a recursive program S, derivability of {p} S {q} in PR+ and
SPR+ implies |= {p} S {q} and |= sp{p} S {q}, respectively, we refer to our
book [3]. In the next section we discuss (relative) completeness of the proof
systems PR+ and SPR+.

9. Completeness

We prove here relative completeness of the proof systems PR+ and SPR+

for partial and strong partial correctness of the class of recursive programs
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considered in this paper. The proof is based on the use of weakest preconditions.
As explained in Section 10, this approach also applies to total correctness. We
first discuss the expressibility of weakest preconditions for recursive programs
that use variables whose type may involve abstract data types (like the basic
type object).

9.1. Expressibility

We introduce the following definitions and conventions. By σ =V σ′, for
V ⊆ Var , we denote the fact that σ(v) = σ′(v), for v ∈ V . We fix throughout
this section a sequence x̄ = x1, . . . , xk of (simple and array) variables and a main
statement S such that its variables and those of the given set of declarations D
are contained in x̄. Further, we fix a corresponding sequence ȳ of fresh variables
used to refer to the final values of x̄ in the definition of the weakest preconditions
below. By x̄ = ȳ we denote the conjunction of the formulas xi = yi, for a simple
variable xi, and ∀ūi : xi[ūi] = yi[ūi], for an array variable xi (ūi denotes a
sequence of simple variables corresponding to the argument types of xi). The
update σ[x̄ := σ′(ȳ)] assigns to each variable xi the value/function σ′(yi), for
i ∈ {1, . . . , k}, We denote by the substitution p[x̄ := ȳ] the result of renaming
every variable xi by yi, for i ∈ {1, . . . , k}. We have the following substitution
lemma corresponding to the Substitution Lemma 6.4.

Lemma 9.1. (Substitution) We have

σ |= p[x̄ := ȳ] iff σ[x̄ := σ(ȳ)] |= p.

Proof. The proof proceeds by induction on the structure of p. ✷

The weakest precondition WP(S, p) for partial correctness denotes the set

{σ | M[[S]](σ) ⊆ [[p]]}.

Similarly, the weakest precondition WPsp(S, p) for strong partial correctness
denotes the set

{σ | Msp [[S]](σ) ⊆ [[p]]}.

The above predicates satisfy the following equations.

Lemma 9.2. (Weakest Precondition Calculus) Let W stand for WP or
WPsp. The weakest preconditions of the statements of the kernel language sat-
isfy the following (standard) equations.

• W (skip, p) = [[p]],

• W (u := t, p) = [[p[u := t]]],

• W (x̄ := t̄, p) = [[p[x̄ := t̄]]],

• W (S1;S2, p) = W (S1,W (S2, p)),
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• W (if B then S1 else S2 fi, p) = ([[B]] ∩W (S1, p)) ∪ ([[¬B]] ∩W (S2, p)),

• W (while B do S od, p) =

([[¬B]] ∩ [[p]]) ∪ ([[B]] ∩W (S,W (while B do S od, p))).

Failure statements satisfy

WP(if B → S fi, p) = ([[B]] ∩WP(S, p)) ∪ [[¬B]]

and
WPsp(if B → S fi, p) = [[B]] ∩WPsp(S, p).

Finally, block statements satisfy

W (begin local ū := t̄;S end, p) = W (ū := t̄;S, p),

where the local variables ū do not appear in p.

Proof. We prove the equation for block statements (the equations for the other
statements are standard). By definition of the semantics of block statements
and the above equations for (parallel) assignments and sequential composition
of statements, we have

W (begin local ū := t̄;S end, p)
= W (ū := t̄;S; ū := σ(ū), p)
= W (ū := t̄;S;W (ū := σ(ū), p))
= W (ū := t̄;S, p).

Note that p[ū := σ(ū)] equals p because the variables ū do not appear in p. ✷

As a special case, we introduce the following most general weakest precondi-
tions

WP(S, x̄ = ȳ) and WPsp(S, x̄ = ȳ).

Note that by definition,

WP(S, x̄ = ȳ) = {σ | M[[S]](σ) ⊆ {σ[x̄ := σ(ȳ)]}}

and
WPsp(S, x̄ = ȳ) = {σ | Msp [[S]](σ) ⊆ {σ[x̄ := σ(ȳ)]}}.

