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Abstract: Depending on the value of the coupling, BPS states of type II string the-

ory compactified on a Calabi-Yau manifold can be described as multicenter supergravity

solutions or as BPS states in a quiver gauge theory. While states that spread into the

Coulomb-branch states can be mapped one-to-one to supergravity states, this is not auto-

matically so for the majority of Higgs-branch states. In this paper we explicitly compute

the BPS spectrum of the Higgs branch of a three-center quiver with a closed loop, and iden-

tify the subset of states that are in one-to-one correspondence with Coulomb/supergravity

multicenter states. We also show that there exist additional “pure-Higgs” states, that exist

if and only if the charges of the centers can form a scaling solution. Using generating

function techniques we compute the large charge degeneracy of the “pure-Higgs” sector

and show that it is always exponential. We also construct the map between Higgs- and

Coulomb-branch states, discuss its relation to the Higgs-Coulomb map of one of the authors

and Verlinde, and argue that the pure Higgs states live in the kernel of this map. Given

that these states have no obvious description on the Coulomb branch or in supergravity,

we discuss whether they can correspond to a single-center black hole or can be related to

more complicated horizonless configurations.
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1 Introduction and overview

1.1 Motivation

Although the Bekenstein-Hawking formula for the entropy of a black hole is widely ac-

cepted, only limited progress has been made in understanding, from a gravitational point

of view, what the nature of the underlying microscopic degrees of freedom is. Phrasing
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the question in somewhat more general terms, we can ask what is the correct gravitational

description of general states in a given charge sector of string theory. In such a sector

one typically finds both gravitational solutions that are smooth and/or horizonless, and

solutions which contain one or more black holes. Given a state, e.g. some particular exci-

tation of strings and branes, it is in general an open problem to identify by which of these

classes of gravitational solutions it is best described. Resolving this problem amounts to

understanding which microscopic degrees of freedom can be described and distinguished

by an observer having only gravitational probes at hand, and which ones cannot.

In this paper we will report on some progress in achieving this goal, albeit in the

particular context of supersymmetric solutions of N = 2 supergravity in four dimensions.

The full enumeration of all states in a given charge sector in this theory is unknown, but

we know that it contains the supersymmetric ground states of various quantum mechanical

“gauge theories” of quiver type, with several different gauge groups and charged matter.

Given an open string (gauge theoretical) description of the degrees of freedom, one often

finds that the theory possesses a Higgs branch and a Coulomb branch. When taking the

decoupling limit relevant for the AdS/CFT correspondence (as detailed in appendix C),

the Coulomb branch is removed from the system and only the Higgs branch remains.

There is a refinement however: a small part of the Coulomb branch does survive, but it

does not describe independent degrees of freedom, rather it describes some of the states

on the Higgs branch using different variables. To be unambiguous, whenever we refer to

“Coulomb branch” in the remainder of this paper, we mean the part of the near-Higgs

Coulomb branch which survives the decoupling limit.

It is precisely the Coulomb branch variables which are useful to obtain gravitational

descriptions of states in the theory. In fact, the Coulomb branch description of a state

can be mapped directly into a solution of the supergravity equations of motion. As we

will explore in detail, the Coulomb branch description does not in general capture the full

Higgs branch. It would appear therefore that the remaining states in the Higgs branch

are essentially inaccessible to a gravitational observer. Whether such states exist or not

depends on the details of the quiver quantum mechanical system. It is only for quivers with

closed loops that obey some additional conditions that the Coulomb branch description is

incomplete. As was shown in [1] for particular quiver, the number of inaccessible states can

be exponentially large, much larger than the number of states that are accessible from the

Coulomb branch. We will study the conditions under which this happens in more detail,

compute the spectrum explicitly for all three-centered quiver systems, and provide a simple

criterion in terms of the geometry of the Higgs branch to distinguish inaccessible states

from accessible ones.

In spacetime, inaccessible states appear in situations in which the solution space of a

multi-centered system possesses so-called scaling regions, where the centers approach each

other arbitrarily closely, signaling the absence of a potential barrier between the Coulomb-

and Higgs-branch descriptions before decoupling. Furthermore, in the limit where the

centers are on top of each other (where the Coulomb and Higgs branches meet), there

appears to be an emergent conformal symmetry. It has been suggested in the past that

one should describe the physics of this limit using superconformal quantum mechanics [2],

– 2 –
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which might have a large number of degrees of freedom relevant for this limit. To make

this precise, one should show that a further low-energy limit exists in the quiver quantum

mechanical system and that this limit makes it superconformal. However, as we will argue,

this cannot be achieved because the Higgs branch theory has a mass gap and at low energies

violates superconformal invariance.

We will now present the system we consider in more detail, and give an overview of

our main results and their possible implications.

1.2 Setup — gravity

As mentioned, we will restrict ourselves in this paper to the BPS sector of four-dimensional

N = 2 supergravity. As this supergravity is the low-energy theory describing Calabi-Yau

compactifications of type II string theory/M-theory, the BPS states can be traced back to

various D/M-brane configurations which provide a microscopic picture for the black holes

in this theory. One major success was the calculation of the entropy of the D4-D0 black

hole by Maldacena, Strominger and Witten [3] from the effective CFT description of an M5-

brane wrapping a large divisor in the Calabi-Yau X. Since this calculation essentially only

relies on Cardy’s formula and the central charge, it is very general, universal and stable,

but at the same time also very crude. Indeed, in the Cardy regime the large majority

of BPS states with D4-D0 charge can be accounted for by the single-center black hole,

but there is a still rather significant minority that corresponds to the states of various

multicenter configurations. On the other hand, outside of the Cardy regime this balance

can change and these multicenter black holes can dominate the entropy of the single-center

solution [1, 4, 5].

While this situation at first sight complicates our struggle to understand the relevant

quantum states, it also presents us with interesting ways to gain insight into the relation

between these states at small and large gravitational coupling. At large coupling these

BPS ‘multicenter’ states manifest themselves as classical supersymmetric solutions to N =

2 supergravity. The most general such solutions were discovered in [6–8] and they are

determined by the positions ~rp ∈ R3 and charges Γp of N dyonic centers subject to N − 1

“integrability” or “bubble” equations

N∑

q=1, q 6=p

〈Γp,Γq〉
rpq

= 〈h,Γp〉 (1.1)

Note that there are N − 1 equations rather than N as the sum over all equations is trivial.

The Γp = {p0, pA, qA, q0} are charge vectors in H2n(X) encoding the {D6, D4, D2, D0}
electro-magnetic charges of the centers and 〈·, ·〉 is the symplectic pairing of electric and

magnetic charges

〈Γ, Γ̃〉 = −p0q̃0 + pAq̃A − qAp̃A + q0p̃
0 (1.2)

Such solutions do not generically exist for all values of the scalar moduli at infinity as they

can decay at codimension-one surfaces in the moduli space known as walls of marginal

stability. This phenomenon of “wall-crossing” has received a lot of attention recently both

in N = 2 gauge theories as well as supergravity (see e.g. [9] for a review and introduction

to the literature).

– 3 –
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Figure 1. A three node quiver.

1.3 Setup — gauge theory

At smaller coupling, when the gravitational backreaction of the charges can be ignored, the

system is better described in terms of D-branes wrapped on the Calabi-Yau manifold, and

an elegant effective description can be obtained by reducing the system to 0+1 dimensions

to obtain an N = 4 quiver quantum mechanics [10].

As depicted schematically in figure 1.3, these quiver quantum theories are described

in terms of two different kinds of multiplets: vector multiplets {~xp, λp, Dp}, one for each

node Γp of the quiver, as well as chiral multiplets {φαpq, ψαpq, Fαpq} coming from the strings

stretched between every pair of centers. For each pair of centers there are Γpq = 〈Γp,Γq〉
such chiral multiplets. The space of vacua of this quiver quantum mechanics contains both

a Higgs branch and Coulomb branch, and the BPS states can be mainly supported on

either branch. Moreover, this support can shift from one branch to the other as one varies

the effective coupling.

One of the interesting results of [10] is that for a two-center quiver one can map

states directly from the Higgs branch to the Coulomb branch and to supergravity. Thus,

one can basically “follow” a state as one turns on the gravitational coupling. A crucial

observation made by [10] was that, once quantum corrections are taken into account, the

Coulomb branch of the quiver quantum mechanics is actually identical to the supergravity

“solution space,” as both are parameterized by the locations of N centers subject to the

same constraint equations (1.1)! The profound origin of this is a non-renormalization

theorem that protects the symplectic form which governs the Coulomb branch/supergravity

BPS solution space and gives it a natural interpretation as a phase space. This symplectic
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form can in turn be used to geometrically quantize the BPS solution space [11, 12], and this

corresponds physically to quantizing the angular momentum originating from the electro-

magnetic interactions of the various dyonic charges [13].

On the Higgs branch the BPS states are represented as non-trivial cohomology classes

on the manifold carved out by the D- and F-term constraints. One can map states on the

Higgs branch to those on the Coulomb branch/supergravity by identifying the quantum

numbers under the Lefschetz SU(2) to the angular momentum quantum number. This is

a special example of the Higgs-Coulomb map [14], and for two centers this map is always

one-to-one.

The situation becomes more subtle when we consider three centers. Both the Coulomb

branch (which can be identified with supergravity solutions) and the Higgs branch change in

an essential way. From the perspective of the multicenter supergravity solution the centers

no longer sit at a fixed distance. Furthermore, when the intersection products satisfy

the triangle inequalities (Γ12 + Γ23 ≥ Γ31 and cyclic), the three centers can approach each

other arbitrarily close (in coordinate space) seemingly connecting the single and multicenter

solution spaces. However, when one looks at the full supergravity solution one finds that

in this limit the multicenter solution rather develops an infinitely deep AdS2 throat. From

outside the solution looks like the AdS2 near-horizon region of a single-center black hole,

but at the bottom of the throat the distance between the three centers remains fixed as

the throat becomes longer and longer [1, 13, 15]. A scaling symmetry emerges in this limit

and hence these BPS solutions are often referred to as scaling solutions. The quantization

of such solution spaces proceeds much as in the non-scaling case [11] but one finds that

quantum corrections can destroy or “cap off” the infinitely deep AdS2 throat. This will be

discussed in more detail in section 4.

On the Higgs branch, by contrast, the difference between scaling and non-scaling solu-

tions is rather subtle. For certain values of the charges the arrows between the nodes form

a closed quiver, and in the quiver quantum mechanics this allows for the existence of a

non-trivial superpotential which affects the structure of the supersymmetric states. How-

ever, not all closed quivers have intersection products that satisfy the triangle inequalities,

and hence correspond to scaling supergravity solutions.

