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People generally prefer their initials to the other letters of the alphabet, a phenomenon
known as the name-letter effect.This effect, researchers have argued, makes people move
to certain cities, buy particular brands of consumer products, and choose particular profes-
sions (e.g., Angela moves to Los Angeles, Phil buys a Philips TV, and Dennis becomes a
dentist). In order to establish such associations between people’s initials and their behav-
ior, researchers typically carry out statistical analyses of large databases. Current methods
of analysis ignore the hierarchical structure of the data, do not naturally handle order-
restrictions, and are fundamentally incapable of confirming the null hypothesis. Here we
outline a Bayesian hierarchical analysis that avoids these limitations and allows coherent
inference both on the level of the individual and on the level of the group. To illustrate our
method, we re-analyze two data sets that address the question of whether people are
disproportionately likely to live in cities that resemble their name.

Keywords: analysis of large databases, Bayesian hierarchical hypothesis test, order-restrictions, random effects,
name-letter effect

Social psychologists have claimed that the letters in a person’s name
implicitly influence major life decisions such as where to live and
what career to pursue. Concretely, this means that when your name
is Louis the prospect of living in St. Louis is more attractive to you
than to someone named Jim; that when your name is Denise you
are more interested in dentistry than someone named Stacy; and
that when your name is Tom you are more inclined to work for
Toyota than when your name is Richard.

This arguably counterintuitive claim is supported by the sta-
tistical analysis of large databases (e.g., birth, marriage, and death
records; telephone directories; memberships of professional orga-
nizations, and so forth; see Pelham et al., 2005, for a review, and see
McCullough and McWilliams, 2010, 2011; LeBel and Paunonen,
2011; Pelham and Carvallo, 2011; Simonsohn, 2011a,b,c, for a cri-
tique and a discussion). For instance, in several studies using public
records, Pelham and colleagues presented data suggesting that peo-
ple are more likely to live in cities or states that resemble their first
or last names (Pelham et al., 2002, Studies 1–5; Pelham et al., 2003,
Study 1). Moreover, Pelham et al. (2002, Study 4) claimed that
people move to states that resemble their names. In other studies,
Pelham et al. (2002) showed that people’s names or initials predict
whether they are dentists or lawyers (Study 7), or whether they are
working in the hardware or the roofing business (Study 9).

In another attempt to demonstrate that people’s names influ-
ence major life decisions, Anseel and Duyck (2008) investigated
whether people’s names are associated with the companies they
work for (but see Simonsohn, 2011b). Anseel and Duyck (2008)
sampled one third of all Belgian employes working in the private
sector and indeed found that employes tend to work for companies
whose initial letter matches their own. This effect was significant
both across letters and for almost all letters individually (for other

work on the effect of names on behavior see, e.g., Jones et al., 2004;
Brendl et al., 2005; Nelson and Simmons, 2007; Chandler et al.,
2008; see McCullough and McWilliams, 2010, 2011 for critiques
on the Nelson and Simmons, 2007 study).

The most popular explanation for the above findings is
“implicit egotism”(Pelham et al., 2002). According to this explana-
tion, people have positive feelings about themselves. These positive
feelings are associated automatically (i.e., implicitly, outside of
conscious awareness) to places, events, and objects related to the
self. Consistent with the above explanation, Nuttin (1985) first
found that people tend to prefer the letters in their names to
the other letters of the alphabet, a phenomenon known as the
name-letter effect (henceforth NLE; Nuttin, 1987; Hoorens and
Todorova, 1988; Hoorens et al., 1990; Greenwald and Banaji, 1995;
Kitayama and Karasawa, 1997; Jones et al., 2002; but see Hodson
and Olson, 2005).

Our goal here is not to debate whether it is plausible a pri-
ori that the NLE influences major life decisions; nor do we wish to
evaluate the extent to which the NLE is caused by implicit egotism.
Instead, our goal is to outline a new, Bayesian analysis to measure
and judge the level of association between the letters of one’s name
and major life decisions. Our Bayesian analysis is hierarchical, able
to incorporate order-restrictions (i.e., the strong a priori expecta-
tion that the NLE is positive), and able to quantify evidence in
support of the null hypothesis (e.g., Edwards et al., 1963; Gallistel,
2009; Rouder et al., 2009; Wetzels et al., 2009).

