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We discuss irreducible statistical limitations of future ton-scale dark matter direct detection experi-

ments. We focus in particular on the coverage of confidence intervals, which quantifies the reliability of

the statistical method used to reconstruct the dark matter parameters and the bias of the reconstructed

parameters. We study 36 benchmark dark matter models within the reach of upcoming ton-scale

experiments. We find that approximate confidence intervals from a profile-likelihood analysis exactly

cover or overcover the true values of the weakly interacting massive particle (WIMP) parameters, and

hence are conservative. We evaluate the probability that unavoidable statistical fluctuations in the data

might lead to a biased reconstruction of the dark matter parameters, or large uncertainties on the

reconstructed parameter values. We show that this probability can be surprisingly large, even for

benchmark models leading to a large event rate of order a hundred counts. We find that combining

data sets from two different targets leads to improved coverage properties, as well as a substantial

reduction of statistical bias and uncertainty on the dark matter parameters.

DOI: 10.1103/PhysRevD.86.023507 PACS numbers: 95.35.+d

I. INTRODUCTION

Among the large number of possible dark matter candi-
dates [1–4], weakly interacting massive particles (WIMP)
[5] are by far the most widely studied. WIMPs naturally
arise from popular extensions of the standard model of
particle physics (e.g., the lightest neutralino in supersym-
metry [6,7] and the B1 in theories with universal extra
dimensions [8–10]), and they naturally achieve the appro-
priate cosmological relic density through thermal freeze-
out in the early Universe.

Several experiments are currently searching for these
particles by looking for signals of WIMPs scattering on
atomic nuclei in large underground detectors, and many
others are planned for the next decade (see e.g., Ref. [1]
and the discussion in Ref. [11]). Although the DAMA/
LIBRA [12] and CoGeNT [13] collaborations have re-
ported a modulation of the measured event rate that has
been tentatively interpreted in terms of WIMPs (e.g., [14]),
and the CRESST-II collaboration has found a large excess
of events in the acceptance region where a WIMP signal
would be expected [15], these results can hardly be recon-
ciled with null searches from experiments such as
XENON100 [16,17], CDMS-II [18,19], EDELWEISS-II
[20] and ZEPLIN-III [21]. The controversy will hopefully
be resolved by next-generation direct detection experi-
ments, where larger rates and better statistics could lead
to an incontrovertible discovery of dark matter.

If a WIMP-nucleon scattering signal is detected, the
event rate and the shape of the measured spectrum of recoil
energies can be used to determine the properties of the
dark-matter particle, most importantly its mass and scat-

tering cross section. The constraining power of present and
upcoming experiments has been thoroughly discussed in
the literature [11,22–25]. Here, we present irreducible
statistical limitations of future dark matter direct detection
experiments.
We focus on two different issues: first, we explore the

concept of coverage of confidence intervals, which quan-
tifies the reliability of the statistical method adopted to
reconstruct the WIMP parameters. We investigate the cov-
erage of one-dimensional confidence intervals, constructed
using an approximate method that relies on the assumption
that profile likelihood ratios are chi-square distributed,
based on Wilks’ theorem [26]. This approximate method
of constructing confidence intervals is commonly used for
frequentist data analysis in the literature in lieu of more
complex methods (e.g., Feldman and Cousins [27]), which
provide exact coverage by construction. The coverage of
parameter reconstructions has been previously discussed in
the context of direct detection [28] and collider identifica-
tion [29] of supersymmetric models.
Second, we consider how well one can expect to recon-

struct the WIMP properties from future direct-detection
data, given the statistical fluctuations that will inevitably
impact the observed energy spectrum.We perform parame-
ter reconstructions on thousands of simulated data sets to
estimate the average uncertainty and bias in the recon-
structions of several different WIMP benchmark models.
Additionally, we provide an estimate of the number of
outliers in the parameter reconstructions. We show that
for several different benchmark models that lead to small
average uncertainties in the parameter reconstruction, a
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non-negligible percentage of all reconstructions results in a
much larger uncertainty, as a result of statistical fluctua-
tions that impact on each individual data set. Considering
the number of outliers for different WIMP benchmark
models is of crucial importance, since in practice there
will be a unique realization of each experiment, and the
constraints derived from a particular realization can be
very different from the outcome for the ‘‘average experi-
ment,’’ as illustrated below. Finally, we investigate how
the average uncertainty in the WIMP mass can be de-
creased by increasing the exposure of direct detection
experiments, for several different benchmark points in
WIMP parameter space.

The complementarity between direct detection experi-
ments using different target materials, and the possibility
of obtaining tighter constraints on the WIMP parameters
when combining data from more than one experiment,
have recently been emphasized in Refs. [11,24,30,31].
Here we compare the coverage, uncertainty and bias of
reconstructed parameters for various benchmark points,
based either on mock data sets from a single xenon experi-
ment, or a combined analysis of mock data from a xenon
experiment and a germanium experiment.

Throughout our analysis we assume that the background
event rate is negligible, and ignore uncertainties in the
nuclear physics of elastic scattering and the local WIMP
distribution function. We expect that the coverage, preci-
sion and bias of our reconstructions will degrade if the
backgrounds are non-negligible and astrophysical uncer-
tainties are fully taken into account. Given this optimistic
setup, we present here a set of irreducible limitations on
WIMP parameter reconstruction from future direct detec-
tion experiments, arising from fundamental statistical fluc-
tuations driven by the Poisson nature of the event rate.

The paper is organized as follows: in Sec. II we intro-
duce the formalism of direct dark matter detection and
discuss the expected performance of upcoming experi-
ments. In Sec. III we present our parameter reconstruction
method and introduce the statistical quantities we use to
quantify the performance of our reconstruction procedure.
We present our results in Sec. IV and our conclusions in
Sec. V.

II. DIRECT DARK MATTER DETECTION

A. Theoretical formalism

Dark matter direct detection experiments aim to detect
signals of WIMPs scattering on target nuclei. The nuclear
recoil spectrum for a WIMP of mass m� and a target

nucleus of mass mN has the form

dR

dER

ðERÞ ¼ �0

m�mN

Z
v>vmin

d3 ~v
d�

dER

vfð ~vþ ~vEÞ: (1)

Here dR=dER has units of events per unit energy per unit
time per unit target material mass, �0 is the local dark

matter density, � is the WIMP-nucleus scattering cross
section and ER is the WIMP-induced recoil energy of the
nucleus. Neglecting gravitational focusing of WIMPs as
they flow into the potential well of the Solar System, fð ~uÞ
is the normalized local WIMP velocity distribution func-
tion in the rest frame of the Galaxy, ~vE is the Earth’s
velocity in this frame and ~v is the velocity of the WIMPs
in the rest frame of the Earth (which is also the WIMP-
nucleon relative velocity, as to a good approximation the
nucleons are at rest in the Earth frame). In this paper we
focus on elastic WIMP-nucleus interactions. For elastic
scattering the minimum velocity vmin required for a
WIMP of mass m� to be able to induce a nuclear recoil

of energy ER is

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mNER

2�2
N

s
; (2)

where �N ¼ m�mN=ðm� þmNÞ is the WIMP-nucleus re-

duced mass.
The differential scattering cross section d�=dER in-

cludes different types of WIMP-nucleus interactions. We
will assume that all events result from spin-independent
WIMP-nucleus scattering and neglect all other types of
interactions. In this case the differential scattering cross
section is given by

d�

dER

¼ mN

2v2�2
N

�SI
NF

2ðERÞ; (3)

where F ðERÞ is the spin-independent nuclear form factor,
which accounts for the finite extent and composite nature
of the atomic nucleus, and �SI