One can count the degeneracy of the Higgs branch of the quiver quantum mechanics

when the quiver is closed and has a superpotential [1], and the result is quite remark-

able: the theory has an exponential growth of states precisely when the closed quiver

satisfies the triangle inequality, and there exists a scaling solution in supergravity! These

‘scaling’ states of the Higgs branch vastly outnumber the Coulomb-branch states, so the

one-to-one map between Higgs and Coulomb branch states that we had for two centers

does not hold anymore.

Note that this is not inconsistent with the expected stability of BPS states under

perturbations since, in the scaling case, the Coulomb branch is never a complete description

of the system. In particular, the self-consistent ansatz of [10] describing the Coulomb

branch breaks down as the VEVs of the ~xij are not bounded from below; thus we can

no longer force the system into the Coulomb branch by tuning couplings. Rather at any

finite coupling the two branches are connected and the description is quite complicated. In

– 5 –
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this paper we circumvent this difficultly by working in an infinite coupling limit where the

Coulomb branch decouples and the system is entirely characterized by the Higgs branch.

Rather remarkably, as mentioned above, the Coulomb branch seems to re-emerge in this

limit in terms of VEVs of particular operators in the Higgs branch. These operators

map states on the Higgs branch to the Coulomb branch surjectively, mimicking the Higgs-

Coulomb map of the non-scaling quivers.

These results lead to a number of interesting questions: what happens to the map

between Higgs and Coulomb branch states when one goes from weak to stronger coupling?

What is the nature of the extra Higgs branch states? Can they be identified? Do they

have any analogue in supergravity? Is there any relation between the scaling point and the

single center black hole? How generic is the exponential growth?

Clearly these questions are crucial for our understanding of black hole physics. If one

could argue that these exponentially-growing states correspond to horizonless supergravity

solutions or to more complicated horizonless stringy configurations, although so far no

evidence for this has been found, this would indicate that a black-hole-like entropy can

be obtained from fuzzballs, and would essentially establish that the fuzzball proposal1

applies to N = 2 BPS black holes. On the other hand, if the exponentially-growing

states will not have any support on the Coulomb branch and cannot be captured by more

complicated closed string degrees of freedom, they will all develop a horizon and become

indistinguishable from the classical black hole.

In this paper we take several steps towards answering some of these questions by

re-investigating the three-center scaling quiver.

1.4 Summary and results

After shortly reviewing in section 2 the general structure of quiver quantum mechanics, we

specialize to a three-node quiver with a closed loop and generic superpotential in section 3.

Following [1] we review how the Higgs branch is a complete intersection manifold. We then

apply the Lefschetz hyperplane theorem to compute its Betti-numbers, and hence the BPS

spectrum. It turns out that the Higgs cohomology consists of states with non-vanishing

Lefschetz SU(2) quantum numbers, which map bijectively to states on the Coulomb branch.

However, in the middle cohomology there are additional classes, all in the trivial represen-

tation of SU(2), that have no counterpart on the Coulomb branch. We will refer to these

states as pure-Higgs states. If one would want to add them to the Coulomb branch “by

hand”, their quantum numbers correspond to zero angular momentum, suggesting that

they should indeed be related to the scaling point or to the single center black hole.

To proceed we compute a generating function for the supersymmetric index Ω(a, b; c)

of three center BPS states with intersection products a = Γ12, b = Γ23, and c = Γ31:

ZΩ =
xy(1− xy)

(1 + x)2(1 + y)2(1− xy − xz − yz − 2xyz)
=

∞∑

a,b,c=0

Ω(a, b; c)xaybzc (1.3)

One of the key results of our investigation is that this function is not symmetric in the

pairings a, b and c precisely because of the Higgs-branch states that map to the Coulomb

1See [16–21] for reviews.
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branch! Indeed, we can compute the spectrum explicitly, and isolate the pure-Higgs states

from those that have a Coulomb interpretation and count their number β(a, b, c) separately.

Their generating function is

Zβ =
x2y2z2

(1− xy)(1− xz)(1− yz)(1− xy − yz − zx− 2xyz)
. (1.4)

From this generating function we can learn a number of things.

• β is non-vanishing iff a+ b− 2 ≥ c and cyclic, and hence pure-Higgs states only exist

when the Coulomb branch has a scaling point, and viceversa.

• for any a, b, c � 1 that satisfy the triangle equations the number of states has an

exponential growth, that we calculate precisely

β(a, b, c) ∼ 2

π

√
abc(ABC)3

(aA+ bB + cC)7

aabbcc

AABBCC
2a+b+c , (1.5)

where A ≡ −a+ b+ c,B ≡ a− b+ c, C ≡ a+ b− c.

• the generating function is symmetric in a, b, c, suggesting that different Higgs branches

can share their pure-Higgs sector, but differ in the part that maps to the Coulomb

branch. Furthermore this hints that these states are everywhere stable on the moduli

space.

• the generating function is combinatoric, hinting at a simple interpretation in terms

of brane/string constituents.

In section 4 we discuss how the general notion of Higgs-Coulomb map of [14] is realized

in our system. This is a non-trivial extension of [14] to multiple interacting mutually-

non-local branes, and the emergence of this map is more complicated. We demonstrate

nonetheless how the Coulomb-branch degrees of freedom still emerge from operators on the

Higgs branch, and that the Coulomb branch variables are still fermion bilinears and hence

can not be fully treated as classical bosonic variables.

In particular, we use this intuition to explain why the scaling point is unreliable and

conjecture that a similar mechanism is at work in the superconformal quantum mechanical

setup of [2]. That the scaling point is unreliable had also been observed before from a pure

gravitational point of view, when studying some puzzling aspects of scaling BPS solutions.

One such puzzle was the discrepancy between having infinitely deep smooth throats and

being in a solution dual to a CFT with a discrete spectrum [13, 15], and the quantization

of [11] managed to address this by arguing that the throats will be capped. To accomplish

this required the rather remarkable claim that a large macroscopically smooth spacetime

is “destroyed” by quantum corrections [11, 13], or more precisely that all throats beyond

a certain depth do not have corresponding semi-classical BPS quantum states. This result

relied on quantizing only the Coulomb-branch degrees of freedom, and on the fact that the

phase space of these degrees of freedom becomes very restricted in the scaling region. We

revisit this issue from a different perspective in section 4.

– 7 –



J
H
E
P
1
1
(
2
0
1
2
)
1
7
1

1.5 Discussion and outlook

In this paper we have laid the groundwork for a more detailed understanding of the pure-

Higgs states whose exact role in wall-crossing and black hole microstate counting remains

unclear.

Many other interesting questions present themselves:

• Our discussion was limited to quivers with three nodes. It would be interesting to

extend the Higgs-Coulomb map to quivers with more than three nodes with various

combinations of bifundamental matter.

• As noted earlier the scaling point contains an AdS2 factor suggesting the pure-Higgs

states may indeed be the states of a putative dual CFT1. These states would seem to

capture the behavior of a certain set of multi-AdS2 throats inside an asymptotically

AdS2 region (reminiscent of [22]). Clearly, it is difficult to make this precise, as the

scaling point is unreliable and the AdS2 decoupling limit is singular from the quiver

point of view. Perhaps this is a general lesson for AdS2 geometries that appear in

string theory. Understanding this issue further may shed light on the construction of

the BPS sector of a CFT1 dual.

• As suggested above, the symmetric structure of the pure-Higgs partition function

suggests that it does not decay across walls of marginal stability. This seems in

accord with the result of [23] on the equivalence of Higgs and Coulomb branch wall

crossing. As pure-Higgs states are not present on the Coulomb branch2 the result

of [23] would also imply they cannot be involved in wall-crossing and should hence

be stable on all of moduli space. This would be an additional argument to compare

them to black hole microstates. It would be interesting to further study the role of

the pure-Higgs states in the N = 2 partition function.

• The combinatorial nature of the “pure Higgs” partition function strongly suggests

some elegant combinatorial origin, perhaps related to fermionic degrees of freedom

on strings stretched between the centers. Finding this combinatorial explanation will

likely lead to a deeper understanding of these microstates and possibly also their

strict AdS2 limit, if such a thing exists.

• It is an interesting question whether the pure-Higgs branch states can be obtained

from a Coulomb branch description of a different quiver with the same total charges.

On the one hand, it is in principle possible to obtain substantial numbers of states

from multi-centered configurations that are SU(2)-invariant. Such states are not

present in three-centered quivers, but will generically be present as one increases the

number of centers.3 On the other hand, these SU(2) singlets are however always

2Note that what we call ‘pure-Higgs’ contributions are distinct from the ‘scaling contributions’ discussed

in [12, 23, 24], as those are actually the contributions that do map into the Coulomb branch.
3One explicit example is the “pincer” solution of [15]. One can also examine these states by following

attractor flow trees of non-scaling solutions, which allow one to keep track of their SU(2)-content.
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accompanied by non-SU(2) singlets, which have a rather similar degeneracy. Hence,

if they represent the pure-Higgs states there will have to exist other families of Higgs-

branch states with a similar (exponential) degeneracy but with a nontrivial angular

momentum, and it is not clear whether such states exist.

• An important issue, that we discuss more thoroughly in section 4.5, is whether it

is somehow possible to characterize the remaining states on the Higgs branch using

closed string theory. This can be done for example by computing one-point functions

in these states, and comparing the results to those of a single-center black hole. If

they differ, then the pure Higgs states will most likely not have a horizon in the regime

of parameters where supergravity is valid, and will therefore look more like fuzzballs

than black holes. If not, then the one-point functions of the supergravity fields will be

indistinguishable from those of a black hole, but it may be that one-point functions

of massive string states or higher point functions of gravitational degrees of freedom

will still be capable of probing detailed properties of the missing states. Sorting out

these fascinating possibilities appears to be within calculational reach, and we plan

to revisit this in the future.

• We would like to point out that also some more basic questions concerning scaling

solutions remain. Since they fall outside of the split attractor flow conjecture [1, 6, 25],

one would like to find another simple, robust criteria to check for their existence.

Recently this was done for two scaling non-interacting centers [26], but an analogous

result for interacting scaling centers is still lacking.

• Though this remains to be worked out in detail, it is tempting to conjecture that if

the gravitational one-point function of the pure-Higgs states are the same as those

of the single-center black hole, then most of the black hole microstates would not be

accessible to gravitational observers. However, we are working in a particular duality

frame and in four-dimensional supergravity, and since different duality frames and

different supergravities have different gravitational observers, it is still conceivable

that other gravitational observers can resolve these states.