These predicates describe the graphs of the deterministic functions M[[S]] and
Msp [[S]] in terms of a relation between the input variables x̄ and the output
variables ȳ.

In order to express these most general weakest preconditions in the first-
order assertion language we introduce a state-based encoding of the basic types
which allows for a standard arithmetic encoding of the programming semantics.

Let nat denote the basic type of the set N of natural numbers. For each
basic type T we fix a fresh array variable hT of type nat→ T for a state-based
encoding of the values of basic type T . We will use h to range over the variables
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hT . Without loss of generality we restrict our attention to states for which the
interpretation of each array variable hT specifies an enumeration of the values
of the basic type T , that is, hT is surjective, as expressed by

∀x : ∃n : x = hT [n],

where x is of type T and n of type nat.
Given this encoding of the basic types, we next show how to express in

the assertion language the encoding of the interpretation of the variables. The
assertion code(n, z) defined by h[n] = z, where z is a (simple) variable, directly
expresses that the variable n (of type nat) stores an integer representation of
the value of z. In order to express a similar assertion code(n, a), where a is
an array variable, we assume in the assertion language the following arithmetic
operations:

• < n̄ > denotes the natural number encoding the sequence of natural num-
bers n̄,

• n(i) denotes the ith element of the sequence encoded by n,

• |n| denotes the length of the sequence of numbers encoded by n.

We note that the above operations can be formally defined in the assertion
language by some computable enumeration of all finite sequences of natural
numbers (details are standard and therefore omitted). Let l denote the number
of argument types of the array variable a. The assertion app(n, a) defined by

|n| = l+ 1 ∧ a[h[n(1)], . . . , h[n(l)]] = h[n(l + 1)]

expresses that n encodes an application of the interpretation of the array a. The
assertion code(n, a) is then defined by

|n|
∧

k=1

app(n(k), a).

This assertion expresses that n encodes a finite sequence of numbers n(k) each
of which in turn encodes an application of the interpretation of the array a. For
every sequence z̄ = z1, . . . , zk of variables we denote by code(n, z̄) the conjunc-
tion

|n| = k ∧
k
∧

i=1

code(n(i), zi).

Without loss of generality we assume that the encoding of any sequence of vari-
ables z̄ is surjective: for every n ∈ N there exists a state σ such σ |= code(n, z̄).

Given this encoding of the interpretation of simple and array variables, we
next introduce the following binary arithmetic relation compS which denotes
the set
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{(n,m) | ∀σ : σ |= code(n, x̄) and σ |= code+(m, x̄, ȳ) implies
σ[x̄ := σ(ȳ)] ∈ M[[S]](σ)}.

Here we implicitly assume that code+(m, x̄, ȳ) asserts code(m, ȳ) and addition-
ally enforces that each array variable xi agrees with the corresponding array
variable yi on the complement of the domain specified by m(i) (note that m

codes only a finite part of each array variable of ȳ). (The details of this exten-
sion of the assertion code(m, ȳ) are straightforward though somewhat tedious
and therefore omitted.) In the sequel we write compS(n,m) to denote that n

and m belong to the binary relation compS (we will use n and m both to denote
natural numbers and variables of type nat).

Since every finite computation of S accesses each array variable of x̄ only on
a finite subset of the domain of its interpretation, we have the following closure
property of compS .

Lemma 9.3. (Closure of comp) For all states σ and σ′ we have that σ′ ∈
M[[S]](σ) implies compS(n,m), for some pair of numbers n and m such that
σ |= code(n, x̄) and σ[ȳ := σ′(x̄)] |= code+(m, x̄, ȳ).

We proceed with the introduction of the (unary) arithmetic predicate failS
which denotes the set

{n | ∀σ : σ |= code(n, x̄) implies fail ∈ Msp [[S]](σ)}.

In the sequel we also use failS(n) to denote that n is an element of the set
failS.

Again, since every finite sequence of computation steps of S accesses each
array variable of x̄ only on a finite subset of the domain of its interpretation,
we can assume the following closure property of the failS .

Lemma 9.4. (Closure of fail) For every state σ such that fail ∈ Msp [[S]](σ)
we have σ |= code(n, x̄) and failS(n), for some natural number n.