It is important to point out that recent work has identified
several confounds that seriously compromise the conclusion from
previous NLE analyses of large databases (e.g., McCullough and
McWilliams, 2010, 2011; LeBel and Paunonen, 2011; Simonsohn,
2011a,b,c). Hence it may seem that our present methodological
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improvements amount to nothing more than rearranging the
deck chairs on the Titanic.1 However, our purpose is much more
general; we provide a tutorial-style exposition on the advantages
of hierarchical Bayesian modeling, assessment of evidence using
Bayes factors, and effective visualization of posterior distributions.
The NLE discussion provides a case study that is useful to illus-
trate our main points – as will become clear later, previous debates
in the NLE literature have centered around exactly those statisti-
cal problems that we can address through multi-level modeling.
So despite the possible confounds, the NLE data are still use-
ful because they illustrate the advantages of a general-purpose
hierarchical Bayesian analysis.

The outline of this article is as follows. First, we describe two
representative data sets (i.e., Pelham et al., 2002, Study 5 and
Pelham et al., 2003, Study 1) and review the associated debate
concerning the proper method of analysis. Second, we briefly
introduce the fundamentals of Bayesian parameter estimation
and hypothesis testing. Third, we present comprehensive Bayesian
analyses for the two data sets and show by example the advantages
of the Bayesian procedure over the procedures that are currently
standard in the field.

DATA AND DEBATE
As highlighted by the debate between Pelham et al. (2002, 2003)
and Gallucci (2003), there is currently no generally accepted
method for analyzing the impact of the NLE in large databases
(see also Albers et al., 2009; LeBel and Gawronski, 2009; LeBel and
Paunonen, 2011). For concreteness, we focus here on two examples
and the subsequent debate about the correct method of data analy-
sis. The first example is the Saint city data set (Pelham et al., 2002),
which, according to Gallucci (2003), constitutes the most reliable
data set from Pelham et al.’s (2002) original article. The second
example is the surname city data set (Pelham et al., 2003). Both
examples highlight the limitations and controversies that plague
the standard methodologies, limitations and controversies that are
subsequently addressed by our Bayesian hierarchical procedure.

EXAMPLE 1: THE SAINT CITIES
In one of their archival studies, Pelham et al. (2002, Study 5) tested
the notion that people gravitate toward cities that resemble their
name. Specifically, Pelham et al. (2002) hypothesized that cities
whose name begins with Saint followed by a person name (e.g.,
St. Louis, St. Paul) attract people who share that name (e.g., Louis,
Paul) more than would be expected based on chance alone. To test
this hypothesis, Pelham et al. (2002) considered all “Saint cities”
in the U.S.; for each Saint city, they tabulated the proportion of
deceased people with the matching Saint name (e.g., the propor-
tion of people deceased in St. Louis named Louis). The authors
then compared this proportion to the proportion of deceased peo-
ple with the same name in the entire U.S. (e.g., the proportion of
deceased people in the U.S. named Louis). With these data, it is
possible to determine for example whether deceased residents of
St. Louis were disproportionately likely to be named Louis, relative
to all other Americans.

1We are grateful to an anonymous reviewer of an earlier draft for bringing this to
our attention so vividly.

Table 1 |The Saint cities data set from Pelham et al., 2002,Table 8;

male Saint names only).

Name Proportion

of U.S.