2 Quiver quantum mechanics

In [10] the dimensional reduction to 0+1 dimensions of the low-energy theory living on

intersecting D-branes in a Calabi-Yau X, was very explicitly shown to reproduce much of

the physics of multicenter BPS configurations of the N = 2 supergravity obtained from

a compactification to four dimensions on the same Calabi-Yau. The Lagrangian for this

theory can be read from a quiver diagram (such as figure 1.3) which efficiently encodes the

field content of the theory.

Every node in the quiver represents a brane of charge Γp ∈ H2n(X) and there is a

corresponding vector multiplet (~xp, λp, Dp) whose bosonic component is the position of

the D-brane in the three external spatial directions. If we allow for non-primitive charges

Γp = mΓ′p then each node will have an associated U(m) gauge symmetry under which the

– 9 –
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vector multiplets will be adjoint-valued. In what follows we restrict however to primitive

vectors so m = 1 and the vector multiplets are uncharged.

Each pair of branes intersect Γpq times and each intersection gives rise to a hypermul-

tiplet (φαpq, ψ
α
pq, F

α
pq) in the U(1) × U(1) bifundamental which is represented in the quiver

as an arrow pointing from node p to q. The Lagrangian of the combined system is fixed

by supersymmetry and can be read off from the quiver [10, appendix C]

L =
∑

p

mp

2

(
ẋ2
p +D2

p + 2iλ̄λ̇
)
− θpDp +

∑

q→p

(
|φ̇pq|2 + F 2

pq + iψ̄pqψ̇pq

)

−
∑

q→p

[
(x2
pq +Dpq)φ

2
pq + ψ̄pqσ

ixipqψpq − i
√

2(φ̄pqλpqεψpq − h.c.)
]

+
∑

q→p

(
∂W (φ)

∂φapq
F apq + h.c.

)
+

(
∂2W (φ)

∂φαpq∂φ
β
pq

ψαεψβ + h.c.

)
(2.1)

where the notation q → p implies a sum over the associated arrows. For hypermultiples we

implicitly sum over “flavor” indices, α = 1, · · · ,Γpq, so that |φpq|2 =
∑Γpq

a=1 φ̄
α
pqφ

α
pq and for

vector multiplet components we define relative differences as Dpq ≡ Dp −Dq and likewise

for xpq, λpq. We will not generally need many of the details of this Lagrangian but the

microscopic origin of the parameters mp and θp play an important role so let us recall

them. The mass mp of the D-brane wrapping Γp is given by

mp =

√
v |Z(Γp)|
gs`s

, Z(Γ) := 〈Γ,Ω〉, Ω := − e
B+iJ

√
4
3J

3
, v =

2VX
π2 `6s

(2.2)

where here B, J ∈ H2(X) are the IIA moduli encoding the volume of CY cycles in units

of `s and VX is the CY volume. The Fayet-Iliopoulos term θp encodes the supersymmetry

preserved by the brane with respect to the background so

θp = Im(e−iαZ(Γp)) (2.3)

where eiα = Z(Γ)/|Z(Γ)| is the phase of the total charge Γ =
∑

p Γp. In fact it is this term

which appears on the r.h.s. of (1.1) in another guise

θp =
1

2
〈h,Γp〉 (2.4)

We leave a discussion of the superpotential, W (φ), to the next section. For more details

on these quantities and our conventions the reader may consult [4, 6, 10].

The classical potential, after integrating out the auxiliary fields Dp and Fpq, is of the

form

V (~xp, φpq) =
∑

p

1

2mp

(
θp +

∑

p

spq|φpq|2
)2

+
∑

p<q

||(~xp − ~xq)2|φpq|2 +
1

4

∣∣∣∣
∂W

∂φpq

∣∣∣∣
2

,

where we have introduced the antisymmetric symbol spq = −spq = 1 which is positive for

q → p and negative when p→ q.
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The only supersymmetric minimum of this classical potential is the Higgs branch,

corresponding to setting ~xpq = 0 and

∑

p

spq|φpq|2 = −θp
︸ ︷︷ ︸

D-term

,
∂W

∂φpq
= 0

︸ ︷︷ ︸
F-term

(2.5)

Quantum corrections, however, modify the potential allowing for the existence of a Coulomb

branch parameterized by 〈~xpq〉 > 0 when gs > 0 [10]. We will not repeat the derivation of

this here but note only that the minima of this quantum corrected potential correspond

to solutions to the so-called “integrability” equations (1.1). Points in the Coulomb branch

are thus in one-to-one correspondence to supergravity solutions and moreover the Coulomb

branch is equivalent, as a symplectic manifold, to the supersymmetric phase space of the

corresponding family of solutions to the N = 2 supergravity theory.

3 Sorting out the Higgs branch

In this section we discuss the BPS states on the Higgs branch of the simplest non-trivial

quiver with three nodes. This quiver was studied in detail in [1], where it was shown

that when the quiver has no closed loops, and hence a vanishing superpotential, the Higgs

branch BPS spectrum is exactly equal to that of the Coulomb branch. More interest-

ingly, [1] showed that when the superpotential is non-trivial, the Higgs branch can contain

exponentially more states than the Coulomb branch. In the first subsection we will give

a short review of their characterization of the Higgs branch as a complete intersection

manifold. We then continue by computing all the individual Betti numbers, that encode

the number of BPS states. Using the connection between the Lefschetz SU(2) action on

cohomology and the angular momentum in space-time we can then identify those states

that have an equivalent on the Coulomb branch. By subtracting those we can then isolate

the ’pure-Higgs’ states, i.e. those that do not appear on the Coulomb branch. As we will

show these states all have zero angular momentum and their degeneracies are encoded

in a very interesting and beautiful generating function. Using the combinatorics of this

generating function we show that such ‘pure-Higgs’ states are present if and only if the

quantum-corrected intersection products, Γ12 − 2, Γ23 − 2 and Γ31 − 2, satisfy the triangle

inequalities. Under the same condition the Coulomb branch contains a scaling point and

this result is thus additional evidence that the scaling point contains more micro-states

than are apparent from a naive supergravity analysis. Finally, using the generating func-

tion we compute the number of ’pure-Higgs’ states for large charges, generalizing the result

of [1] to the whole scaling cone.

3.1 The a b c of closed-loop three-quivers

To ease notation we denote the three intersection products respectively as a = Γ12, b = Γ23

and c = Γ31. Since we assume the quiver to have a closed loop we can label the charges

in such a way that all the intersection products are positive, i.e. a, b, c > 0. The quiver

– 11 –
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quantum mechanics can then have a non-trivial gauge invariant superpotential, which can

consistently be assumed to contain only cubic terms [1]:

W = wαβγφ
α
12φ

β
23φ

γ
31 (3.1)

The D-term constraints

|φ12|2 − |φ31|2 = −θ1, |φ23|2 − |φ12|2 = −θ2, |φ31|2 − |φ23|2 = −θ3 (3.2)

and the F-term constraints coming from this superpotential:

wαβγφ
β
23φ

γ
31 = 0, wαβγφ

α
12φ

γ
31 = 0 wαβγφ

α
12φ

β
23 = 0 (3.3)

define the Higgs branch. As was shown in [1], for generic coefficients wαβγ , all the solutions

of these equations fall into one of three branches, characterized by φ12 = 0, φ23 = 0 or φ31 =

0 respectively. Which branch is selected depends on the sign of the FI-terms θi. Without

loss of generality one can make the choice θ1, θ2 < 0, such that the equations imply4 φ31 = 0.

The D-term equations then simply describe a CPa−1 × CPb−1. The remaining F-term

constraint imposes an additional c quadratic equations on this manifold. In mathematical

terms this means that the Higgs branch is a complete intersection manifold, that we will

denote by Mc
ab.

3.2 Computation of the cohomology

As is typical for quantum mechanics with extended supersymmetry, the BPS states on the

Higgs branch are given by the elements of its cohomology. Since the Higgs branch of our

interestMc
ab is a complete intersection manifold we can actually compute its Betti numbers

using the following result.

Let Y be a complete intersection manifold, defined as the zero locus of k polynomials

in a compact complex manifold X of complex dimension d. An iterative application of the

Lefschetz hyperplane theorem implies that there exists a positive integer β ≥ 0 such that

bi(Y ) =





bi(X) when i < d− k
bd−k(X) + β when i = d− k
b2k+i(X) when d− k < i

(3.4)

In words, this mathematical result states that every cohomology class of Y originates from

a cohomology class of the ambient manifold X, except for the middle cohomology of Y ,

where there can be additional classes, not related to the cohomology of X.

For our Higgs branch we have that Mc
ab = Y for X = CPa−1 ×CPb−1 and k = c, so it

follows that

bi(Mc
ab) =





bi
(
CPa−1 × CPb−1

)
when i < a+ b− c− 2

ba+b−2−c (CPa−1 × CPb−1
)

+ β(a, b; c) when i = a+ b− c− 2

b2c+i
(
CPa−1 × CPb−1

)
when a+ b− c− 2 < i

(3.5)

4Remember, by definition θ3 = −(θ1 + θ2).
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Hi Jz

0

1

2

2n

−n
2

−n
2 + 1

n
2

1

ω

ωn

J+ ∼ ω∧

Figure 2. The cohomology of CPn as the spin n
2 Lefschetz representation of SU(2).

The cohomology of CPa−1×CPb−1 is rather simple as we will review now. While doing

so we will also point out how it decomposes under the Lefschetz representation of SU(2),

as this will be useful in the next subsection where we discuss the relation to states on the

Coulomb branch. The Lefschetz representation on the cohomology H? of a Kähler manifold

of complex dimension d, is defined by identifying J+ = ω∧ , J− = i(ω, ·) , Jz = deg−d
2 and

hence |J | = n
2 , where ω is the Kähler form and deg is the degree of a class.

The first step is to recall the cohomology structure of CPn, whose only non-trivial coho-

mology classes are the Kähler form and its products: ω, ω2 . . . , ωn. Hence, the odd cohomol-

ogy groups are all zero-dimensional and the even cohomology groups have dimension one:

b2i+1 (CPn) = 0 b2i (CPn) = 1 (when i ≤ n)

This is also the simplest example to illustrate the Lefschetz representation of SU(2), as

H?(CPn) corresponds to a single spin n
2 representation. Indeed, the only states present are

the n+ 1 states created by acting with the raising operator J+ = ω∧ on the unique lowest

angular momentum state 1 ∈ H0. We have illustrated this in figure 3.2.