By means of standard techniques for encoding finite sequences of computa-
tion steps (see for example [11]) we can express the predicates compS and failS
arithmetically in the (first-order) assertion language in terms of the above encod-
ing of the interpretation of the variables x̄. Therefore, we may assume without
loss of generality that these predicates are present in the assertion language.

Lemma 9.5. (Expressibility) For the assertion

p ≡ ∀n,m : (code(n, x̄) ∧ compS(n,m))→ code(m, ȳ)

we have
WP(S, x̄ = ȳ) = [[p]]

and
WPsp(S, x̄ = ȳ) = [[p ∧ ∀n : code(n, x̄)→¬failS(n)]].
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Proof. We prove first the first equation. Let σ ∈ WP(S, x̄ = ȳ), i.e.,M[[S]](σ) ⊆
{σ[x̄ := σ(ȳ)]}. In order to prove σ |= p, let σ |= code(n, x̄) and compS(n,m),
for some arbitrary (constants) n and m. Further, let σ′ |= code(m, ȳ), for some
σ′ (note that the encoding of the variables ȳ is assumed to be surjective).
Without loss of generality we may assume that σ[ȳ := σ′(ȳ)] |= code+(m, x̄, ȳ)
(note that m only codes a finite part of σ′). Since the evaluation of code(n, x̄)
only depends on the interpretation of the variables x̄, σ |= code(n, x̄) implies
σ[ȳ := σ′(ȳ)] |= code(n, x̄). By definition of compS it follows that σ[x̄ := σ′(ȳ)] ∈
M[[S]](σ) (note that ȳ are assumed not to occur in S). Because S is deterministic
it follows that σ[x̄ := σ′(ȳ)] = σ[x̄ := σ(ȳ)], i.e., σ′(ȳ) = σ(ȳ). So we conclude
that σ |= code(m, ȳ) (note that code+(m, x̄, ȳ) trivially implies code(m, ȳ)).

Next let σ |= p. In order to prove σ ∈ WP(S, x̄ = ȳ), i.e., M[[S]](σ) ⊆
{σ[x̄ := σ(ȳ)]}, let σ′ ∈ M[[S]](σ). By Lemma 9.3, it follows that compS(n,m),
for some n and m such that σ |= code(n, x̄) and σ[ȳ := σ′(x̄)] |= code+(m, x̄, ȳ).
So by the definition of compS it follows that σ[x̄ := σ′(x̄)] ∈ M[[S]](σ) (as above,
note that σ |= code(n, x̄) implies σ[ȳ := σ′(x̄)] |= code(n, x̄) and the variables ȳ
do not appear in S). Since S is deterministic we conclude that σ′(x̄) = σ(ȳ) =
σ′(ȳ).

For the second equation, it suffices to observe that by Lemma 9.4, fail ∈
Msp [[S]](σ) implies σ |= ∃n : code(n, x̄) ∧ failS(n). On the other hand, by
definition of failS it immediately follows that σ |= ∃n : code(n, x̄) ∧ failS(n)
implies fail ∈ Msp [[S]](σ). We conclude that fail 6∈ Msp [[S]](σ) iff σ |= ∀n :
code(n, x̄)→¬failS(n). ✷

We conclude this discussion of the encoding of the most general weakest
preconditions with the following characterization of divergence or failure, in
case of partial correctness, and divergence, in case of strong partial correctness.

Lemma 9.6. (Expressibility of Divergence/Failure) For the assertion

p ≡ ∀n,m : code(n, x̄)→¬compS(n,m)

we have
WP(S, false) = [[p]],

and
WPsp(S, false) = [[p ∧ ∀n : code(n, x̄)→¬failS(n)]].

The formula p in the first equality expresses all states from which S can
diverge or fail, while the formula on the right-hand side of the second equality
expresses all states from which S can diverge.

Proof. We prove the first equation (the second is dealt with as above). First let
σ ∈ WP(S, false), i.e.,M[[S]](σ) = ∅. In order to prove σ |= p, let σ |= code(n, x̄)
and compS(n,m), for some arbitrary (constants) n and m. As above, we may
assume without loss of generality that σ[ȳ := σ′(x̄)] |= code+(m, x̄, ȳ), for some
σ′. By definition of compS , it follows that σ[x̄ := σ′(x̄)] ∈ M[[S]](σ) which
contradicts M[[S]](σ) = ∅.