N is the spin-independent (SI)
zero-momentum WIMP-nucleus cross section. This cross
section can be written in terms of the mass number of the
nucleon A, its atomic number Z, the WIMP-proton cou-
pling fp, and the WIMP-neutron coupling fn,

�SI
N ¼ 4

�
�2

NðZfp þ ðA� ZÞfnÞ2: (4)

In the following we will assume that the WIMP-proton and
WIMP-neutron couplings are very similar fp � fn (as

appropriate in most supersymmetric setups [32], but see
also Refs. [33–36] for alternative scenarios), so that
the WIMP-nucleus cross section simplifies to �SI

N ¼
4�2

NA
2f2p=�. In analogy to this expression we define the

WIMP-proton cross section �SI
p ¼ 4�2

pf
2
p=�, with �p ¼

m�mp=ðm� þmpÞ the WIMP-proton reduced mass. The

differential scattering cross section can then be rewritten as

d�

dER

¼ mN

2v2�2
p

A2�SI
p F 2ðERÞ: (5)

In this analysis we use the Helm form factor [37]

F ðERÞ ¼ 3
sinðqrÞ � ðqrÞ cosðqrÞ

ðqrÞ3 e�ðqsÞ2=2; (6)
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where q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNER

p
is the momentum transferred in the

recoil, s ¼ 0:9 fm, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 7�2a2=3–5s2

p
, a ¼ 0:52 fm

and c ¼ ð1=23A1=3 � 0:6Þ fm. Using Eq. (5) the nuclear
recoil spectrum can be rewritten as

dR

dER

ðERÞ¼
�0�

SI
p A

2F 2ðERÞ
2�2

pm�

Z
v>vmin

d3 ~v
fð ~vþ ~vEÞ

v
: (7)

The quantities of interest are the WIMP mass m� and the

spin-independent WIMP-proton cross section �SI
p . The

choice of target material enters the analysis via the mass
number A and the form factor F ðERÞ, and through vmin.

Note for m� � mN , vmin !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ER=2mN

p
, and hence the

recoil spectrum depends on m� and �SI
p only via the

degenerate combination �SI
p =ð�2

pm�Þ, which has a strong

impact on the performance of the reconstruction of the
WIMP properties, as we will see in the following sections.

The third component that enters the recoil rate is the
local astrophysical DM distribution, most importantly
the local density �0 and the WIMP velocity distribution
fð ~uÞ. In this analysis we will model local astrophysics
using the standard halo model. This model consists of an
isothermal, spherically symmetric galactic WIMP distribu-
tion. In this model, WIMP velocities follow a nonrotating
isotropic Maxwellian distribution in a galactocentric frame

with a one-dimensional velocity dispersion v0=
ffiffiffi
2

p
, where

v0 is the speed of the local standard of rest. WIMPs
traveling at very high velocities will escape the gravita-
tional attraction of the galaxy and will therefore not be
present in the halo. This is taken into account by truncating
the velocity distribution at some escape velocity vesc,
leading to a WIMP velocity distribution function

fð ~vþ ~vEÞ ¼
8<
:

N�1

v3
0
�3=2 e

�ð ~vþ ~vEÞ2=v2
0 ; for j ~vþ ~vEj< vesc

0 otherwise;

(8)

withN ¼ erfðvesc=v0Þ � 2��1=2ðvesc=v0Þe�ðvesc=v0Þ2 a nor-
malization factor which ensures that

R
d3 ~ufð ~uÞ ¼ 1. The

velocity of the Earth with respect to the rest frame of the
Galaxy is given by the sum of the local circular velocity ~v0,
the Sun’s peculiar velocity ~vpec and the Earth’s velocity

relative to the Sun ~vorb

~v E ¼ ~v0 þ ~vpec þ ~vorb: (9)

The contribution of both j ~vpecj � 10 km=s and ~vorb �
30 km=s to ~vE is small compared to the contribution of
~v0 � 200–300 km=s. As we consider neither directional
signatures nor the annual modulation of the nuclear recoil
spectrum in this study, the latter two terms in Eq. (9) can be
neglected and ~vE ’ ~v0.

It is well known that there is a sizeable uncertainty on
the astrophysical parameters �0,v0,vesc and fð ~uÞ.
Additionally, the standard halo model can only be consid-
ered a first approximation to a much more complicated

halo profile [38–41]. In order to achieve a correct recon-
struction of the WIMP parameters from experiment, it is of
vital importance to take into account these uncertainties
[23–25]. The aim of this paper is to investigate the cover-
age properties and the quality of the reconstruction
for different WIMP benchmark models and identify
any unavoidable statistical effects. In order to do so
we will assume an ideal case, fixing all of the astrophysical
parameters to their fiducial values and neglecting
their uncertainties. The fiducial values we use are
�0 ¼ 0:4 GeV=cm3, v0¼230km=s and vesc¼544km=s.
We will investigate coverage properties of a more general
framework that includes astrophysical uncertainties in the
WIMP distribution function in a future work.
The total number of recoil events NR can be found by

weighting the nuclear recoil rate in Eq. (7) by the event
acceptance �ðERÞ, and integrating from some threshold
energy Ethr to some maximum energy Emax. Assuming
that the acceptance is not energy dependent, �ðERÞ simply
falls out of the integral, and becomes a mean effective
exposure �eff (which is the product of the detector mass
and exposure time). NR is then given by

NR ¼ �eff
Z Emax

Ethr

dER

dR

dER

: (10)

For our coverage study, we select a number of
WIMP benchmark models, with benchmark mass
and cross-section ranges m� ¼ ½25; 250� GeV and

�SI
p ¼ ½10�8; 10�10� pb. For each benchmark point the

analysis is based on 103 mock data sets.

B. Future direct detection experiments

In order to assess the performance of the reconstruction
of WIMP properties from next-generation direct detection
data, we will use ton-scale, low-background versions of
two current detectors. We will systematically investigate
the constraints that data sets from these experiments can
place on the WIMP properties for different benchmark
models.
The most stringent constraints on WIMP properties

are currently provided by the XENON100 collaboration
[17]. The recently published 90% confidence level (C.L.)
exclusion curve has a minimum cross section of
�SI

p ¼ 7:0� 10�9 pb at a WIMP mass m� ¼ 50 GeV

[17]. These constraints will be improved further once
data from the proposed XENON1T experiment becomes
available in 2015 [42]. Additionally, the DARWIN Project1

is working towards a multiton scale noble liquid experi-
ment which is expected to start running in 2017 and will
probe spin-independent cross sections down to 10�12 pb
[43]. A second promising WIMP detection strategy is
based on cryogenic detectors operating at very low

1http://darwin.physik.uzh.ch.
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temperatures, most notably the current CDMS-II germa-
nium experiment [18]. The SuperCDMS and GEODM
cryogenic germanium experiments aim to upgrade this
experiment to the ton scale within the next decade [44].
A second planned experiment using cryogenic detectors
operating at mK temperatures is EURECA.2 This experi-
ment is pushing for a target mass of 1 ton and will probe
cross sections down to 10�10 pb.

In this study we will use a ton-scale experiment with a
liquid natural Xe target with average atomic mass
131 g=mol, and a ton-scale Ge experiment with atomic
mass 73 g=mol. The characteristics of these detectors are
chosen to reflect projects that can realistically be built within
the next 5–10 years; they are given in Table I. Although
large liquid argon experiments are also currently under
construction, we choose not to include simulated argon
data in this study because previous studies have shown
that germanium and xenon provide tighter constraints on
the WIMP parameters and halo velocity distribution [11].