The cohomology of CPn × CPm is simply given by the tensor product. As familiar,

the tensor product of a spin n
2 and a spin m

2 representation decomposes into a sum of

irreducible spin |n−m|2 to n+m
2 representations. From the point of view of cohomology this

is realized as follows: we can generate new non-trivial classes by wedging with either ω1 or

ω2, but the raising operator of SU(2) is actually ω∧ = (ω1 +ω2)∧, so we will have different

highest-weight states. A simple counting per degree (see for example figure 3.2) gives the

following Betti numbers (when n ≤ m):

b2i+1 (CPn × CPm) = 0

b2i (CPn × CPm) =





i+ 1 when i ≤ n− 1

n+ 1 when n ≤ i ≤ m
m+ n+ 1− i when m+ 1 ≤ i ≤ n+m

(3.6)

Combining (3.5) and (3.6) gives us, up to the precise value of β, complete knowledge

of the cohomology groups of the Higgs branch Mc
ab. In the next two subsections we will
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ω2∧

ω1∧

H i

2n
2n

2
(m

−
n
)
+

1

Jz

−n+m
2

n+m
2

0

1

2
−n+m

2
+ 1

n+ 1

m+ 1

n
+

1

1

ωm
1 ωn

2
ωn
2

ωm
1

Figure 3. The cohomology of CPn×CPm as the spin n
2 ⊗ m

2 = ⊕m+n
j=|m−n|

j
2 Lefschetz representation

of SU(2). Note that as cohomology classes the (blue) dots on the right, organized vertically into

irreducible SU(2) representations, are linear combinations of the (red) dots on the left that are

simply powers of ω1 and ω2.

further analyze this result: First, we will argue that those cohomology classes originating

form classes on CPa−1×CPb−1 are in one to one correspondence to states on the Coulomb

branch. Second, we will show when there are additional states, by computing β(a, b, c) and

determining the conditions under which it is strictly positive. Third, we will give a precise

estimate for this number when a, b and c are large.

3.3 Emergence of the Coulomb branch

As shown in the previous subsection, the states on the Higgs branch Mc
ab fall into two

classes. First there are those that originate from the cohomology of CPa−1 × CPb−1, and

secondly there are an additional β(a, b, c) states in the middle cohomology ofMc
ab. It turns

out that the first class can be identified with the states on the Coulomb branch, while the

β(a, b, c) additional states have no such interpretation and will therefore be referred to as

‘pure-Higgs’ states.

To make this identification we will show that the cohomology classes originating from

CPa−1×CPb−1 do not mix with the pure-Higgs states under the Lefschetz SU(2) and form

an independent spin j1 ⊗ j2 representation, exactly as the states on the Coulomb branch.

For the Coulomb branch this was shown in [11], where j1 = j++j−−1
2 and j2 = j+−j−−1

2 ,

with j+/j− the maximal/minimal classical size of the angular momentum realized on the

Coulomb branch. Note that the total number of such states, that are either all fermionic or

bosonic, is then N = j2
+ − j2

−. To obtain this result from the Higgs branch, it is easiest to

consider four different combinatorial situations: bosonic/fermionic and scaling/non-scaling.

Since our whole discussion so far has been symmetric in a and b, we can choose a ≥ b
without loss of generality. A first difference between scaling and non-scaling quivers shows

up in the Higgs branch, as it inherits its cohomology from CPa−1 × CPb−1 up to a degree

k = a+b−2−c. Since the growth of cohomology by degree undergoes a change at i = 2a−2

for CPa−1 × CPb−1, see (3.6), we need to distinguish between k ≤ 2a − 2 and k > 2a − 2.
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This translates as b ≤ a+ c and b > a+ c, exactly the difference between the scaling and

non-scaling regime. Furthermore, since the cohomology CPa−1 × CPb−1 is non-vanishing

only for even degree, we need to distinguish between k even or odd.

The different situations are depicted in figure 4, and summing up the total number of

states gives:

• b ≤ a+ c, a+ b− c even

N(a, b, c) = 2

a+b−c
2
−2∑

i=0

(i+ 1) +
a+ b− c

2
=

(a+ b− c)2

4

= j2
+ − j2

−, with j+ =
a+ b− c

2
, j− = 0 (3.7)

• b ≤ a+ c, a+ b− c odd

N(a, b, c) = 2

a+b−c−1
2

−1∑

i=0

(i+ 1) =
(a+ b− c− 1)(a+ b− c+ 1)

4

= j2
+ − j2

−, with j+ =
a+ b− c

2
, j− =

1

2
(3.8)

• b > a+ c, a+ b− c even

N(a, b, c) = 2

a−1∑

i=0

(i+ 1) + (b− a− c− 2)a+ a = a(b− c)

= j2
+ − j2

−, with j+ =
a+ b− c

2
, j− =

b− a− c
2

(3.9)

• b > a+ c, a+ b− c odd

N(a, b, c) = 2

a−1∑

i=0

(i+ 1) + (b− a− c− 1)a = a(b− c)

= j2
+ − j2

−, with j+ =
a+ b− c

2
, j− =

b− a− c
2

(3.10)

The cohomologies in these four situations match perfectly with the results obtained

from the Coulomb branch [11]. Since they also match as SU(2) representations, we can

map each state on the Higgs branch to its unique corresponding state on the Coulomb

branch, that has the same SU(2) quantum numbers. From now on we will refer to these

states as ’Coulomb states’, and in summary, their degeneracy is

N(a, b; c) =





0 when c > a+ b− 2
(a+b−c)2

4 when |a− b| ≤ c ≤ a+ b− 2, a+ b+ c even
(a+b−c)2−1

4 when |a− b| ≤ c ≤ a+ b− 2, a+ b+ c odd

a(b− c) when c < b− a, a < b

b(a− c) when c < a− b, b < a

(3.11)
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H i
(
CPa−1 × CPb−1

)

2a− 2

a+ b− 2− c

0

2(b+ a− 2)
H i (Mc

ab)

a+ b− 2− c

0

2(a+ b− 2− c)

b ≤ a+ c (a+ b− c) even

H i
(
CPa−1 × CPb−1

)

2a− 2

a+ b− 2− c

0

2(b+ a− 2)
H i (Mc

ab)

a+ b− 2− c

0

2(a+ b− 2− c)

b ≤ a+ c (a+ b− c) odd

H i
(
CPa−1 × CPb−1

)

2a− 2

a+ b− 2− c

0

2(b+ a− 2)
H i (Mc

ab)

b > a+ c (a+ b− c) even

a+ b− 2− c

0

2(a+ b− 2− c)
H i
(
CPa−1 × CPb−1

)

2a− 2

a+ b− 2− c

0

2(b+ a− 2)
H i (Mc

ab)

b > a+ c (a+ b− c) odd

a+ b− 2− c

0

2(a+ b− 2− c)

Figure 4. This figure depicts the relation between the cohomology of CPa−1 × CPb−1 and Mc
ab,

given by (3.5) and (3.6). The combinatorics gives four different situations. The (red) crosses denote

the possible ’pure-Higgs’ states in the middle cohomology, that are discussed in section 3.4.

3.4 Distillation of the pure-Higgs states

We now turn our gaze to the pure-Higgs states: the states on the Higgs branch which

are not in one-to-one correspondence with states on the Coulomb branch. We know they

are all elements of the middle cohomology, and so carry zero angular momentum from a

space-time perspective. But up to now we have only shown that their degeneracy β(a, b, c)

can be positive. Since apart from β all the Betti numbers are known, we can compute it

from the Euler characteristic χ.

Let us make this precise, and at the same time point out the relation of the differ-

ent quantities to the supersymmetric index. The index of interest is the second helicity

supertrace, which after factoring out the center of mass half-hypermultiplet is given by

Ω = Tr(−1)2Jz . (3.12)

Under the identification of Lefschetz SU(2) with angular momentum, the z-component of

the angular momentum is equal to half the difference between the degree of the form and

the complex dimension of the manifold. This implies that

Ω = (−1)a+b+cχ (3.13)

As we we saw in the previous subsections, up to some contribution β at Lz = 0, all of the

cohomology classes have even degree, so we have

Ω(a, b; c) = (−1)a+b+cN(a, b; c) + β(a, b, c) (3.14)

β(a, b, c) = (−1)a+b+c(χ(a, b; c)−N(a, b; c)) (3.15)
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We computed N(a, b; c) in the last subsection and because the Higgs branch Mc
ab is a

complete intersection manifold, there exist algebraic tools to compute its Euler character-

istic. This was first done in [1]:

χ(a, b; c) = χ (Mc
ab) =

∮
dJ1

∮
dJ2

(
J1

1 + J1

)−a( J2

1 + J2

)−b( J1 + J2

1 + J1 + J2

)c
(3.16)

So one, albeit rather obscure, form of β(a, b, c) is given by simply combining (3.11),

(3.16) and (3.15). However, a much nicer form that reveals some interesting properties of

β can be obtained by computing it’s generating function, as we will now show.

For a function f(a, b; c), the generating function is defined as

Zf =
∞∑

a,b,c=0

f(a, b; c)xaybzc , (3.17)

and eq. (3.15) implies that

Zβ(x, y, z) = Zχ(−x,−y,−z)− ZN (−x,−y,−z) (3.18)

Summing the Coulomb degeneracies (3.11) gives

ZN =
xy(1− xy + (x+ y − 2)xyz)

(1− x)2(1− y)2(1− xy)(1− xz)(1− yz) (3.19)

To compute the generating function of the Euler characteristic (3.16) it is convenient to

perform a change of variables in the integral. By defining x = J1
1+J1

and y = J1
1+J1

it

follows that

χ(a, b; c) =

∮
dx

∮
dy

x−ay−b (y(1− x) + x(1− y))c

(1− x)2(1− y)2(1− xy)c
(3.20)

By Cauchy’s theorem these are simply the coefficients of the following meromorphic

functions

fc(x, y) =
∞∑

a,b=0

χ(a, b; c)xayb =
xy (y(1− x) + x(1− y))c

(1− x)2(1− y)2(1− xy)c
(3.21)

We can now perform the sum over c by hand using the formula
∑
qczc = 1

1−qz , the result is

Zχ =
xy(1− xy)

(1− x)2(1− y)2(1− xy − xz − yz + 2xyz)
(3.22)

Combining (3.18), (3.19) and (3.22) one finds the generating function of pure-Higgs states:

Zβ =
x2y2z2

(1− xy)(1− xz)(1− yz)(1− xy − yz − zx− 2xyz)
(3.23)

This equation is the central result of this paper, and in the subsections we discuss some of

the physics it implies.
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3.5 Combinatorics of the pure-Higgs states

We obtained a closed form expression for β(a, b, c) through its generating function (3.23)

in the last subsection. Although we can now find its value for arbitrary values of (a, b, c),

by simply expanding the series up to sufficient order, this does not give much insight on

the origin and physical interpretation of these states. In this subsection we will discuss

a combinatoric interpretation of β, that will allow us to show that pure-Higgs states are

present if and only if (a− 2), (b− 2) and (c− 2) satisfy the triangle inequalities.