35



Next let σ |= p. In order to prove σ ∈ WP(S, false), i.e., M[[S]](σ) = ∅,
let σ′ ∈ M[[S]](σ). By Lemma 9.3, it follows that compS(n,m), for some n

and m such that σ |= code(n, x̄) (and σ[ȳ := σ′(x̄] |= code+(m, x̄, ȳ)). But this
contradicts σ |= p. So we conclude that M[[S]](σ) = ∅. ✷

9.2. Completeness proof using most general correctness formulas

We prove (relative) completeness of the proof system SPR+, i.e, every strong
partially correct specification {p} S {q} of a recursive program S is derivable in
SPR+. Formally, |= sp{p} S {q} implies ⊢SPR+ {p} S {q}. The proof of (rela-

tive) completeness of the proof system PR+ for partial correctness of recursive
programs is similar.

First we state and prove the following completeness result for the most gen-
eral correctness formulas. Its formulation refers to the expressibility of the most
general weakest preconditions justified by the Expressibility Lemma 9.5.

Lemma 9.7. (Completeness: Most General Correctness Formulas) Let
x̄ = x1, . . . , xk be all the variables (global and local) appearing in D, S, p or
q, and ȳ be a corresponding sequence of fresh variables. Further, let q be a
consistent assertion, i.e., [[q]] 6= [[false]]. We have

|= sp{p} S {q} implies {WPsp(S, x̄ = ȳ)} S {x̄ = ȳ} ⊢SPR {p} S {q}.

Proof. Let |= sp{p} S {q}, with q a consistent assertion. Without loss of
generality we may assume that p and q do not refer to the variables ȳ (otherwise,
we rename them and apply the substitution rule). Applying the invariance rule
we obtain

{q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ)} S {q[x̄ := ȳ] ∧ x̄ = ȳ}.

Clearly the postcondition implies q. By the consequence rule, we then obtain

{q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ)} S {q}.

Next we apply the auxiliary rule A3:

{∃ȳ : q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ)} S {q}.

By definition of the weakest precondition and |= sp{p} S {q}, it follows that p
implies the above precondition (an application of the consequence rule thus gives
us the desired correctness formula): Let σ |= p. It follows from |= sp{p} S {q}
that Msp [[S]](σ) ⊆ [[q]], i.e., Msp [[S]](σ) = ∅ or σ′ ∈ Msp [[S]](σ), for some proper
state σ′. First we consider the case that Msp [[S]](σ) = ∅. From Lemma 8.1 it
follows that Msp [[S]](σ

′) = ∅, for every σ′ such σ′ =Var\ȳ σ. Further, since q is
consistent, we have σ′ |= q[x̄ := ȳ], for some σ′ such σ′ =Var\ȳ σ. Summarizing,
we have

σ′ |= q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ),
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for some σ′ such that σ′ =Var\ȳ σ. From which we conclude that

σ |= ∃ȳ : q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ).

Next we consider the case that σ′ ∈ Msp [[S]](σ), for some proper state σ′.
From Lemma 8.1 it follows that σ′ ∈ Msp [[S]](σ) implies σ′[ȳ := σ′(x̄)] ∈
Msp [[S]](σ[ȳ := σ′(x̄)]). Clearly, σ′[ȳ := σ′(x̄)] |= x̄ = ȳ, and therefore σ[ȳ :=
σ′(x̄)] |= WPsp(S, x̄ = ȳ). Further, since ȳ are assumed not to appear in p,
σ |= p implies σ[ȳ := σ′(x̄)] |= p. So we derive from the assumption |= sp{p} S {q}
that σ′[ȳ := σ′(x̄)] |= q. By Lemma 9.1 it then follows that σ′[ȳ := σ′(x̄)] |= q[x̄ :=
ȳ]. Since σ =Var\x̄ σ′ and the evaluation of q[x̄ := ȳ] does not depend on the
interpretation of the variables x̄, we have also σ[ȳ := σ′(x̄)] |= q[x̄ := ȳ]. Sum-
marizing, we obtain that

σ[ȳ := σ′(x̄)] |= q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ),

that is,
σ |= ∃ȳ : q[x̄ := ȳ] ∧WPsp(S, x̄ = ȳ).