For both the xenon and the germanium experiments we
assume a threshold energy of Ethr ¼ 10 keV and only
consider recoil energies below 100 keV. This is a reason-
able cutoff, given the exponential decay of the WIMP-
nucleus recoil spectrum with energy. Studies have shown
that resolving the exponential decay at high energies is
important for improving parameter reconstruction [25].
For both experiments we assume a total cut efficiency of
�cut ¼ 80%. Following Ref. [11], for the Xe experiment
we take a fiducial detector mass of 5 tons and one year of
operation. We assume that a percentage ANR ¼ 50% of all
nuclear recoils in the fiducial region are accepted, so that,
after inclusion of the overall cut efficiency, the effective
exposure is �eff ¼ 2:00 ton� year. For the germanium
experiment we adopt a fiducial detector mass of 1 ton
and an exposure of three years. Taking into account the
percentage of events that survive the selection cuts �cut and
the nuclear recoil acceptance for germanium ANR ¼ 90%
the effective exposure is �eff ¼ 2:16 ton� years.

Several sources of background can induce additional
recoil events in direct detection experiments, such as cos-
mic rays or radioactive contaminations. Future detectors
will apply a variety of advanced techniques in order to
achieve extreme radio purity and self-shielding of the
detector, minimization of cosmic ray events and precise

determination of charge-to-light and charge-to-phonon ra-
tios, in order to limit the background to <1 event per
effective exposure. Given these prospects in the following
we assume that backgrounds are negligible.
We do not include the energy resolution of the detectors,

as for both target materials including energy resolution
smearing has a negligible impact on the recoil rate, except
possibly near threshold. The scenario considered here is
therefore somewhat idealized, which means that the statis-
tical uncertainties we identify are unavoidable, inherent to
theWIMPbenchmark point and target exposure, rather than
a reflection of systematic uncertainties in detector response,
backgrounds or modelling of the dark matter halo.

III. STATISTICAL METHODOLOGY

A. Mock data generation

The data set for a direct dark matter experiment consists

of the total number of observed events N̂R and the

spectrum of recoil energies fÊi
Rg, with i ¼ 1; . . . ; N̂R. The

likelihood function Lð�Þ for the WIMP parameters
� ¼ fm�;�

SI
p g is given by the Poisson probability of

observing N̂R events, multiplied by the probabilities of
each event of energy Ei

R having been drawn from the
predicted probability distribution of event energiesPðERj�Þ

L ð�Þ ¼ NRð�ÞN̂R

N̂R!
exp½�NRð�Þ�

YN̂R

i¼1

PðÊi
Rj�Þ: (11)

Notice that in the above we have replaced the (latent,
unobserved) true recoil energy Ei

R by the observed value

Êi
R, thus assuming that energy resolution of the detectors is

negligible, as outlined in the previous section.NRð�Þ can be
computed from Eq. (10) using the experimental character-

istics in Table I. The distribution PðÊR; �Þ is no more than
the normalized recoil spectrum

PðÊR; �Þ ¼ dR=dERðÊR; �ÞREmax
Emin

dE0
RdR=dE

0
RðE0

R; �Þ
; (12)

where the rate dR=dERðER; �Þ is given in Eq. (7). Note that
the efficiency parameter �eff drops out in the one-event
likelihood because we assume that this function is indepen-
dent of recoil energy. For both the Xe and the Ge target the
integration limits areEmin ¼ 10 keV andEmax ¼ 100 keV.
As explained in the previous section no background events

are included in N̂R, as we assume the background to be

TABLE I. Primary characteristics of future ton-scale dark matter direct detection experiments
using xenon and germanium as target materials. For further details see Sec. II B.

Target Ethr (keV) � (ton� year) ANR �eff (ton� yr) Number of

background events

Xe 10.0 5.00 0.5 2.00 <1
Ge 10.0 3.00 0.9 2.16 <1

2http://www.eureca.ox.ac.uk.
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negligible. The so-called unbinned likelihood function in
Eq. (11) has been employed by both the XENON and the
CDMS collaborations [45,46]. The likelihood function for
the combined data set of our two toy experiments is given by
the product of the individual likelihood functions, each
found from Eq. (11).

The mock data sets for the experiments are generated as

follows. First, the measured total number of counts N̂R is
drawn from a Poisson distribution with mean equal to the
benchmark number of counts NR. Then, values for the

measured recoil energies fÊi
Rg, i ¼ 1; . . . ; N̂R are drawn

from the differential event rate dR=dERðERÞ, given in
Eq. (7), for the benchmark value of the parameters.

B. Parameter reconstruction technique

We employ Bayesian methods to scan over the parame-
ter space and reconstruct the WIMP properties; see [47]
for further details. The cornerstone of Bayesian parameter
inference is Bayes’ theorem

pð�jdÞ ¼ Lð�Þpð�Þ
pðdÞ ; (13)

where pð�jdÞ is the posterior probability density function
(PDF),Lð�Þ is the likelihood function and pð�Þ is the prior
distribution on the parameters. The evidence is given by
pðdÞ, which in the context of parameter inference acts as a
normalization constant and will not be of interest in the
following. There are two possible ways of looking at
parameter inference: either in the Bayesian context (where
the posterior PDF is the relevant quantity) or in the fre-
quentist framework (where the likelihood function or a
related test statistic is considered). In this work, we will
use Bayesian Markov Chain Monte Carlo (MCMC) tech-
niques to obtain samples from the posterior PDF of
Eq. (13), but we will also use these samples to map the
likelihood function in the parameter space of interest, here
the WIMP mass and the WIMP-proton spin-independent
scattering cross section, � ¼ fm�;�

SI
p g. In order to sample

from the posterior distribution on these parameters, we
have to specify their prior PDF pð�Þ. Without assuming a
specific underlying WIMP model there are no a priori
constraints on m� and �SI

p . Therefore, we choose uniform

priors on the log of both the WIMP mass and cross section,
reflecting ignorance on their order of magnitude. The mass
prior range is fixed to 1 � log10ðm�=GeVÞ � 3. The range

of the cross section prior is chosen to span two orders of
magnitude around the benchmark cross section. We extend
this range where required, to avoid regions of high poste-
rior probability density touching the prior boundary.

Because the likelihood function is unimodal and well
behaved, and the parameter space is of low dimensionality
(D ¼ 2), we can efficiently sample the posterior PDF using
MCMC methods and use the ensuing samples to map out
the likelihood function in a quasifrequentist sense (see [48]
for a detailed study of profile likelihood evaluation using

Bayesian techniques in the context of supersymmetric
models). To this end, we use a Metropolis-Hastings algo-
rithm [49,50] to generate a ‘‘chain’’ of samples from the
posterior PDF. As our proposal distribution we take a two-
dimensional Gaussian centered on the previous point in the
chain; its covariance matrix is chosen according to earlier
test runs. For some of the benchmark points we consider,
the shape of the posterior distribution can vary strongly
because of statistical fluctuations in the data realization. In
these cases, to achieve an efficient and complete sampling
of the posterior we adopt a mixture strategy MCMC. Our
proposal distribution is a mixture of two different two-
dimensional Gaussians, whose covariance matrices are
chosen (from earlier test runs) to match the two very
different shapes of the posterior distribution that can arise
from the same benchmark model due to statistical fluctua-
tions in the data (‘‘good’’ reconstructions and ‘‘bad’’
reconstructions, to be defined more precisely below).
Every third proposal of the MCMC is not drawn from
this Gaussian mixture, but instead is taken in a random
direction, with a step size tuned to achieve an acceptable
efficiency, in order to protect against under exploration of
the tails of the posterior.
Each Markov chain contains a minimum number N ¼

3� 105 samples; this ensures high enough statistics for a
successful coverage investigation. Some benchmark mod-
els lead to a very spread-out posterior distribution. In these
cases we further increased the number of points in the
chains, up to a maximum of N ¼ 5� 105 points. We
discarded the initial 104 samples of each chain (the
so-called ‘‘burn-in’’). We checked that this is sufficient to
ensure that the resulting distribution is independent of the
starting point of the MCMC and that the results of our
analysis are stable when the length of the chains is doubled.
Finally, we tested our MCMC method on toy models with
known analytic posterior distributions, in order to verify its
suitability and numerical stability.