The first interesting property of β(a, b, c), that can be inferred directly from its gen-

erating function, is that it is symmetric in a, b and c. This is a very non-trivial fact, since

the Higgs branch Mc
ab, its Euler characteristic5 χ(a, b; c) and the Coulomb degeneracies

N(a, b; c) are only symmetric in a and b. This anti-symmetry between a, b and c followed

from a choice for the FI terms, as discussed in section 3.1. The fact that the symmetry is

recovered for the pure-Higgs states, seems to be additional evidence that these states are

associated with the scaling point, and belong equally to the three different branches of the

vacuum manifold obtained by the different choices of FI terms.

The generating function (3.23) is made up of two non-trivial combinatorial6 factors:

Zβ = x2y2z2Z∆ZD with

Z∆ ≡
1

(1− xy)(1− xz)(1− yz) ZD ≡
1

(1− xy − yz − zx− 2xyz)
(3.24)

As we show in appendix A, the coefficients of the first factor can intuitively be thought of

as a ‘delta function on even triangles’:

∆(a, b, c) =

{
1 when a+ b+ c even, a+ b ≥ c , b+ c ≥ a and c+ a ≥ b
0 otherwise

(3.25)

The second factor ZD is a well known generating function in combinatorics [27], its co-

efficients count the number of 3-derangements. More precisely D(a, b, c) is the number

of derangements, i.e. permutations without fixed points, of the multi-set that contains a

times 1, b times 2 and c times 3. As is shown in appendix A, from this combinatorial

interpretation it follows that these coefficients vanish if and only if the triangle inequalities

are violated:

D(a, b, c) 6= 0⇔ a+ b ≥ c , b+ c ≥ a and c+ a ≥ b (3.26)

Now note that the pure-Higgs degeneracies β are simple convolutions of these combi-

natoric numbers:

β(a, b, c) =

a−2,b−2,c−2∑

m,n,p=0

D(n,m, p)∆(a− n− 2, b−m− 2, c− p− 2) (3.27)

5Note that in [1] it ws observed that the Euler characteristic is almost symmetric, i.e. it can be written

as χ(a, b; c) = ab − f(a, b, c) with f symmetric in a, b and c. The function f is however only indirectly

related to β. On can define g(a, b, c) = ab − N(a, b; c), which is completely symmetric as well, and thus

β = (−1)a+b+c (g − f).
6A generating function is called combinatorial if all its coefficients are positive.
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First of all it follows from this formula that apart from Coulomb-states, additional pure-

Higgs states are present on the Higgs branch if and only if the shifted intersection products

(a− 2), (b− 2) and (c− 2) satisfy the triangle inequalities:

β(a, b, c) 6= 0 ⇔ a+ b− 2 ≥ c ≥ 2 , b+ c− 2 ≥ a ≥ 2 , and c+ a− 2 ≥ b ≥ 2 . (3.28)

Finally it also gives us a first, somewhat involved combinatorial interpretation of these

degeneracies. It turns out that β(a, b, c) counts all derangements of (a − 2 −m) numbers

1, (b − 2 − n) numbers 2 and (c − 2 − p) numbers 3 for all n,m and p with an even

sum and satisfying the triangle inequalities. It would be most interesting to rederive this

combinatorial result from a set of simple physical principles, something which we leave as

a problem for future work.

3.6 Growth of the pure-Higgs states

In the previous subsection we gave the general characterization of when pure-Higgs states

are present. Here we will give an exact, rather simple expression for their number, in the

limit of large charges. A first such asymptotic analysis (of the Euler characteristic) when

a = b = c � 1 was made in [1], by using the well-studied asymptotic behavior of Legen-

dre polynomials. Since we have calculated the explicit partition function for the number

of pure-Higgs states (3.23) we can use some mathematical results on the asymptotics of

meromorphic generating functions to extract the large-charge behavior. Our result repro-

duces that of [1] and generalizes it to cover the whole cone of possible a, b, c, as long as

they are of the same order.

Generating functions are powerful tools in analyzing sequences. For example, the

asymptotics of the sequence are encoded in the behavior of the generating function near

its poles. We will use the mathematical framework developed in [28, 29], that makes this

relation precise for meromorphic generating functions of multiple variables. Consider a mul-

tivariable sequence ar, r = (r1, . . . , rd) and its generating function Z(x) =
∑

r arx
r, with

xr = (xr11 , . . . , x
rd
d ). If we can write Z = G

H , with G non-vanishing and holomorphic near

a smooth, strictly minimal,7 simple zero x? of the holomorphic function H, then [28, 29]

show that as |r| → ∞ the sequence has the asymptotics8

ar ∼
(
N(r)

2π

) d−1
2 G√

(detDDH) (DDH)ijDiHDjH

∣∣∣∣∣
x=x?(r)

x?(r)
−r (3.29)

An important role is played by the differential operator Di = ∂
∂ log xi

. It is for example used

in the definition of the ’Hessian’ matrix (DDH)ij = DiDjH and its inverse (DDH)ij =

(DDH)−1
ij . The relation between the direction of r and the corresponding pole x?(r),

together with the normalization factor N(r), are found as the solution to the algebraic

equations:

DiH(x?(r)) = −N(r)ri and H(x?(r)) = 0 (3.30)

7For the definition of what the condition to be strictly minimal implies see [28, 29].
8We rewrote the result of theorem 3.5 of [28] in a coordinate covariant form, as detailed in appendix B.
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Let us now apply this technology to the generating function of pure-Higgs states (3.23):

Zβ =
x2y2z2

(1− xy)(1− yz)(1− zx)(1− xy − yz − zx− 2xyz)
(3.31)

We can take G = x2y2z2

(1−xy)(1−yz)(1−zx) and H = 1 − xy − yz − zx − 2xyz. The relation

between the zeros of H and the asymptotic direction in abc-space can then be found by

solving (3.30):

x? =
BC

2aA
(3.32)

y? =
CA

2bB
(3.33)

z? =
AB

2cC
(3.34)

N =
aA+ bB + cC

4abc
(3.35)

where for convenience we introduced the three ‘triangle functions’

A ≡ −a+ b+ c, B ≡ a− b+ c, C ≡ a+ b− c (3.36)

Note first that the conditions for the poles to lie in the first quadrant are equivalent to the

triangle inequalities for a, b, c: A ≥ 0, B ≥ 0, C ≥ 0. This is in perfect agreement with

the fact that only when these inequalities are satisfied a non-zero degeneracy exists, as we

showed in the previous subsection. This also justifies our assumption of analyticity of G

near the zeros of H:

G(x?, y?, z?) =
A2B2C2

(aA+ bB + cC)3 (3.37)

What remains is to compute the nontrivial factor

(detDDH) (DDH)ijDiHDjH
∣∣
x?

= 2x2
?y

2
?z

2
?

(
y?z?(2x

2
? + 2x? + 2 + y? + z?)

+z?x?(2y
2
? + 2y? + 2 +z? + x?) + x?y?(2z

2
? + 2z? + 2 + x? + y?)

)

=
ABC(aA+ bB + cC)

256 a3b3c3
(3.38)

One now has all the ingredients to put together formula (3.29) to find the number of

large-charge pure-Higgs states. For a, b, c� 1

β(a, b, c) ∼ 2

π

√
abc(ABC)3

(aA+ bB + cC)7

aabbcc

AABBCC
2a+b+c (3.39)

and hence the number of pure-Higgs states grows exponentially with the charges when all

intersection products are large and satisfy the triangle inequalities. This can be shown

explicitly: First note that

β(λa, λb, λc) ∼ 2

π

√
abc(ABC)3

(aA+ bB + cC)7

1

λ

(
(2a)a(2b)b(2c)c

AABBCC

)λ
(3.40)
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Since (A+B)(A+ C) ≥ A2 and cyclic, it follows that

a log 2a + b log 2b + c log 2c =
A

2
log(A+ C)(A+B) +

B

2
log(B + C)(A+B)

+
C

2
log(A+ C)(C +B)

≥ A logA+B logB + C logC

This implies that (2a)a(2b)b(2c)c

AABBCC ≥ 1 in the scaling regime and so β grows exponentially in

the scale λ.

Finally in the limit of equal intersection products, a = b = c, we reproduce the result

of [1]:

β(a, a, a) ∼ 2

37/2π

23a

a
. (3.41)

4 The Higgs-Coulomb map and a decoupling limit

Let us consider again the Lagrangian for the quiver quantum mechanics (2.1). In this

section it will be convenient to switch to a canonical field theory convention in which the

kinetic terms appear as

L =
1

g2
YM

(Ẋ2 +D2 + 2iλ̄λ̇) + |φ̇|2 + . . . (4.1)

In these convention [g2
YM]=3, ([X]=1, [λ]=3/2, [D]=2), ([φ]=−1/2, [ψ]=0), [θ]=−1 .

This Lagrangian has two distinct IR limits g2
YM → ∞, distinguished by the way in

which the fields are rescaled as the IR limit is taken (see [30, 31] for the 1+1 dimensional

case). The two limits are:

• IR Coulomb-branch limit. In this limit X̂ = X/gYM is kept fixed as g2
YM →∞. This

IR limit truncates the Hilbert to states that are asymptotically far on the Coulomb

branch. On such states one obtains a flat metric for X̂, with small corrections that

come from integrating out the chiral multiplets at a mass scale X̂gYM.

• IR Higgs-branch limit. In this limit all fields are held fixed as g2
YM →∞. The kinetic

term for the vector multiplet fields goes to zero, and they become auxiliary variables.

The only dynamical fields are the chiral multiplets. After solving for the auxiliary

vector fields in terms of the chiral fields we obtain a non-linear sigma model on the

Higgs branch.

The way that we scale the FI parameter in the different limits is more subtle and we discuss

it in appendix C.

Since X is scaled radically differently, the Higgs branch is disconnected from the wave

functions captured by the first limit. In the Higgs-branch limit, which is our main focus,

the vector multiplet fields are simply specific operators on the Higgs branch. To the extent

that the dynamics of some of the states on the Higgs branch can be described in terms

of the dynamics of these operators, we can think of these states as moving on a Coulomb
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branch-like throat that emanates from the Higgs branch, and we can refer to this loosely

as a Higgs-Coulomb equivalence. These are exactly the non-middle-cohomology states

described above. The simplest context in which this was carried out in detail, in quantum

mechanics, is the sigma model on the ADHM moduli space [14].9

As an aside, the black holes that we are discussing here can be enumerated using the

(0,4) CFT of [3]. Note that the latter is not obtained in any simple way from a linear sigma

model, which is our starting point here. Nevertheless, there are singular points in the the

moduli space of M5 branes on a CY in which it the M5 brane can decompose into several

ones, where a Higgs-Coulomb equivalence of the type that we are discussing might exist.