✷

We next introduce for each procedure call Pi(t̄i), i ∈ {1, . . . , n}, appearing
in the given set of declarations D or the main statement S, the correctness
formulas

{WPsp(Pi(t̄i), false)} Pi(t̄i) {false} and {WPsp(Pi(t̄i), x̄ = ȳ)} Pi(t̄i) {x̄ = ȳ},

where x̄ = x1, . . . , xk are all variables (global and local) appearing in D or S,
and ȳ is a corresponding sequence of fresh variables. We rely here on the express-
ibility of divergence and failure, as justified by the Expressibility Lemma 9.6.
Let A denote the set of these correctness formulas.

Lemma 9.8. (Completeness Assumptions A) We have

|= sp{p} S {q} implies A ⊢SPR {p} S {q}.

Proof. The proof proceeds by induction on the structure of the statement
S. Distinguishing between |= sp{p} S {false} and |= sp{p} S {q}, where q is
consistent, by definition of WPsp(S, false) and the above Lemma 9.7, it suffices
to prove

A ⊢SPR {WPsp(S, r)} S {r},

where r denotes the assertion false or x̄ = ȳ. For assignments, sequential
composition of statements, conditionals, failure statements and while statements
the derivability of these correctness formulas follow from the standard properties
of weakest preconditions as described in Lemma 9.2. We consider therefore the
non-standard case that S denotes a block statement begin local ū := t̄;S1 end.
We introduce a sequence z̄ of fresh variables corresponding to the local variables
ū. By the semantics of block statements, it follows that

|= sp{z̄ = ū ∧WPsp(S, r)} ū := t̄;S1 {r[ū := z̄]}.
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By the (general) induction hypothesis, we can derive this correctness formula
from the given set of assumptions A. Next we apply the block rule which gives

{z̄ = ū ∧WPsp(S, r)} S {r[ū := z̄]}.

We proceed by an application of the invariance rule, which gives us

{z̄ = ū ∧WPsp(S, r)} S {z̄ = ū ∧ r[ū := z̄]}.

The postcondition clearly implies r, so by the consequence rule, we obtain

{z̄ = ū ∧WPsp(S, r)} S {r}.

Finally, applying the substitution rule (replacing in the precondition z̄ by ū)
followed a trivial application of the consequence rule gives us the desired result.
✷

We conclude with the following main completeness theorem.

Theorem 9.9. (Completeness: Strong Partial Correctness) Every strong
partially correct specification {p} S {q} of a recursive program S is derivable in
SPR+. Formally, |= sp{p} S {q} implies ⊢SPR+ {p} S {q}.

Proof. Let |= sp{p} S {q} and A be the set of assumptions as defined above.
By Lemma 9.8, we have

A ⊢SPR {p} S {q}.

Next, let r denote the assertion false or x̄ = ȳ. We have that

|= sp{WPsp(Pi(t̄i)), r} Pi(t̄i) {r}

implies

|= sp{WPsp(Pi(t̄i), r)} begin local ūi := t̄i;Si end {r},

for every Pi(ūi) :: Si ∈ D. By Lemma 9.8 again we have

A ⊢SPR {WPsp(Pi(t̄i), r)} begin local ūi := t̄i;Si end {r},

for every assumption of A. Finally, by the recursion III rule 15, we conclude
that {p} S {q} is derivable in the proof system SPR+. ✷

10. Extensions

The approach to the verification of the object-oriented programs that we
proposed here is flexible and natural. To substantiate this claim we explain now
how it can be naturally extended to other features of object-oriented program-
ming and to total correctness.
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10.1. Access to instance variables

A natural possibility is to allow method calls to access instance variables of
arbitrary objects, a feature available in Java. Then, given instance variables
x, y and object variables s, t, we could use assignments such as y := s.x+ 1, or
s.x := t.y + 1, and use global expressions in Boolean expressions, for example
2 ·s.x = t.y+1, and as actual parameters in method calls, for example s.m(t.y+
1).