C. Coverage

There are two ways of reporting inferences: x% credible
intervals (Bayesian) contain a fraction x of the posterior
probability; they express the posterior degree of belief
about the value of the parameter considered after the data
and any prior information have been taken into account. An
x% confidence interval (Frequentist) is built from the like-
lihood function alone, and, ideally, it ought to contain
(‘‘cover’’) the true value of the parameter x% of the time,
when repeatedly applied to mock data generated from
those true parameter values. This requirement leads to
the concept of ‘‘coverage.’’ Coverage is an inherently
frequentist concept, and it is not necessarily of concern
to Bayesian statistics, although reliable behavior of
Bayesian credible intervals under repeated sampling is
arguably also a desirable property. In the following, we
will mainly focus on evaluating the coverage and other
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statistical properties of (frequentist) confidence intervals,
for the reasons outlined below.

The profile likelihood test statistic for a point X in some
N-dimensional subspace �N of the full M-dimensional
parameter space �M (i.e., X 2 �N � �M), is

	ðXÞ ¼ �2 ln

�
L½X; �̂M�NðXÞ�

Lmax

�
: (14)

Here Lmax is the unconditional maximum likelihood; i.e.,
the global maximum likelihood value across the entire

M-dimensional parameter space. L½X; �̂M�NðXÞ� is the
conditional maximum likelihood for the given point X.
The subspace �M�N refers to the section of �M that is

not spanned by�N . �̂M�NðXÞ is the conditional maximum
likelihood estimate of the values of the parameters in
�M�N for X; i.e., the specific combination of the other
M� N parameters that maximizes the likelihood for the
chosen X in �N . Confidence intervals with exact coverage
can always be constructed by Monte Carlo evaluation of
the distribution of 	ðXÞ, as described in Ref. [27], but in
practice this may be a complicated and time-consuming
procedure.

Wilks’ theorem [26] shows that under certain regularity
conditions, Eq. (14) converges asymptotically to a chi-
square distribution with N degrees of freedom. Assuming
Wilks’ theorem holds, it is simple to define confidence
intervals using the profile likelihood function and standard
lookup tables for the chi-square distribution. However, in
practice there is no guarantee that such confidence inter-
vals will have the desired coverage properties, especially
in cases where the likelihood function is strongly non-
Gaussian, which leads to a lack of convergence of the
test statistic to its asymptotic behavior. Undercoverage
(overcoverage) of a confidence interval means that the
interval is too short (too large). While overcoverage is
unnecessarily conservative, undercoverage can be a par-
ticularly severe problem, as the true value of the parame-
ters will lie outside the stated interval a larger fraction of
the time than its stated confidence level implies.

In the following analysis we discuss the coverage of
Wilks-based one-dimensional (1D) confidence intervals
for the WIMP mass and spin-independent cross section.
The profile likelihood is constructed by binning the two-
dimensional (2D) parameter space (fm�;�

SI
p g), and deter-

mining the test statistics (14) in each bin. We then use
Wilks’ theorem to find the confidence level of interest. We
used 750 bins in each direction of parameter space, choos-
ing the bin size so that they covered the whole range
spanned by the samples. We found that a significantly
larger number of bins leads to large numerical noise, while
a smaller number gives too coarse a likelihood mapping
and hence artificial overcoverage (as tested on Gaussian
toy models, for which the coverage is exact).

D. Performance of parameter reconstruction

In addition to determining how well the Wilks-based
confidence levels cover the benchmark models, we are
interested in estimating how well one may expect to con-
strain WIMP properties from future direct-detection data
sets, including realization noise. An important indicator is
the uncertainty in the reconstructed parameters. In order to
quantify this, we consider the expected fractional uncer-
tainty (e.f.u.) along a direction in parameter space. The
fractional uncertainty (f.u.) is defined as the fractional
length of the 68% confidence interval relative to the bench-
mark parameter value �true,

f :u: ¼ �68%max � �68%min

�true
: (15)

The e.f.u. is the average of this quantity over 100 recon-
structions. However, even a benchmark model with a small
average f.u. may contain a sizeable number of reconstruc-
tions with a large parameter uncertainty. Therefore, in
addition to the e.f.u. we also count the number of ‘‘bad’’
reconstructions in 100 reconstructions. A bad case is
defined as a reconstruction with an f.u. >0:75, in which
case only very limited constraints can be placed on the
parameter in question (m� or �SI) from the data.

The f.u. is somewhat similar to the statistical quantity
known as effect size [51,52], which for the case of �SI is

d � ð�̂SI � �SI;nullÞ
SD

: (16)

Here �̂SI and SD are the mean and standard deviation,
respectively, of a series of repeated measurements of �SI.
In our case, an equivalent role to �̂SI and SD are played by
the best-fit reconstructed value of�SI, and half the width of
the corresponding 68% CI. This is because these quantities
are good estimators for, respectively, the true value of �SI

and the standard deviation of �̂SI, the observed best-fit
value. The quantity �SI;null refers to the value of �SI under

the null hypothesis; i.e., the default situation against which
the effect is being sought. In our case, the null hypothesis is
simply that there is no WIMP signal, so �SI ¼ 0.
Therefore, in the limit of zero bias, where the best-fit value
of �SI is exactly equal to the benchmark value, e.f.u. is
approximately equivalent to 2d�1. The case ofWIMPmass
is less straightforward, as m� is undefined under the null

hypothesis.
One of the basic properties of statistical inference is that

the power of a statistical test (its ability to avoid excluding
a true hypothesis that differs from the null hypothesis)
increases with d [52,53]. This is simply the statement
that larger effects can be detected more easily. We can
therefore see that the e.f.u. not only relates to the precision
with which the WIMP mass can be reconstructed, but also
gives some idea of the statistical power for detection of a
WIMPwith this mass. That is, a smaller e.f.u. indicates that
a model can be detected more easily, so we expect the e.f.u.
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to roughly track the sensitivity of an experiment across the
WIMP parameter space.

We can further investigate the performance of the sta-
tistical reconstruction by explicitly considering the bias3

for the parameters m� and �SI
p . The statistical bias for a

parameter � is the expectation value of the difference

between the best fit value �̂bf resulting from the recon-
struction and the true value �true, i.e.,

bias ¼ h�̂bf � �truei: (17)

As for the e.f.u., the expectation is taken by averaging the
observed bias over 100 reconstructions. In the following
we focus on the e.f.u. and bias of the reconstructed WIMP
mass, as the performance of the reconstruction is expected
to typically be poorer in the mass than the cross-section
direction, due to the impact of statistical fluctuations on the
observed recoil spectrum.

IV. RESULTS

A. The impact of statistical fluctuations
on the reconstruction

We investigate the performance of the reconstruction
of WIMP properties for six benchmark masses m� ¼
f25; 35; 50; 70; 100; 250g GeV, and six spin-independent
WIMP-proton cross sections �SI

p ¼f1:00�10�8;

3:98�10�9;1:58�10�9;6:31�10�10;2:51�10�10;1:00�
10�10gpb, thus 36 benchmark models in total. The number
of dark matter recoil events above threshold for our Xe
experiment (see Sec. II B) for these benchmark points is in
the range 10 & NR & 4000. As we focus on the case of a
significant detection in a future experiment, we do not
investigate the statistical properties of benchmark points
in the very low counts regime, where NR < 10, as it is hard
to constrain much of anything with fewer than�10 events.