The basic objects that we are using to build the Higgs-Coulomb equivalence — the SU(2)

symmetry generators via the Lefschetz action — are also there in the MSW model, where

they are part of an SU(2)R current algebra. Constructing a Higgs-Coulomb equivalence for

the MSW string would be a generalization of the D1-D5 system to lower SUSY, just as the

quiver that we are discussing here is a generalization to lower SUSY of the D0-D4 system.

After taking g2
YM → ∞, one obtains the following equations from varying the La-

grangian with respect to the vector multiplet auxiliary fields

θp+
∑

q→p
spq|φpq|2 = 0,

∑

q→p
2xipq|φpq|2+spqψ̄pqσ

iψpq = 0,
∑

q→p
spqφ̄pqεψpq = 0 . (4.2)

Moreover in this limit D becomes a Lagrangian multiplier exactly enforcing the D-term

constraint. For more details of this limit see appendix C. We must be careful, however, in

taking the limit of [14] as it is essentially a decoupling limit and from [4] it is clear that

such limits may cause multicenter solutions to decay. In appendix C we show that it is

possible to take this limit in a way that preserves some multicentered states and indeed this

corresponds precisely to the AdS3×S2 decoupling limit of [4]. An important consequence

of this limit is that θp in (4.2) is non-zero iff the center has D6 charge (p0
p 6= 0).

The key point is that in this limit the field that usually parameterize the Coulomb-

branch, xipq, is not set to zero; rather its equation of motion implies that, schematically,

xipq =
ψ̄pqσ

iψpq
2|φpq|2

(4.3)

which can now be interpreted as an operator relation defining an operator x̂pq on the Higgs

branch. We will see that the VEVs of this new operator parameterize a space that is

essentially the Coulomb branch. Thus, in this limit, the Coulomb branch emerges from

a change of basis in the Higgs branch [14]. In fact (4.3) is precisely the change of basis

that maps the Lefchetz action in the Higgs branch to the angular momentum operator in

spacetime.

As we explain below, the full story is somewhat more complicated; in particular

eq. (4.3) is somewhat non-trivial to derive for more than two centers. Technicalities aside,

however, the two-center problem appears to capture the essential physics of the map so let

us begin by reviewing it.

9A discussion of the two branches in 1+1 dimensional (0,4) and (4,4) GLSM models appears in [30, 31]

and in a partition function in [32].
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4.1 Two centers

For two centers pq = 12, the sum in the first equation of (4.2) has only one term and

therefore (4.3) holds immediately. This operator relation becomes much more natural if

we rephrase it in terms of the angular momentum operator on the Coulomb branch. Recall

from [7, 11] that the latter is given by

Ĵ ic =
1

2

∑

p<q

Γpq x
i
pq

|xpq|
(4.4)

with the subscript c emphasizing that this is a Coulomb branch angular momentum. For

two centers equations (1.1) and (2.4) imply that x12 = Γ12/2θ1 so

Ĵ ic = θ1 x
i
12 = −θ1 s12

ψ̄σiψ

2|φ|2 =
1

2
ψ̄σiψ (4.5)

where we have dropped the pq labels on the hypermultiplets (we only have two centers)

and in the second and third equality we have imposed the Dp and xip e.o.m. (the first and

second equation of (4.2)).

To understand the nature of this operator recall that ψA, ψ̄
A (A = 1, 2) are two-

component fermions with non-vanishing commutation relations10

{ψ̄1α, ψβ1 } = δαβ, {ψ̄2α, ψβ2 } = δαβ . (4.6)

These commutation relations and the supersymmetry variations in [10] are consistent with

the identification of ψ as (holomorphic) differentials and derivatives on the target space of

the theory

ψ̄1ᾱ → dφ̄ᾱ, ψα1 → gαβ̄
∂

∂ dφ̄β̄
, ψ̄2ᾱ → gᾱβ

∂

∂ dφβ
, ψα2 → dφα , (4.7)

from which we see that Ĵ ic is nothing else but the Lefschetz action on CΓ12 (the target space

of the φα)

Ĵ3
c =

1

2

(
dφ̄ᾱ ∧ ∂

∂ dφ̄ᾱ
+ dφα ∧ ∂

∂ dφα
− Γ12

)
,

Ĵ+
c = gᾱαdφ̄

ᾱ ∧ dφα, (4.8)

Ĵ−c = gᾱα
∂2

∂ dφ̄ᾱ∂ dφα

with Ĵ±c adding/removing a power of the symplectic form and Ĵ3
c giving (p + q − Γ12)/2

when acting on an element of Hp,q(CΓ12).

We have not yet imposed the last e.o.m. in (4.2), which comes from the variation with

respect to λ. This equation projects the ψ to the tangent bundle of the CPΓ12−1 which

comes from imposing the D-term constraints on φ12

− s12|φ12|2 = θ1 . (4.9)

10See [10, appendix A] for fermion conventions. In [10] Greek letters α, β are used for fermionic indices

whereas here they denote flavor indices α = 1, · · · ,Γpq and we use upper-case Latin characters for fermionic

indices.
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This space is the vacuum moduli space of the Higgs branch and this projection will also

pull back Ĵc above to give the Lefshetz action on the cohomology of CPΓ12−1.

Thus we see explicitly that the operator relation (4.3) maps the spacetime angular

momentum operator (whose eigenvalues characterize the two-center states) to the Higgs-

branch Lefschetz operator. The two-center Coulomb branch vacuum manifold is an S2 and

Ĵ ic is just the quantization of this sphere. From the point of view of this quantization the

two-sphere re-emerges in the classical, Γ12 →∞, limit.

This map between Higgs- and Coulomb-branch states extends to three centers, but,

as we will see, its structure is far less trivial: the overall Lefschetz action will still map to

the total spacetime angular momentum, but we will also find operators that measure the

positions of individual centers.

4.2 Three centers

In order to solve the x equations of motion for three centers we first use translational

invariance to fix x3 = 0 and then solve


φ2

12 + φ2
31 −φ2

12 −φ2
31

−φ2
12 φ2

12 + φ2
23 −φ2

23

−φ2
31 −φ2

23 φ2
23 + φ2

31






xi1
xi2
0


 = −



s12b

i
12 − s31b

i
31

s23b
i
23 − s12b

i
12

s31b
i
31 − s23b

i
23


 (4.10)

with

bipq ≡
ψ̄pqσ

iψpq
2

. (4.11)

The solution for xi1, xi2 is

xi1 = −s23φ
2
12b

i
23 − s31φ

2
12b

i
31 + s12φ

2
23b

i
12 − s31φ

2
23b

i
31

φ2
12φ

2
23 + φ2

31φ
2
23 + φ2

12φ
2
31

xi2 = −s23φ
2
12b

i
23 − s31φ

2
12b

i
31 − s12φ

2
31b

i
12 + s23φ

2
31b

i
23

φ2
12φ

2
23 + φ2

31φ
2
23 + φ2

12φ
2
31

.

(4.12)

While this expression is clearly much more complicated than for two centers, we will see it

simplifies significantly when the quiver is closed and there is a superpotential.

As we have explained in section 3.1, when the quiver is closed the superpotential

W (φ) 6= 0 and moreover is effectively cubic [1]. Generic solutions to this superpotential

then must have φαpq = 0 for one of the hypermultiplets; the choice of which hypermultiplet

vanishes is dictated by the sign of the FI term and, in keeping with section, 3.1 we will

take φ31 = 0. Moreover, since in a closed quiver the graph is directed the spq have the

same sign, which we take s12 = s23 = s31 = −1.

This yields

xi12 =
bi12

φ2
12

, xi23 =
bi23

φ2
23

, xi31 = −b
i
12

φ2
12

− bi23

φ2
23

. (4.13)

For this choice the D-term conditions also reduce to:

φ2
12 = θ1, φ2

23 = −θ3 (4.14)

and hence the spacetime positions reduce to simple operators

xi1 =
ψ̄12σ

iψ12

2θ1
− ψ̄23σ

iψ23

2θ3
, xi2 = − ψ̄23σ

iψ23

2θ3
(4.15)
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and the total angular momentum is just the Lefschetz operator on on Ca × Cb

Ĵ ic =
1

2

(
Γ12

x12
xi12 +

Γ23

x23
xi23 +

Γ31

x31
xi31

)
=
ψ̄12σ

iψ12

2
+
ψ̄23σ

iψ23

2
(4.16)

where we’ve used the fact that xi31 = −xi23 − xi12 and also used the constraints (1.1)

combined with (2.4) to eliminate the θ’s.

We see therefore that for three centers the Coulomb branch is only non-trivially re-

produced once we’ve imposed both the D- and F-term constraints. Moreover, as is clear

from the discussion in section 3 the “pure Higgs” states all map to zero-angular-momentum

states on the Coulomb branch. While it is not evident from (4.15)–(4.16) we know from

an independent analysis of the three-center Coulomb branch [11, 13] that the only point in

the three-center solution space with zero angular momentum is the scaling point when all

~xp = 0. This is the only way to set (4.16) to zero while satisfying the constraints (1.1).

4.3 Some comments on Higgs branch corrections to the multi-center dynamics

In the limit that the centers are close to each other, gravity develops a long AdS2 throat.

The associated conformal symmetry is manifested in the effective Lagrangian of the centers.

We would like to see if can say something about the reliability of this throat from the

construction above. I.e., we would like to see if the physics of the Higgs branch, and the

Higgs-Coulomb map, can introduce any effects that will cut off the throat. There are two

sources for such corrections, both of which break the approximate conformal invariance

near x→ 0.

1. The X’s are not real bosonic variables — rather they are fermion bilinears. The dy-

namics in the effective action cannot be trusted when the wavelength of the quantum

wave packet in the X = ψ̄σψ/φ2 goes below 1/θ. In this case, if we wrote the full

dynamics, at |φ2| = θ, we would see the quantization or granularity of X as a fermion

bi-linear. In the effective action, this effect is driven by the term which is linear in

the time derivative, which was used in [11] to argue that the throat should be cut

off at a minimal value of the angular momentum, and x. The identification of the

position as a composite fermion operators indicates that this is true even beyond the

low energy limit.