To extend the obtained results to the resulting programming language the
presentation would have to be modified in a number of places. More precisely,
such an extension requires the following:

• introduction of the global expressions already in Subsection 3.1,

• introduction of global terms, which are expressions built out of global
expressions using the admitted function symbols (and respecting the well-
typedness condition),

• extension of the assignment statement to one of the form s := t, where s

is a global expression and t is a global term,

• admission of the method calls of the form s.m(t1, . . ., tn), where s is an
object expression and t1, . . ., tn are global terms,

• introduction of the definition of semantics of global terms in Subsec-
tion 4.1,

• extension of the notion of an update of a state σ[s := d] in Subsection 4.2
to the case of a global expression s,

• extension of the definition of substitution given in Subsection 6.2 to one
of the form [s := t], where s is a global expression and t is a global term,

• extension of the transformation Θ given in Section 5 to the considered
programming language, by defining Θ(s) for a global expression s already
in Subsection 5.2,

• extension of the assignment axiom 11 to the above introduced class of
assignments, and the recursion rules 13 and 14 to the above introduced
method calls,

• extension of the results of Section 8, notably the Homomorphism Lemma 8.8,
to this extended programming language.

The details are relatively straightforward and omitted.
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10.2. Object creation

Most existing approaches to object creation (see for example in [7]) follow
implicitly the transformational approach by modeling it in terms of object ac-
tivation. This can be made more explicit as follows. Given an array variable
store of type N→ object and a variable count of type N, we model the object
creation statement x := new by the statement

count := count + 1;x := store[count ].

This modeling of the object activation crucially depends on store being an un-
bounded array variable. Further it assumes that store is injective:

∀i : ∀j : i 6= j → store[i] 6= store[j],

which is possible since we assumed that the type object has infinitely many
elements.

A drawback of this approach to object creation is that it involves an ex-
plicit reference to a particular implementation. Since object variables can only
be compared for equality or dereferenced, we show in Chapter 6 of our book
[3] that we can in fact define a substitution [x := new] which statically eval-
uates expressions in which x occurs, assuming that x denotes a newly created
object. This in turn allows us to define the weakest precondition p[x := new]
of the object creation statement x := new and w.r.t. a postcondition p which
abstracts from the particular implementation of object creation. This yields the
assignment statement

{p[x := new]} x := new {p}

allowing us to reason about object creation.

10.3. Classes and Inheritance

The transformational approach discussed in this paper can be readily ex-
tended to deal with various features of mainstream object-oriented languages,
like classes, inheritance and polymorphism (i.e., subtyping). As an example,
we now discuss the details of such a transformation for a fragment of Java that
extends the object-oriented language considered so far with dynamic binding of
methods. This extension comprises the following:

• introduction of classes as basic types,

• use within the context of each program of a reflexive and transitive subclass
relation and its inverse superclass relation defined on the set of classes
used; we assume that this relation respects single inheritance, i.e., each
class has at most one direct superclass, and that object is the superclass
of each class,
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• introduction of the assignment u := t, where the type of the object expres-
sion t is a subclass of the type of u, and of the method call s.m(t1, . . . , tn),
where for i ∈ {1, . . . , n} the type of the actual parameter ti is a subclass
of the type of the corresponding formal parameter, in case ti is an object
expression,

• introduction of mutually disjoint sets DC ⊆ Dobject of object instances of
class C,

Further, we associate with each class a set of method declarations. The
instance variables of a class C are the inherited ones plus the ones that are
introduced in the method declarations of C. An object-oriented program in this
new setting consists then of a main statement and a set of classes, each with its
set of method declarations, and a subclass relation. The semantics of a method
call in this extension is captured by the rule

< s.m(t̄), σ > → < if s 6= null→ begin local this, ū := s, t̄; S fi end, σ >,

where S is such that σ(s) ∈ DC and m(ū) :: S ∈ C. In words, the class of the
object denoted by the expression s determines the actual definition of the called
method to be used. Note that this class in general is a subclass of the type of
the expression s.

We now explain how the programs formed in this extended setting can be
transformed to the programs considered earlier extended by an introduction for
each class C of a unary predicate C : object→Boolean whose semantics is
defined by

σ(C(s)) =

{

true if σ(s) ∈ DC

false otherwise.