Before we present results for our coverage study and the
quantitative description of the performance of parameter
estimation, we show examples of good and poor recon-
structions of WIMP parameters based on the mock data
sets of a specific benchmark point. These examples illus-
trate points that will be important in our coverage and
performance studies.

Two examples of the reconstruction using Xe data are
shown in Fig. 1 for a benchmark model with WIMP mass
m� ¼ 50 GeV and spin-independent WIMP-proton cross

section �SI
p ¼ 2:51� 10�10 pb. This is an example of a

benchmark point for which the performance of the recon-
struction can vary strongly with the mock data. We show on
the left of Fig. 1 an example of a ‘‘good’’ reconstruction

(i.e., well constrained likelihood in the m� � �SI
p plane),

and on the right of Fig. 1 an example of a ‘‘bad’’ recon-
struction (leading to an essentially unconstrained likeli-
hood). For both cases we show the 68.3% and 95.4%
likelihood contours (top) and the energy spectrum of the
mock events (bottom), compared with the theoretical spec-
trum of the benchmark model (shown in black).
For the first example (left) both the 68.3% and the

95.4% confidence level spans a small range of masses
and the benchmark point is well reconstructed. The distri-
bution of the observed energies agrees well with the true
benchmark rate. In contrast, the second example (right)
leads to confidence levels that spread over a large mass
range; at 95.4% confidence only a lower limit on theWIMP
mass can be inferred (note that the 95.4% contour does not
close, but is cut off at the upper mass prior limit
m� ¼ 1000 GeV). The benchmark point is badly recon-

structed mostly because of the presence of a relatively
large number of high-energy counts at E> 40 keV.
Events with these energies are an unlikely realization of
the benchmark WIMP spectrum, but can appear in the data
due to statistical fluctuations. Poisson noise has flattened
the observed energy spectrum relative to the predicted
energy spectrum. The confidence intervals show ‘‘run-
away’’ behavior towards high mass because a flat energy
spectrum is indicative of high masses, and the energy
spectra for m� � mN are nearly identical. As an

example, the theoretical spectrum for a WIMP model with
m� ¼ 250 GeV,�SI

p ¼ 6:31� 10�10 pb is shown in red in

the bottom right panel. Clearly this model is a better fit to
the simulated events than the benchmark model.
Note that this benchmark model leads to a large number

of events (NR � 100), so that one would naively expect that
statistical fluctuations in the realized spectrum ought to
have a minor impact. This is clearly not the case, as the bad
reconstruction in the right panels of Fig. 1 shows that even
with �100 events, the parameter reconstruction can be
poor. Even though we show in the rest of this section that
this benchmark is relatively well behaved—the coverage is
exact for most intervals, the e.f.u. and bias are low, and the
expected number of large-f.u. outliers is fairly small—
there is a non-negligible probability that particular realiza-
tions of data sets for this benchmark lead to catastrophi-
cally poor WIMP parameter reconstructions.

B. Results from the coverage analysis

In order to investigate the coverage results for the 1D
68.3% and 95.4% confidence intervals for m� and �SI

p , for

both Xe data and a combination of Xeþ Ge data, we
generate 1000 mock data sets for each of the 36 benchmark
models, as outlined in Sec. III. The 1D 68.3% (1�) and
95.4% (2�) confidence levels are constructed using Wilks’
theorem and we count how often the true value of the
WIMP mass and cross section are found within the stated
C.L. We further subdivide the 1000 reconstructions into 10

3Another useful quantity is the so-called ‘‘mean squared
error’’ (MSE) for the parameters, given by the sum of the bias
squared and the variance. We have found that the MSE behaves
qualitatively similarly to the e.f.u., so we do not discuss it
separately.
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subsets, of 100 reconstructions each, and we compute the
coverage for each subset. We take the standard error of
these 10 values to estimate the statistical error of our
coverage analysis, encompassing the uncertainty coming
from finite numerical samples of the likelihood and the
finite number of reconstructions. Although this statistical
error on the coverage value varies mildly across benchmark
points, it is sufficient for our purposes to use its average
over all benchmark points. This leads to an estimated 1�
error of 4.5% for the 68.3% intervals, and of 1.9% for the
95.4% intervals.

We start by discussing the 1D 68.3% and 95.4% con-
fidence intervals for m�, shown in the top and bottom

panels of Fig. 2, respectively. On the left-hand side we
show the coverage results obtained for a Xe target, on the
right-hand side we show results for the combined data set
Xeþ Ge. From the above estimate of the error on the
coverage, we define the coverage to be ‘‘exact’’ if it lies
in the range (63.8, 72.8)% and (93.5, 97.3)% for the 68.3%
and 95.4% contours, respectively. Benchmark points show-

ing ‘‘exact’’ coverage within errors are displayed in green.
Coverage values >72:8% (> 97:3%) correspond to over-
coverage and are shown in red. Coverage values <63:8%
(< 93:5%) correspond to undercoverage. However, none
of the benchmark points studied here leads to undercover-
age of any of the confidence intervals. Benchmark points at
the upper boundary of exact coverage or the lower bound-
ary of overcoverage are displayed in black. For reference,
isocontours of the expected number of counts NR in a Xe
experiment are also shown.
For the Xe-only case, we find that most benchmark

points lead to exact coverage of the 1D 68.3% and 95.4%
contours. For the 68.3% interval there is a region observed
at high cross sections and intermediate WIMP masses that
borders on overcoverage; this is most likely the result of a
statistical fluctuation. For both the 68.3% interval and the
95.4% interval, two regions leading to significant over-
coverage can be identified, one at large m� ¼ 250 GeV,

and another at small m� ¼ 25, 35 GeV; both regions

correspond to a small �SI
p . The overcoverage observed in
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FIG. 1 (color online). The left (right) panels show examples for a good (bad) reconstruction of the WIMP benchmark model with
true values m� ¼ 50 GeV, �SI

p ¼ 2:51� 10�10. The difference is exclusively in statistical fluctuations in the simulated data. Top

panels: 68.3% and 95.4% confidence levels in the m� � �SI
p plane; the red cross shows the true value. Bottom panels: energy spectrum

of the mock data (yellow histogram: recall that we use an unbinned likelihood function, the counts are binned for a better
visualization), true rate dR=dEðEÞ (black) and for the ‘‘bad’’ reconstruction an example of a rate (red) with a higher likelihood
than the true rate.
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the first region is a result of the high-mass degeneracy (for
m� � mN , dR=dER depends only on �SI

p =ð�2
pm�Þ, (refer

to Sec. II A). The importance of this effect decreases with
increasing cross section because the slope of the energy
spectrum is better resolved with more events, and hence is
more sensitive to slight changes in vmin. The high-mass
degeneracy leads to a 1D profile likelihood that can no
longer be well approximated by a Gaussian, such that the
test statistic 	ðm�Þ defined in Eq. (14) starts to deviate

from a chi-square distribution. The difference between the
histogram of 	ðm�Þ values from the mock data and the chi-

square distribution with 1 degree of of freedom (as
predicted by Wilks’ theorem) is shown in Fig. 3 for a
high-mass benchmark point suffering from overcoverage
(m� ¼ 250 GeV, �SI

p ¼ 2:51� 10�10 pb; see left-hand

side of Fig. 2). For comparison, we also show the same
quantity for a benchmark point where the agreement with

the predicted chi-square distribution is much better (m� ¼
50 GeV, �SI

p ¼ 10�8 pb), and whose coverage is exact to

within errors. In contrast, for the high-mass point we
observe significant discrepancies in the test statistics
	ðm�Þ for values & 4, which explains why overcoverage

is observed for this benchmark point.
The overcoverage observed at small m� and �SI

p is a

result of the low number of counts for this benchmark
model. Due to the low statistics in the region of parameter
space the 1D profile likelihood is no longer well approxi-
mated by a Gaussian, hence the asymptotic behavior of
Wilks’ theorem is less accurate. The deviation fromWilks’
for these benchmark points is qualitatively similar to the
red curve in Fig. 3, albeit less extreme.
Coverage improves when the Ge data are added to the

analysis, as can be seen in the right panels of Fig. 2. Exact
coverage is obtained in most of the parameter space. An