names

Proportion

in city

City

population

χ2 p

1. Anthony 0.002508 0.003858 1,296 0.944 0.331

2. Augustine* 0.000084 0.000000 13,057 1.097 0.295

3. Bernard 0.001523 0.001600 1,250 0.005 0.944

4. Charles 0.014408 0.015509 21,343 1.822 0.177

5. David(s)* 0.004549 0.002035 2,948 4.115 0.043

6. Elmo* 0.000126 0.000000 1,083 0.136 0.712

7. Francis 0.002432 0.004752 2,315 5.136 0.023

8. Gabriel* 0.000148 0.000000 276 0.041 0.840

9. George* 0.014347 0.012532 6,942 1.617 0.203

10. Henry 0.006720 0.033755 474 51.903 <0.001

11. Ignace* 0.000007 0.000000 1,328 0.009 0.923

12. Jacob 0.001111 0.005319 376 5.999 0.014

13. James* 0.020204 0.015049 10,499 14.094 <0.001

14. Joe 0.002471 0.005117 2,345 6.661 0.010

15. John(s)* 0.029861 0.022749 5,187 9.057 0.003

16. Joseph* 0.013665 0.008143 36,349 82.234 <0.0001

17. Leonard 0.002038 0.002132 469 0.002 0.964

18. Louis 0.004168 0.006206 358,699 358.942 <0.0001

19. Mark(s)* 0.000679 0.000000 113 0.077 0.782

20. Martin* 0.001477 0.000000 77 0.114 0.736

21. Matthew(s) 0.000536 0.001037 1,928 0.903 0.342

22. Michael 0.003717 0.013210 757 18.422 <0.0001

23. Paul* 0.005469 0.005445 119,736 0.013 0.910

24. Peter 0.002414 0.002956 2,706 0.330 0.566

25. Stephen(s)* 0.001221 0.000549 1,823 0.675 0.411

26. Thomas 0.007796 0.013746 873 3.996 0.046

27. Vincent* 0.001080 0.000000 56 0.061 0.806

For each name, the table shows the proportion of deceased people in the U.S.

with the Saint name (second column), the proportion of deceased people in the

respective Saint city with the matching Saint name (third column), and the total

number of people deceased in the respective Saint city (regardless of their name,

fourth column). Names that failed to yield an effect in the predicted direction are

marked with an asterisk (*). In addition to the data, χ 2 values based on one degree

of freedom and the associated p-values are also provided. Names that yielded a

significant result (p< 0.05) are in boldface.

Calculation of the χ 2 values. Let ei denote the proportion of deceased people in

the U.S. with a particular Saint name (i.e., second column). Analogously, let oi

denote the proportion of deceased people in the respective Saint city with the

matching Saint name (i.e., third column). TNi denotes the total number of people

deceased in the respective Saint city, regardless of their name (i.e., fourth col-

umn).The χ 2 values with df=1 that appear in the fifth column are then calculated

as follows: χ 2
i = T Ni (oi − ei )

2
/ei + T Ni ((1− oi )− (1− ei ))

2
/ (1− ei )

[cf. Lewis and Burke, 1949, Equation (6a)].

The original data appear in Table 1 (cf. Pelham et al., 2002,
Table 8).2 The first column lists the names, the second column

2Because the female Saint cities contain few data, we restrict our analyses to the
male Saint cities. However, when the female Saint cities are included the results are
virtually identical, that is, BF 01≈ 2.18 and BF 02.M1≈ 1.24, BF 02.M2≈ 1.29; see the
later sections on hypothesis testing.
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lists the proportion of deceased people in the entire U.S with that
particular name, the third column lists the proportion of deceased
people in the respective Saint city with the matching Saint name,
and the fourth column lists the total number of people deceased
in the respective Saint city, regardless of their name.

PREVIOUS ANALYSIS AND CRITICISM
In their article “Why Susie sells seashells by the seashore: Implicit
egotism and major life decisions,” Pelham et al. (2002, p. 476)
report“On the basis of expected values, 3,476.0 [sic] out of 594,305
men should have lived in Saint cities bearing their first names. The
actual number of men who did so was 3,956, which is 14% greater
than the chance value. Because of the extremely large sample
size for men, this value was also highly significant, χ2(1)= 58.63,
p< .001.” From these results, the authors conclude that the NLE
influences where people choose to live. The statistical test with
one degree of freedom is based on two comparisons, namely the
expected versus observed frequency of people who deceased in
cities that resembled their names (matches) and the expected ver-
sus observed frequency of people who did not decease in cities that
resembled their names (mismatches), both pooled across all cities
(see Pelham et al., 2003, p. 800, for a comment on their original
analysis).

In his article “I sell seashells by the seashore and my name is
Jack: Comment on Pelham, Mirenberg, and Jones (2002),” Gal-
lucci (2003) criticized the way Pelham et al. (2002) had analyzed
their data. Specifically, Gallucci pointed out that the overall test
ignores the fact that the units of analysis are individual names and
cities; the data are nested, with individuals nested under names
and cities. Gallucci remarked that the overall test from Pelham and
colleagues might yield a significant result due to a single outlying
city.