In order to model dynamic binding in this extended object-oriented language
we first flatten the inheritance hierarchy between classes by introducting a global
set of method definitions D which consists of all method definitions

m@C(ū) :: S,

where the declaration m(ū) :: S appears in the class C itself or in the ‘minimal’
superclass C′ of C, that is, no other superclass of C which is also a subclass of
C′ contains a declaration of m. We then model the semantics of a method call
s.m(t̄) by the statement Sn, inductively defined for i ∈ {0, . . . , n− 1} by

S0 ≡ skip
Si+1 ≡ if Ci+1(s) then s.m@Ci+1(t̄) else Si fi,

where {C1, . . . , Cn} is the set of subclasses of the type of s.
After establishing an analogue of Theorem 5.4 for the above transformation

one could verify the programs written in the source language by verifying their
translated version. In principle one could also derive proof rules that deal with
the source programs directly, analogously as in Section 7.
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10.4. Total correctness

To focus on the crucial aspects of our approach to verification we did not deal
with program termination. The appropriate extension combines strong partial
correctness with termination and requires the following:

• addition of a special state ⊥ that models divergence,

• modification of the definition of semantics to take care of divergence,

• introduction of a new notion of soundness of a proof system,

• replacement of the current LOOP rule 6 by a rule that also takes care of
termination,

• replacement of the current the recursion rules 13 and 14 by a single rule
that also takes care of termination,

• similarly for the recursion III rule 15,

• appropriate modification of the proofs in Section 8 to additionally deal
with termination.

The details are presented in [3, chapter 6]. Since termination is, roughly speak-
ing, orthogonal to object-orientation, the transformational approach for (strong)
partial correctness can be extended to total correctness in a straighforward,
though somewhat tedious, manner.

11. Conclusion

We presented here an assertional proof system to reason about partial and
strong partial correctness of a class of object-oriented programs. Its formal
justification (that is, soundness and relative completeness) was carried out using
a syntax-directed transformation to recursive programs.

We proved a new relative completeness result for a class of recursive programs
that use variables ranging over abstract data types (like the basic type object)
and showed that the transformation preserves completeness. We also showed
that the transformational approach can be applied to intricate and complex
object-oriented features, such as inheritance and subtype polymorphism, by
transforming them in the context of a closed program to the core language
considered in this paper.

Extension of the transformational approach to open object-oriented pro-
grams, so programs that do not necessarily include the definitions of all the
classes used (in Java for example such classes are imported from packages), how-
ever, requires an additional study of structuring recursive programs by means
of modules along the lines of the Modula programming language [31] and of the
corresponding proof-theoretical concept of a contract as introduced in the Eiffel
programming language [20].
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Appendix A. Semantics

In the following we list the omitted transition axioms and rules that define
the transition relation → .

(i) < skip, σ > → < E, σ >,

(ii) < u := t, σ > → < E, σ[u := σ(t)] >,

where u ∈ V ar is a simple variable or u ≡ a[s1, . . . , sn], for a ∈ V ar,

(iii) < x̄ := t̄, σ > → < E, σ[x̄ := σ(t̄)] >

(iv)
< S1, σ > → < S2, τ >

< S1; S, σ > → < S2; S, τ >

(v) < if B then S1 else S2 fi, σ > → < S1, σ >, where σ |= B,

(vi) < if B then S1 else S2 fi, σ > → < S2, σ >, where σ |= ¬B,

(vii) < while B do S od, σ > → < S; while B do S od, σ >, where σ |= B,

(viii) < while B do S od, σ > → < E, σ > where σ |= ¬B.

Appendix B. Axioms and proof rules

In the following we list the used axioms and proof rules. Given an assertion
q we denote below its set of free variables by free(q).

Appendix B.1. Axioms and proof rules for the kernel language

To establish correctness of programs from the kernel language of Section 2
we rely on the following axioms and proof rules.

AXIOM 1: SKIP
{p} skip {p}

AXIOM 2: ASSIGNMENT

{p[u := t]} u := t {p}

where u ∈ Var or u ≡ a[s1, . . . , sn] and a ∈ Var.