FIG. 2 (color online). Coverage results for the 1D 68.3% (top) and 95.4% (bottom) confidence interval for the WIMP mass in the
m� � �SI

p plane, for simulated Xe target (left) and for a combination of Xeþ Ge (right). Green (red) regions show ‘‘exact’’ coverage

(overcoverage), as defined in the text. Black regions correspond to a transition from exact coverage to overcoverage. No undercoverage
is observed. Isocontours of the expected number of counts in the Xe experiment are given in black. In the upper-left plot, the
benchmark points studied are indicated by blue crosses. The ‘‘flares’’ pattern seen in some points are an artefact of the interpolation
scheme used to generate the plots.
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exception is observed at m� ¼ 70 GeV, �SI
p ¼ 6:31�

10�10 pb for the 95.4% plot, where slight overcoverage is
found. Because neighboring benchmark points are exactly
covered, we interpret this as a statistical fluctuation. Both
regions of overcoverage identified in the Xe-only case
shrink significantly when adding Ge data to the analysis.
For both the 68.3% and the 95.4% interval the overcoverage
at largem� is almost completely eliminated, except at small

�SI
p (for the 68.3% interval), for which the total number of

expected events is Oð10Þ. For higher �SI
p , overcoverage of

high-mass benchmark models is reduced since the likeli-
hood is tighter for a combined analysis of Xeþ Ge. The
remaining overcoverage of the 95.4% interval at m� ¼
250 GeV, �SI

p ¼ 1:58� 10�9 pb corresponds to a value

of 97.5%, which is just above the border of exact coverage
at 97.3%. However, at lower masses, especially for the
68.3% contour, overcoverage at very low cross sections
�SI

p 	 10�10 pb is not removed. In general, we find that

the possibility of overcoverage remains as long as WIMP
parameters are poorly constrained, which occurs most fre-
quently for benchmark points which imply a low expected
number of events. Both problems are resolved to some
extent with the addition of data sets from a second
experiment.

We display the results of our coverage analysis for the
1D 68.3% and 95.4% confidence intervals for �SI

p in Fig. 4.

The left-hand plot shows the results for a Xe target, the
right-hand plot shows the results for combined Xeþ Ge
data. In the case in which we consider the Xe data alone,

most of the parameter space corresponds to exact coverage,
but for both the 1� and the 2� intervals a large region at
high massesm� ¼ 250 GeV is overcovered. For the 95.4%

interval this region is spread over almost the entire cross-
section range, and extends to m� ¼ 100 GeV at low cross

sections. For the 68.3% interval a small region of over-
coverage is found at intermediate WIMP masses m� ¼ 50,

70 GeV and low �SI
p . For the 95.4% contour the corre-

sponding benchmark points systematically show a cover-
age percentage at least 1% above the exact value of 95.4%.
The overcoverage at large �SI

p is a result of the high-

mass degeneracy, analogously to what has been explained
above for the mass. The overcoverage at intermediate
WIMP masses can be explained using Fig. 1. Good recon-
structions yield one-dimensional profile likelihood func-
tions that are approximately Gaussian, and thus lead to
exact coverage. For bad reconstructions, the likelihood is
spread over a larger range and thus the statement that�SI

p is

overcovered for intermediate WIMP masses is a statement
about the ratio of good to bad parameter fits. Due to low
statistics resulting from the low number of counts the 1D
profile likelihood function can no longer be well approxi-
mated by a chi-square distribution, Wilks’ theorem be-
comes less accurate and overcoverage is observed. On
the other hand, the overcoverage around 50 GeV WIMPs
is not very significant, being close in magnitude to the
numerical uncertainty of our coverage values, and there-
fore could be interpreted as a statistical fluke.
As with the WIMP mass, coverage improves with the

addition of data from a Ge target (right plots in Fig. 4). For
the 68.3% contour the overcovered region at intermediate
m� ¼ 50, 70 GeV vanishes completely and is now

exactly covered (apart from what can again be
interpreted as a statistically nonsignificant fluctuation
around 70 GeV, which appears as a ‘‘flare’’ pattern in the
figure). The overcovered region at high WIMP masses
m� ¼ 250 GeV shrinks significantly, but is difficult to

eliminate at low cross sections �SI
p ¼ 10�10 pb, as dis-

cussed above. The improvement in the coverage is even
greater for the 2� contour. For a combined analysis of data
from Xeþ Ge the overcoverage observed for the Xe target
completely vanishes; the entire parameter space is exactly
covered. The coverage results for a selected subset of
benchmark points are shown in Table II.
Overall, our coverage analysis concludes that the ap-

proximate confidence intervals for the studied benchmark
points either cover exactly or overcover the true values of
the parameters; i.e., they are conservative. The two most
important effects at play are the large mass degeneracy,
and strong statistical fluctuations that are important
even for a relatively large numbers of expected counts
(� 100). We have shown that addition of data from a
second target such as Ge leads to significant improvement
on both fronts. We point out that the observed overcover-
age can in principle be remedied using methods such as
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FIG. 3 (color online). Difference between the histogram of the
profile likelihood test statistic 	ðm�Þ from mock data sets and the

value of the chi-square distribution with 1 degree of freedom (as
predicted by Wilks’ theorem) at the center of each bin, as a
function of 	ðm�Þ, for two different WIMP benchmark points.

This difference quantifies the deviation from Wilks’ theorem for
these two benchmark points. For each benchmark point, 103

realizations of mock data sets have been used to construct this
histogram. Error bars assume Poisson count statistics.
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Feldman-Cousins to build confidence intervals with guar-
anteed exact coverage.

We have also investigated coverage properties of the
credible intervals obtained from the Bayesian posterior.
For well-reconstructed benchmark points, credible inter-
vals are numerically identical to confidence intervals, since
we have taken flat priors on our WIMP parameters of
interest, so their coverage properties are the same.
However, for badly reconstructed points (i.e., lying on
the high-mass degeneracy line) the posterior is cut off at

large masses and cross sections by the prior range. This
means that the ensuing 1D marginal posterior and thus also
the credible intervals become a function of the prior range
adopted for the mass and cross section, which is clearly
unsatisfactory (this effect has also been pointed out in
another context by Ref. [54]). As a consequence, the cover-
age of Bayesian credible intervals exhibits broadly the
same trends as highlighted above for the frequentist inter-
vals, but also shows a tendency towards undercoverage in
some regions. As those results are however sensitive to the

FIG. 4 (color online). As in Fig. 2, but for the 1D confidence intervals for �SI
p . A significant improvement in the coverage when

combining Xeþ Ge is apparent.

TABLE II. Results of the coverage analysis of the 1D confidence intervals for four selected benchmark points. Results for the Xe
data alone are given, as well as for the combined analysis of Xeþ Ge (in parentheses).