2. Recall that we have been using a linear sigma model description of the Higgs branch,

obtained from the quiver quantum mechanics. Although the latter is a complete and

self contained quantum model, it is only part of the full quantum mechanics of the

black hole. This for example can be deduced from the fact that, although it counts

an exponentially large number of states, it does not repreoduce the entire entropy in

this charge sector. The full “Higgs branch”, i.e., the full quantum mechanics of the

black hole in this charge sector, is presumably the moduli space of branes wrapping

cycles in the CY, with the appropriate charges. This conjecture is natural given the

MSW counting of the entropy of these black holes. The linear sigma model that we

used is therefore only an effective model in a specific regime of this larger quantum

mechanical system and the presence of the latter necessarily implies corrections to

the former.
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To go beyond the quiver quantum mechanics, we need to go to finite energies and to

larger values of the fields, perhaps crossing some potential barriers or lifiting to a 1+1 field

theory (for a discussion of related ideas see [33]). This implies that there exists a scale

µ �
√
θ, with dimension −1/2, such that when the chiral fields reach φ ∼ µ (which is

again the regime X ∼ µ−2 � 1/θ), we need to use the fuller description of the BH in the

MSW CFT. Since the Coulomb branch is embedded in the Higgs branch, we therefore

expect that the dependence on X in the effective Coulomb branch will get modified around

X ∼ 1/µ2. The corrections to the Lagrangian appear as powers of φ2/µ2, which translate

into an expansion in 1/(X2µ2). This point can be made more precise for the D0-D4 system,

to which we turn in the next subsection

4.4 The Higgs-Coulomb equivalence for a compact D0-D4 system

As we mentioned before, the D0-D4 system is a good testing ground for the ideas discussed

in this paper. The theory has 8 supercharges, and hence we expect that by analyzing it we

will also be able to shed some light directly on the conformal symmetry found in [2], and,

more interestingly, on its violation in the throat.

In the language of four-dimensional N = 2 multiplets, the low-energy theory of N0 D0

branes and N4 D4 branes has a vector multiplet (X, ρ,D) in the adjoint of SU(N0), and

hypermultiplets (Q,ψ) charged in the fundamental of both SU(N0) and the global SU(N4)

symmetry. The metric on the D0 moduli space (for a single brane, for simplicity), can be

obtained by integrating out the D0-D4 string, and is [34]:

(
1 +

gsN4l
3
s

r3

)
(∂X)2 (4.17)

where r2 = |Xi|2. This is a one-loop result, but if one assumes SO(5) symmetry, and

some other mild assumptions one can show that the metric is actually not renormalized

further [35]. As usual, to go to the near-horizon region we “drop the 1”. At r → 0 a new

non compact space opens up, with the same scaling symmetry as in the black holes quivers

discussed above

t→ λt, X,→ λ−1X, ρ→ λ−3/2ρ, D → λ−2D (4.18)

When the D4 brane is non-compact this conformal symmetry is exact, and not just an

artifact of the moduli space approximation. Indeed, taking the limit g2
YM →∞, which puts

the system on the Higgs branch, is the same as neglecting the 1 in the Coulomb branch

metric. The kinetic terms for the vector multiplet vanish in this limit, and it is easy to see

that (when θ = 0) this theory has a scaling symmetry:

Q→ λ1/2Q, ψ → ψ, F → λ−1/2F (4.19)

This is, of course, compatible with the relation X = ψ̄ψ/Q2.

If we have a θ term in the Lagrangian, it becomes irrelevant when one is in the throat,

and disappears as λ → 0. As argued above this is similar to the scaling limit, in which

the θ also become irrelevant in the bubble equations as the xij ’s are going to zero. The
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similarity is not a coincidence — we will shortly put the D0-D4 on a 6 torus to obtain a

4D model.

The map X = ψ̄ψ/Q2 has the following qualitative interpretation: Within the moduli

space of instantons there are singular points in which the gauge symmetry is enhanced.

Physically, at these points some of the instantons shrink. When an instanton shrinks inside

a D4 brane, it can leave the D4 brane as a D0 brane, which implies that the Coulomb

branch is attached to the Higgs branch at the shrinking point. For example, when N0 = 1

and N4 = 2 the Higgs branch is R4
center of mass × R4/Z2, and Q2 is the distance from the

singularity. The near-Higgs Coulomb branch is a description of the Higgs branch degrees of

freedom near these singularities, and since ψ̄ψ is quantized, then X ∼ 1/Q2. The smaller

Q is, and the closer we are to the singularity, the more strongly coupled the description

in terms of the Higgs branch variables becomes. At the same time, the Coulomb-branch

description in terms of X improves as X becomes large. Conversely, when X becomes small

we are pushed to larger values of Q. In this regime the Higgs-branch variables are weakly

coupled, whereas the X variables are strongly coupled, indicating the limit of validity of

“Coulomb-branch” description in terms of X at small values in the full action.

When the D4-brane is compact, the moduli space of instantons is compact as well. We

will denote the size of the radii of the T 4 by L (all radii are roughly the same). The 1+1

dimensional analogue of this quantum mechanics is the D1-D5 system, which is a sigma

model on a deformation of (T 4)N0N4/SN0N4 .

Quantum Mechanics on this space has no obvious conformal symmetry. However, the

points at which the manifold develops a singularity are locally the same as in the non-

compact case, because they are associated with zero size instantons, for which the global

structure of the T 4 is irrelevant. This is similar to the statement that the local singular-

ities in T 4/Z2 are the same as in R4/Z2. There is therefore an approximate conformal

symmetry in the vicinity of these points. The symmetry is broken at large value of Q and

becomes more exact at small values of Q. Translating to the Coulomb branch variables,

the conformal symmetry is a better approximation at large values of X, and breaks down

for small values of X. It is easy to evaluate the scale where this happens: If the size of

the compact manifold of the Q’s is characterized by a scale, ζ, which has dimension −1/2,

then the cut-off in the Coulomb-branch description is at X < ζ−2.

The rest of the discussion is as before — one can write a model which takes these

effects into account, but one can also obtain it using scaling arguments. The corrections

to the effective action should disappear in the limit ζ →∞ which means that they give an

expansion in 1/ζ. Compared to the conformal terms, the terms in this expansion would

have additional powers of 1/(Xζ2). Hence, these terms blow up at X → 0.

A related situation happens in the conformal quantum mechanics for five-dimensional

black holes, described in [2]. The dynamics on the moduli space is a conformal quantum

mechanics, with 8 supercharges, but with a slightly different kinetic term. When the centers

approach each other the kinetic term behaves like

L ∼ (U̇)
2

U4
. (4.20)
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The conformal symmetry here is not of the same form as the scaling symmetry we en-

countered in four dimensions. Indeed, this model is described by intersecting M2 branes

wrapping 2 cycles in the CY, for which there is no quiver model because the theory on

the M2 branes is not an ordinary gauge theory. The main branch of this moduli space is

when all the M2 branes are connected, but there are points of degeneration where a single

connected M2 can split into distinct components. The geometric part of the moduli space

of M2 wrapping cycles in a CY is the same as the moduli space of D2 branes wrapping the

CY (there could be additional moduli upon compactification) and is still compact. The

latter is dual (for simple enough manifolds) to the D0-D4 moduli space, on another CY.

Hence, we expect that the D0-D4 argument above can be applied to this system as well,

indicating that the throat will be cut off at some small value of X.

There is yet another way to argue that Coulomb branch is capped off. When the

moduli space is compact there is a finite gap between the extremal states (encoded in the

cohomology) and the first excited states. The gap goes to zero when the volume of the

internal space becomes non-compact, and for the D0-D4 or the M2-M2 systems this volume

will be determined by the string theory/M theory moduli. In black hole language, the

absence of this gap at the quantum level means that the entropy of the black hole is infinite.

For example, we can take gs to zero, keeping the volume of the compactification fixed in

string units. This rescales the dimension (-1/2) ζ by g
−1/2
s for, say, the D0-D4 strings. At

the same time Mp →∞ and the entropy in any fixed-charge sector of the theory (which has

a black hole) diverges. The conformal symmetry comes at a costly price — only when black

holes in the theory have a continuum of states and infinite entropy can they accommodate

a conformal symmetry. Any finite Mp makes the black holes studied in [2] have a finite

number of states and hence they can no longer accommodate a conformal symmetry.

4.5 How do the pure Higgs branch states look in supergravity?

Given that the pure Higgs branch states live in the kernel of our Higgs-Coulomb map, it is

interesting to ask how they look in the regime of parameters where supergravity is a valid

description of the physics. Since they have zero angular momentum, and since the only

three-center solution with zero angular momentum lives at the scaling point, one possibility

is that the pure Higgs states will develop a horizon and will map to the single-center black

hole. However, one can also build solutions that have zero angular momentum away from

the scaling point11 and hence have a finite throat and no horizon; a Higgs state might also

map into such a configuration.

One can try to distinguish between the two possibilities by the following heuristic

argument: Suppose we want to probe the pure Higgs states with gravity modes and find

how much information can be obtained. If one restricts for simplicity to modes of the

metric, they couple to the action on the cluster of branes by terms prescribed by the DBI

action. Suppose we label the position of the cluster of branes by X = 0, where X are the

vector multiplet fields in the quiver. We can expand the gravity fields in derivatives around

X = 0, which gives an expansion in spherical harmonics around the point where the quiver

11One example is the “pincer” solution of [15].
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sits, and see to which operators in the quiver they couple. In the near horizon limit when

the coupling becomes large, this corresponds to probing a state on the Higgs branch with

different modes of the gravitational field.

Consider computing a 1-pt function of such fields from the quiver perspective. The

time-time component of the metric, g00, couples to the quiver energy which is determined

by the BPS condition. On the other hand, the components g0µ and any derivative of gµν
couple to powers of Xµ. The operator that we are evaluating, from the Higgs branch point

of view, is therefore some power of Xµ.