AXIOM 3: PARALLEL ASSIGNMENT

{p[x̄ := t̄]} x̄ := t̄ {p}

RULE 4: COMPOSITION

{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
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RULE 5: CONDITIONAL

{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

RULE 6: LOOP

{p ∧ B} S {p}

{p} while B do S od {p ∧ ¬B}

RULE 7: CONSEQUENCE

p→ p1, {p1} S {q1}, q1 → q

{p} S {q}

RULE 8: FAILURE
{p ∧ B} S {q}

{p} if B → S fi {q}

RULE 9: FAILURE II

p→B, {p} S {q}

{p} if B → S fi {q}

RULE 10: BLOCK

{p} x̄ := t̄; S {q}

{p} begin local x̄ := t̄; S end {q}

where {x̄} ∩ free(q) = ∅.

Appendix B.2. Auxiliary rules

Further, we rely on the following auxiliary axioms and proof rules that oc-
casionally refer to the assumed set of procedure or method declarations D. We
refer in them to the sets of variables var(D) and change(D) defined in the
expected way.

RULE A1: DISJUNCTION

{p} S {q}, {r} S {q}

{p ∨ r} S {q}

RULE A2: CONJUNCTION

{p1} S {q1}, {p2} S {q2}

{p1 ∧ p2} S {q1 ∧ q2}

44



RULE A3: ∃-INTRODUCTION

{p} S {q}

{∃x : p} S {q}

where x 6∈ var(D) ∪ var(S) ∪ free(q).

RULE A4: INVARIANCE

{r} S {q}

{p ∧ r} S {p ∧ q}

where free(p) ∩ (change(D) ∪ change(S)) = ∅.

RULE A5: SUBSTITUTION

{p} S {q}

{p[z̄ := t̄]} S {q[z̄ := t̄]}

where var(z̄) ∩ (change(D)∪change(S)) = var(t̄) ∩ (change(D)∪change(S)) =
∅.

Appendix B.3. Axioms and proof rules for object oriented programs

The following axioms and proof rules were introduced for the object oriented
programs.

AXIOM 11: ASSIGNMENT TO INSTANCE VARIABLES

{p[u := t]} u := t {p}

where u is a simple or subscripted instance variable.

RULE 12: WEAKENING

{p ∧ s 6= null} s.m(t̄) {q}

{p} s.m(t̄) {q}

RULE 13: RECURSION I

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢ {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢

{pi} begin local this, ūi := si, t̄i;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.

45



RULE 14: RECURSION II

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢ {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} ⊢

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . ., n}
pi → si 6= null, i ∈ {1, . . ., n}

{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . , n}.

Appendix B.4. Proof rule for recursive programs
Finally, the following proof rule was introduced for the recursive programs.

RULE 15: RECURSION III

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢ {p} S {q},
{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} ⊢

{pi} begin local ūi := t̄i;Si end {qi}, i ∈ {1, . . ., n}

{p} S {q}

where Pi(ūi) :: Si ∈ D.

Appendix C. Proof systems

In the following we list the proof systems used in this paper.

Kernel language
PROOF SYSTEM PK for partial correctness:

This system consists of the group of axioms and rules 1–8, and 10.

PROOF SYSTEM SPK for strong partial correctness:

This system consists of the group of axioms and rules 1–7, 9, and 10.

Object-Oriented Programs
PROOF SYSTEM PO for partial correctness:

This system is obtained by extending PK with the axiom 11 for assign-
ments to instance variables, the weakening rule 12, and the auxiliary
rules A1–A5.

PROOF SYSTEM PO+ for strong partial correctness:

This system is obtained by extending PO by the recursion I rule 13.

PROOF SYSTEM SPO for partial correctness:

This system is obtained by extending SPK with the axiom 11 for assign-
ments to instance variables and the auxiliary rules A1–A5.

PROOF SYSTEM SPO+ for strong partial correctness:

This system is obtained by extending SPR by the recursion II rule 14.
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Recursive Programs

PROOF SYSTEM PR for partial correctness:

This system is obtained by extending PK with the auxiliary rules A1–
A5.

PROOF SYSTEM SPR for strong partial correctness:

This system is obtained by extending SPK with the auxiliary rules A1–
A5.

PROOF SYSTEM PR+ for partial correctness:

This system is obtained by extending PR by the recursion III rule 15.

PROOF SYSTEM SPR+ for strong partial correctness:

This system is obtained by extending the SPR by the recursion III
rule 15.
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