Coverage (%)

m� (GeV) �SI
p (pb) NR 1D 68.3% m� 1D 95.4% m� 1D 68.3% �SI

p 1D 95.4% �SI
p

35 10�10 29 73.3 (75.4) 96.1 (96.3) 69.2 (68.7) 96.9 (95.5)

50 10�10 38 68.3 (73.5) 95.7 (96.3) 73.3 (71.2) 96.9 (96.8)

100 1:58� 10�9 527 70.3 (69.2) 96.0 (95.3) 68.9 (68.4) 94.9 (95.6)

250 10�8 1671 68.0 (66.7) 95.9 (94.9) 69.2 (67.6) 95.7 (95.2)
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choice of prior range, we do not present coverage results for
Bayesian credible intervals in this work; a thorough explo-
ration of this issue would require a study of how such
properties change as a function of the prior ranges chosen.
We emphasize however that the prior ranges have no impact
on our results for the frequentist confidence intervals.

C. Accuracy and precision of parameter reconstruction

We now consider the question of the accuracy and
precision of the parameter reconstruction. We start by
investigating the e.f.u. for m�, introduced in Sec. III D.

The e.f.u. quantifies the average fractional standard devia-
tion of the reconstructed WIMP mass value and thus is a
measure of the precision of the reconstruction. We show
the e.f.u. in the m� � �SI

p plane in Fig. 5 (notice that the

upper limit of the colorbar is set to e:f:u: ¼ 1:5 for display
purposes, but this limit is surpassed in many cases).
Isocontours of the expected number of counts in a Xe
target are shown in black. Isocontours of the number of
‘‘bad’’ cases (i.e., with an f.u. >0:75) are shown in white.
Considering the number of ‘‘bad’’ cases is very important,
since this number quantifies the probability that, for a given
WIMP benchmark point (that may lead to a reasonably
small average uncertainty on m�), the experiment results

in a data set that leaves the WIMP mass essentially
unconstrained.

High-mass benchmark points lead to a likelihood func-
tion with a long tail in the m� � �SI

p plane, and thus are

expected to have a very high e.f.u. We are most interested
in the region where the transition from good to poor
performance takes place.

We will first discuss the e.f.u. results from Xe data only.
As a general pattern, the larger m� and the smaller �SI

p , the

larger the e.f.u. value for the benchmark point. We will

discuss the e.f.u. results at high (�SI
p ¼ 10�8 pb), inter-

mediate (�SI
p ¼ 10�9 pb) and low (�SI

p ¼ 10�10 pb) cross

sections.
At high (�SI

p ¼ 10�8 pb) cross sections, most bench-

mark masses lead to a small e.f.u., and thus a small
uncertainty in the reconstructed WIMP mass. The e.f.u.
does not exceed 0.15 for m� � 100 GeV and is signifi-

cantly smaller for small m� ¼ 25, 35 GeV (e:f:u: ¼ 0:03).

The fraction of bad reconstructions is<1%. However, even
for this large cross section and the resulting large number
of events, NR ¼ 1671, the high-mass benchmark point
m� ¼ 250 GeV leads to an e.f.u. >1:00. Such a large

e.f.u. means that the WIMP mass is left essentially uncon-
strained by the data, and the confidence levels inhabit the
region of degeneracy at high masses and cross sections.
For intermediate benchmark cross sections (�SI

p ¼
10�9 pb), the overall precision is quite good. For bench-
mark masses m� � 70 GeV the e.f.u. is <0:30 and the

WIMP mass is well constrained. This is also reflected in
the number of bad reconstructions: for m� � 50 GeV this

number is <1%; for m� ¼ 70 GeV only a couple of bad

cases occur for 100 reconstructions. At higherm� the e.f.u.

increases rapidly. For example, at m� ¼ 100 GeV the

e.f.u. increases from 0.41 to 1.21 when decreasing the cross
section from �SI

p ¼ 1:58� 10�9 (corresponding to N ¼
527 events) to �SI

p ¼ 6:31� 10�10 (corresponding to N ¼
210 events). Therefore, at �SI

p ¼ 10�9 this benchmark

point lies on the borderline between good and bad per-
formance of the reconstruction. At cross sections �SI

p �
10�9 and high WIMP masses (m� 
 100 GeV), the e.f.u.

is systematically>0:75 (sometimes� 0:75), meaning that
the WIMP mass becomes essentially unconstrained in 20%
or more of the reconstructions. This is to be expected, due
to the m� � �SI

p degeneracy that occurs at high masses.

FIG. 5 (color online). Expected fractional uncertainty for the WIMP mass in the m� � �SI
p plane, for a Xe (Xeþ Ge) target in the

left (right) plot, quantifying the precision of the mass reconstruction (low e.f.u. corresponding to better precision). Isocontours of the
expected number of counts in the Xe experiment are given in black; isocontours of the percentage of ‘‘bad’’ reconstruction (f.u.>0:75)
are shown in white.
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However, it is interesting to see how pronounced this effect
is even at a relatively small mass (m� 	 100 GeV).

The situation deteriorates significantly for �SI
p ¼

10�10 pb, leading to a small number of counts [Oð10Þ]
for all m�. This is reflected in the e.f.u., which is of order

�0:50 for small m� ¼ 25, 35 GeV. This corresponds to

weak constraints on the WIMP mass, and leads to an
average uncertainty of more than 100% for m� 

50 GeV. Similarly, while for small WIMP masses just
above 5% of all reconstructions are bad, this number is
significantly higher for high-mass WIMP models. Even for
an intermediate m� ¼ 50 GeV, �30% of reconstructions

are bad. We emphasize once more that this is due to
statistical fluctuations in the realization of the energy spec-
trum, and therefore an unavoidable effect.

As expected, the e.f.u. improves considerably with the
addition of data from a Ge target. For fixed cross section,
the 30% bad reconstruction isocontour shifts to higher
mass values by �50% with respect to the reconstruction
with Xe data alone. Because the e.f.u. is correlated with the
percentage of poor reconstructions, we also see that it
decreases dramatically at fixed WIMP parameters (often
by >50%) with the inclusion of the Ge data.

Figure 6 shows the value of the e.f.u. as a function of the
exposure � for a WIMP with cross section �SI

p ¼ 10�9 pb

and for three different benchmark masses. Solid lines
correspond to the e.f.u. from a Xe target only, dashed lines
show results for combining data from a Xe and a Ge
experiment. For the Xe-only case, for massive WIMPs
(m� ¼ 250 GeV), the expected fractional uncertainty is

always greater than unity, as a consequence of the degen-
eracy. For intermediate (m� ¼ 50 GeV) and small mass

WIMPs (m� ¼ 25 GeV), the e.f.u. drops sharply with in-

creasing exposure. In particular, it is still of order
�30–40% for an exposure of 1 ton� year, and it is re-
duced to less than 10% for a Xe experiment with exposure
10 ton� year. When combining Xeþ Ge data the situ-
ation improves for all benchmark masses. For massive
WIMPs (m� ¼ 250 GeV) an e.f.u. smaller than unity can

be achieved for a Xe experiment with exposure�20 ton�
year and a Ge experiment with exposure �10 ton� year.
For larger exposures the e.f.u. further decreases. For both
intermediate (m� ¼ 50 GeV) and small (m� ¼ 25 GeV)

WIMPmasses the e.f.u. forXeþ Ge is significantly smaller
than in theXe-only case. The e.f.u. strongly decreases as the
exposures of the Xe and Ge targets are increased. In par-
ticular, for an intermediate (low) mass WIMP an expected
fractional uncertainty of less than 10% can be achieved for a
3ð1:5Þ ton� year exposure for Ge and a 5ð3Þ ton� year
exposure for Xe. These trends are qualitatively consistent
with those found by Refs. [55,56].
However, we caution that the e.f.u. will be higher in

reality for a fixed exposure and benchmark point because
of astrophysical and nuclear physics uncertainties.
The fractional mass bias in them� � �SI

p plane for a Xe

target (Xe and Ge target) is displayed on the left (right) of
Fig. 7. Almost no negative bias in the mass is observed. If
a bias exists, it typically goes in the direction of a larger
m� than the true value, as a consequence of the high-

mass cross section degeneracy. In fact, the distribution of
reconstructions that reach up onto the degeneracy curve
explains the features of Fig. 7. In comparing Figs. 5 and 7,
we find that the curve for e:f:u: ¼ 0:8 corresponds
closely to the curve of bias ¼ 0:2. When a large fraction
of reconstructions are bad, both the e.f.u. and bias
increase because the high-mass cross section curve be-
comes populated with high-likelihood fits. The extension
of the confidence levels to this region of the parameter
space means that the best-fit mass is typically higher than
the true mass, so that both the uncertainty in the mass and
its bias become large.
The performance of the statistical reconstruction (as

quantified by the e.f.u., the number of bad cases and the
fractional bias in the WIMP mass) is summarized for four
benchmark points in Table III.