There are now two possibilities: if one computes the expectation values of all such

polynomials in a pure-Higgs cohomology state and some of them are nonzero this suggests

that the state will correspond to a finite-size zero-angular-momentum configuration and

hence will not have a horizon. If on the other hand all these operators have zero expectation

values in the pure Higgs states, then the quadrupole, octopole, etc. moments of solutions

corresponding to these states are all zero, and hence these states will be indistinguishable

from a black hole, at least as far as gravity one-point functions are concerned. This calcu-

lation promises to shed light on this fascinating issue, and we leave it to future exploration.
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A Two simple combinatorial computations

In this appendix we show two small technical results on the combinatorial coefficients

appearing in the pure-Higgs generating function.
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A.1 ∆(a, b, c) as a delta-function

We will compute the coefficients ∆(a, b, c) of the generating function

Z∆ =
1

(1− xy)(1− yz)(1− zx)
(A.1)

First note that
1

1− xy =
∑

a,b

δ(a− b)xayb (A.2)

The coefficients ∆ are thus simply a double convolution of such delta functions, one finds

∆(a, b, c) =

a,c∑

m,p=0

δ(m+ p− b)δ(a−m− c+ p) (A.3)

This is zero unless there exist m, p such that 0 ≤ m ≤ a, 0 ≤ p ≤ c, b = m + p and

a + b − c = 2m. One can check that this condition is equivalent to a, b, c satisfying the

triangle inequalities and a+ b+ c even. In summary

∆(a, b, c) =

{
1 when a+ b+ c even, a+ b ≥ c , b+ c ≥ a and c+ a ≥ b
0 otherwise

(A.4)

A.2 3-derangements and triangle inequalities

Here we will show that the number of 3-derangements D(a, b, c), i.e. the number of permu-

tations without fixed points of the multi-set that contains a times 1, b times 2 and c times

3, is non-vanishing if and only if a, b and c satisfy the triangle inequalities:

D(a, b, c) 6= 0⇔ a+ b ≥ c , b+ c ≥ a and c+ a ≥ b (A.5)

• First we show that if the three triangle inequalities are satisfied there always exists

at least one derangement. By symmetry we can assume that a ≤ b ≤ c, and so the

only non trivial inequality is a + b ≥ c. On can then check then that the following

permutation has no fixed points and is hence a derangement:

(1, . . . , 1︸ ︷︷ ︸
a times

, 2, . . . , 2︸ ︷︷ ︸
b times

, 3, . . . , 3︸ ︷︷ ︸
c times

) 7→ (3, . . . , 3︸ ︷︷ ︸
c times

, 1, . . . , 1︸ ︷︷ ︸
a times

, 2, . . . , 2︸ ︷︷ ︸
b times

) (A.6)

• It is also easy to show that there are no derangements if the triangle inequalities are

violated. Since derangements by definition don’t allow fixed points we need to move

all the a numbers 1 to another position, previously occupied by a 2 or 3. There are

b+ c such positions, so this is only possible if a ≤ b+ c. By symmetry the other two

triangle inqualities follow.
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B A covariant formula for the asymptotics of multivariate sequences

In this appendix we document the algebraic manipulations that allow to write the result

of Theorem 3.5 in [28] on the asymptotics of certain multivariate sequences in a covariant

form.

In [28] the following formula for the asymptotics of a multivariate sequence with gen-

erating function of the form Z = G
H is derived (under certain conditions):

ar ∼ (2π r0)
1−d
2

G

D0H
√
H
x−r

∣∣∣∣
x=x?(r)

(B.1)

Here the following notation is implied x = (x0, . . . , xn), r = (r0, . . . , rn), n = d − 1. In

this appendix we will use the following index notation: i, j = 0, . . . , n and a, b = 1, . . . n.

Furthermore

Di =
∂

∂ log xi
, H = detDaDb log g , H(g(x1, . . . , zn), x1, . . . , zn) = 0 (B.2)

Note that the formula (B.1) should be evaluated at x = x?(r), defined as the solution to

the equations

r0DiH(x?(r)) = riD0H(x?(r)) and H(x?(r)) = 0 (B.3)

The formula (B.1) is a beautiful and powerful mathematical result, but is in this form

not manifestly coordinate invariant, as the coordinate x0 plays a special role. We will show

in this appendix how one can rewrite the formula in the following manifestly coordinate

covariant form:

ar ∼
(
N(r)

2π

) d−1
2 G√

(detDDH)(DDH)ijDiHDjH
x−r

∣∣∣∣∣
x=x?(r)

(B.4)

In this formulation both x?(r) and N(r) are found by simultaniously solving the (d + 1)

algebraic equations

DiH(x?(r)) = −N(r)ri and H(x?(r)) = 0 (B.5)

Furthermore we used the compact notation

(DDH)ijDiHDjH =

n∑

i,j=0

(DDH)−1
ij DiHDjH (B.6)

To relate the forms (B.1) and (B.4) first note that the conditions (B.3) and (B.5) are

equivalent as we can take D0H = −N(r)r0 as the definition of N , furthermore note that

also by definition x? 0 = g. The new form (B.4) then follows from the following identity

det (DD log g)|x0=g = (−D0H)−n−2 (detDDH) (DDH)ijDiHDjH
∣∣
x0=g

(B.7)

This identity can be obtained through some simple, but somewhat tedious algebra. A

first step is to rewrite derivatives of g in terms of derivatives of H. Note that since by

definition H(g, x1, . . . , xn) is identically zero it follows that also

Da1 . . . DakH(g(x1, . . . , xn), x1, . . . , xn) = 0 .
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Using this and the modified chain rule Di(f ◦ h) = Dif∂ih one can derive that

Dag =
−DaH

∂0H

∣∣∣∣
x0=g

DaDbg =
−1

∂0H

(
DaDbH −

D0DaHDbH

D0H
− D0DbHDaH

D0H

−DaHDbH

D0H
+
D0D0HDaHDbH

D0HD0H

)∣∣∣∣
x0=g

(B.8)

Furthermore using that

DaDb log g =

(
1

g
DaDbg −

1

g2
DagDbg

)
(B.9)

one finds that

DaDb log g =
−1

D0H

(
DaDbH −

D0DaHDbH

D0H
− D0DbHDaH

D0H
+
D0D0HDaHDbH

D0HD0H

)∣∣∣∣
x0=g

The crucial step is to observe that this can be written as a product

DaDb log g =
−1

(D0H)3
VaiDiDjH V T

jb (B.10)

by introducing the n× (n+ 1) matrix

Vab = D0Hδab , Va0 = −DaH . (B.11)

On can now apply the Cauchy-Binet formula for the determinant of the product of non-

square matrices to find

det(DD log g) = (−D0H)−3n
n∑

i,j=0

detV (i) detV (j) det(DDH(ij)) (B.12)

Here V (i) is the n× n matrix obtained by removing the i’th column from the n× (n+ 1)

matrix V , while DDH(ij) is the n× n matrix obtained by removing both the i’th row and

j’th column from the (n + 1) × (n + 1) matrix DDH. The identity (B.7) then follows by

observing that

detV (i) = (−1)i (−D0H)n−1DiH (B.13)

det(DDH(ij)) = (−1)i+j (cofactorijDDH) = (−1)i+j (detDDH) (DDH)−1
ij (B.14)

C The decoupling limit

The decoupling limit described in section 4 and [14] sends g2
YM →∞ while simultaneously

taking an IR limit of the theory. We will do something similar here but will phrase it in

the language of [4] and eq. (2.1), so we can more carefully track its effect on the CY moduli

(which were not so important in [14]).
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The limit in [4] involves fixing the mass of stretched M2-branes and hence we intro-

duce R, the length of the M-theory circle, and lift all quantities to 11-dimensions (see [4,

appendix A] for conventions and details). In the decoupling limit we send, `11, the Plank

length in 11-dimensions to zero while fixing the mass of M2’s wrapping on x11 and the

volume12 of the CY in Plank units

MM2 ∼
xR

`311

, ṼM =
VM
`611

(C.1)

from which it follows that JM ∼ Ṽ
1/3
M , the Kahler moduli normalized in Plank units, are

fixed. As in [4] we will take R to be fixed in some arbitrary units implying that

x ∼ `311 → 0, JIIA ∼
(
R

`11

)
JM →∞ (C.2)

where JIIA are the IIA moduli measuring volumes in string units, JIIA`
2
s = JM`

2
11 (from

which the above follows via R`2s ∼ `311). As explained in [4] this is a near-horizon limit that

also decompactifies to five-dimensions (as R/`11 →∞).

To understand how this limit affects the Higgs branch let us consider its effects on

Z(Γ), the central charge associated with a center, which appears in (2.2)–(2.3). The J

in (2.2) is in fact JIIA so schematically

Z(Γ) ∼ p0

(
R

`11

)3/2

+ qA
(
R

`11

)1/2

+ qA

(
R

`11

)−1/2

+ q0

(
R

`11

)−3/2

(C.3)

where we’ve only exhibited the scaling of each component of the charge.

As we are interested in taking an IR limit let us reintroduce factors of `s in (2.1) to

correctly exhibit the dimensionality of the couplings (for brevity we have dropped the center

subscripts, p, q, but one could equivalently think of this as the center-of-mass Lagrangian

for two centers [10])

L =
m

2

(
ẋ2 +D2 + 2iλ̄λ̇

)
− θD

`s
+

1

`2s

[(
x2

`2s
+D

)
φ2 + ψ̄σixiψ − i

√
2(φ̄λεψ − h.c.)

]

Here we focus only on terms containing vector multiplet components as the other terms will

not play any role. Note that unlike in section 4, x,D and λ have non-standard dimensions

due to their non-standard kinetic term, while θ is dimensionless by (2.3).

Let us now take the limit of [4] by rescaling all the components of the vector multiplet

by `−3
11 (e.g. x̃i = xi/`311 and likewise for D̃, λ̃)

L =
m`611

2

(
˙̃x2+D̃2+2i

¯̃
λ

˙̃
λ
)
− `

3
11θD̃

`s
+R

[(
Rx̃2+D̃

)
φ2+ψ̄σix̃iψ−i

√
2(φ̄λ̃εψ−h.c.)

]

where we have used the fact that R`2s ∼ `211. Combining (C.3) with (2.2)–(2.3) we find

m`611 =

√
v Z(Γ) `611

R
∼ `611

(
R

`11

)d/2
(C.4)

12Here we use VM for the volume measured by the 11-d metric but this is not so important as we follow

the conventions of [4] where the IIA volume is set equal to the M-theory volume asymptotically.
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where d is the highest degree of the charge Γ (i.e. the dimension of the associated brane:

0, 2, 4, or 6). Thus in the limit `11 → 0 we see that m → 0 and the kinetic terms for

the vector multiplets vanish. The scaling of the FI term also depends on the charge of the

center Γ
`311 θp
`s

=
√
R`311 Im(e−iαZ(Γp)) ∼ p0R2 +O(`11) (C.5)

with the constant piece proportional to the D6 charge p0. So exactly as in [4] the FI term

(which maps to the constants in the integrability equations (1.1)) survives only if a given

center carries D6-charge.

Note that the limit we have taken is actually an M-theory limit as we are forced to

take the M-theory radius to infinity in Plank units R/`11 →∞. Thus the associated near-

horizon region is AdS3×S2. If we instead wished to stay in IIA we would have to take

`11 → 0 keeping R/`11 fixed but this would send R→ 0 (i.e. `s → 0 but keeping gs finite).

As evident from (C.5) this would also send the FI term to zero as R2.
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