D. Comparison with other coverage studies

We have focused on reconstructing phenomenological
WIMP-related variables (mass, spin-independent cross
section) rather than theoretical parameters in specific theo-
ries for WIMP physics. Perhaps not surprisingly, our re-
sults differ from recent studies of the coverage properties
of parameters of specific supersymmetric models from
particle physics experiments, including direct-detection
data [28,29]. Reference [29] found that supersymmetric
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Xe exposure [ton × year] 

e.
f.u

.

0.1 1 10

Ge exposure [ton × year] 
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mχ = 50 GeV

mχ = 250 GeV

Xe only

Xe + Ge

FIG. 6 (color online). Expected fractional uncertainty on the
WIMP mass as a function of exposure for a xenon experiment
(bottom axis) and a germanium experiment (top axis) required to
achieve this e.f.u. for a WIMP with cross section �SI

p ¼ 10�9,

for three different benchmark masses m� ¼ 25 GeV (red),

m� ¼ 50 GeV (black) and m� ¼ 250 GeV (blue). Solid lines

correspond to e.f.u. results for Xe only, dashed lines correspond
to e.f.u. results for a Xeþ Ge target.
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parameters were consistently overcovered when attempt-
ing to reconstruct the ‘‘SU3’’ benchmark point with mock
ATLAS data on sparticle masses and mass splittings. In
contrast, consistent (and sometimes drastic) undercoverage
was observed [28] for two different benchmark points
reconstructed using mock ton-scale direct-detection data.

Here, we observed exact coverage in a large portion of
the phenomenological parameter space we investigated.
Unlike in supersymmetric analyses, the parameter space
considered here does not include complicated theoretical
boundaries where the likelihood function is not defined.
Substantial overcoverage is therefore not expected in our
results for cases with reasonable statistics (i.e., where
Wilks’ theorem does not break down simply due to low-
number statistics). Furthermore, the relationship between
parameters of interest (here, WIMP mass and cross sec-
tion) and observables (i.e., counts) is far simpler here than
when one works with fundamental supersymmetric pa-
rameters (which are connected to observables via complex,
nonlinear renormalization group equations that make the
likelihood function highly non-Gaussian in the parame-
ters). Therefore, sampling issues that might plague super-
symmetric parameter spaces and lead to undercoverage are
not observed in our setup.

Taking the results of all three studies together, we con-
clude that coverage properties are good when the scanning

is done over a set of parameters that have a simple mapping
to the observables (as was seen in [29]). As the observables
on which a (typically approximately Gaussian) likelihood
function is defined become a highly complicated function
(i.e., via highly nonlinear transformations) of the parame-
ters of interest, the coverage becomes less exact, and a
detailed numerical investigation is required to establish the
coverage properties. The upshot of this for dark matter
searches is that simple model-independent analyses using
phenomenological particle-physics parameters for WIMPs
can generally be expected to have good coverage, but the
mapping onto specific model spaces will typically not
retain this property.

V. CONCLUSIONS

We have studied the statistical properties of approximate
confidence intervals on WIMP parameters, using mock
data from future ton-scale direct detection experiments.
We have focused in particular on the effect of unavoidable
statistical fluctuations in the data. Contrary to what has
been observed in GUT-scale supersymmetry (SUSY) pa-
rameterizations, we see that coverage for phenomenologi-
cal WIMP parameters (mass, cross section) is generally
quite good. We have observed a small amount of over-
coverage for certain benchmark points; i.e., the constructed

FIG. 7 (color online). As in Fig. 5, but for the fractional bias of the WIMP mass; i.e., the bias of the WIMP mass relative to the
benchmark mass (notice that almost no negative bias is observed).

TABLE III. Summary of the performance of the statistical reconstruction four selected WIMP benchmark models. The benchmark
(true) mass and cross section and the corresponding number of counts for the Xe experiment are shown. We give the expected
fractional uncertainty, the number of ‘‘bad’’ (f.u.>0:75) cases and the fractional bias in m� for the Xe data alone and for the combined

analysis of Xeþ Ge (in parentheses).

m� (GeV) �SI
p (pb) NR e.f.u. Number of bad cases Fractional bias for m�

35 10�10 29 0.51 (0.29) 7 (0) 0.042 (0.023)

50 10�10 38 1.24 (0.40) 32 (4) 0.272 (0.017)

100 1:58� 10�9 527 0.41 (0.22) 9 (0) 0:014ð�0:020Þ
250 10�8 1671 1.20 (0.48) 51 (13) 0.205 (0.052)
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confidence intervals are conservative. We have traced this
overcoverage back to either statistical fluctuations, which
become most important for benchmark points leading to a
low expected number of counts, or to the degeneracy be-
tween theWIMPmass and cross section, that occurs at large
WIMP masses in the likelihood function. In both cases the
profile likelihood is not well approximated by a Gaussian,
such thatWilks’ theorem no longer accurately described the
behavior of the test statistics 	ðm�Þ and 	ð�SIÞ. This prob-
lem is much less severe than in the SUSY case; in general, it
appears that the less complicated and nonlinear a function
the likelihood is of the underlying parameter space, the
better the coverage properties. Finally, we remind the reader
that coverage issues can in principle be resolved altogether
by constructing intervals that have exact coverage; e.g., by
using the Feldman-Cousins method.

We have found that the statistical bias and expected
fractional uncertainty of the reconstructed WIMP mass
and cross section are more serious problems, which cannot
be resolved by employing a different method of construct-
ing confidence intervals. The parameter reconstruction can
be ruined by statistical fluctuations that flatten the observed
energy recoil spectrum with respect to the true underlying
model, leading to an essentially unconstrained likelihood
function, so that only a lower limit can be placed on the
WIMP mass and cross section. This was found to be
important even at intermediate WIMP masses and cross
sections. Therefore, even for benchmark models leading to
a relative large expected number of counts ( * Oð100Þ),
statistical fluctuations can result in a strong bias (i.e., low
accuracy) and a low precision of the reconstruction of the
WIMP parameters.

We have shown that a combination of data sets from two
independent experiments with different target materials
can significantly improve the coverage properties, reduce

the bias and increase the accuracy and precision of the
reconstruction. Furthermore, we have shown that the pre-
cision of the reconstruction can be improved considerably
if the exposure of the experiment(s) is increased.
Our investigation has assumed negligible backgrounds

and fixed important sources of uncertainties, such as
astrophysical quantities describing the local dark matter
distribution. Our modelling of the experimental likelihood
was correspondingly simplified. Therefore, the large bias
and low precision of the reconstructed parameters discov-
ered for a number of benchmark models is a fundamental
result of statistical fluctuations in the realization of the
energy spectrum. We expect that including the energy
resolution, non-negligible backgrounds and astrophysical
uncertainties in the analysis would further degrade the
performance of the reconstruction.
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