Instead of the complete pooling analysis used by Pelham and
colleagues, Gallucci (2003, p. 790) advocated a complete inde-
pendence approach: “The correct test of the hypothesis should
generalize the effect across names. We therefore need to test how
many names reveal a significant effect in support of the hypoth-
esis, how many are not in support of the hypothesis, and how
many, if any, are against the hypothesis (i.e., significantly less
than chance).” Thus, Gallucci (2003) sought to test Pelham et al.’s
(2002) hypothesis on a name-by-name basis. To do so, Gallucci
conducted χ2 tests with one degree of freedom for each name sep-
arately and counted the number of significant results. Table 1, last
two columns, lists the χ2 test statistics with one degree of freedom
and the corresponding p-values for each name. Note that some
of our numbers differ slightly from those reported by Gallucci
(2003, Table 1). Gallucci (2003) found that out of the 27 name-
city matches under consideration, 10 were significantly different
from chance (11 in our calculations). However, only 6 (7 in our
calculations) were in the expected direction. In other words, in 4
Saint cities, fewer people with that name deceased than one would
expect by chance (i.e., a reverse NLE). Gallucci (2003) considers
these 4 Saint cities as evidence against Pelham et al.’s (2002) key
hypothesis. Moreover, Gallucci (2003) argues that if just one Saint
city – Saint Louis – is left out of the overall analysis, the overall
result is in the opposite direction from the NLE hypothesis (i.e.,
without Saint Louis, the observed frequency of name matches is

1,729 and the expected frequency is 1,981). Gallucci therefore con-
cluded that the original results in support of Pelham et al.’s (2002)
hypothesis originate from just one supportive Saint city, namely
Saint Louis.

In their rejoinder paper, Pelham et al. (2003) argued that
the name-by-name analysis suggested by Gallucci (2003) is only
appropriate for large cities, when name-city combinations yield
large expected frequencies. According to Pelham and colleagues, it
would be unfair to assign equal weight to a small city such as Saint
Gabriel and a large city such as Saint Louis.

In sum, Gallucci (2003) advocated complete independence,
whereas Pelham et al. (2002) advocated complete pooling. As we
illustrate later, in between these two extremes lies the compromise
of Bayesian hierarchical modeling, in which the individual dif-
ferences between cities are restricted by group-level information
(Gelman and Hill, 2007; Lee, 2011).

EXAMPLE 2: THE SURNAME CITIES
Along with their rejoinder commentary, Pelham et al. (2003) pre-
sented additional archival studies in support of their implicit
egotism hypothesis. In one of these studies, Pelham et al. (2003,
Study 1) tested the notion that people gravitate toward cities
whose names include these people’s complete surnames (e.g.,
Johnsonville or Johnson City). To test this hypothesis, Pelham
and colleagues considered the 30 most common European Amer-
ican surnames in the U.S.; as in the Saint cities study, Pelham and
colleagues then collected the proportion of people with that sur-
name deceased in the respective surname city (e.g., the proportion
of people named Johnson deceased in Johnsonville) and the pro-
portion of people with that surname deceased in the entire U.S.
(e.g., the proportion of people named Johnson deceased in the
entire U.S.). The data appear in Table 2 (cf. Pelham et al., 2003,
Table 1).

In their analysis of the surname cities data, Pelham et al. (2003)
treated surnames as the units of analysis in a matched-samples t -
test. For each of the 30 surnames, there were two observations: the
proportion of people with that surname deceased in the respec-
tive surname city (e.g., the proportion of people named Johnson
deceased in Johnsonville) and the proportion of people with that
surname deceased in the U.S. Pelham et al. (2003, p. 803) reported
a significant result, t (29)= 2.58, p= 0.015 and concluded that
“(. . .) implicit egotism is a highly robust phenomenon.” For the
sake of comparability, we calculated χ2 tests with one degree of
freedom for each surname separately, just as Gallucci (2003) did
for the Saint cities. The last two columns of Table 2 list the χ2 test
statistics with one degree of freedom and the corresponding p-
values for each surname. From the 30 possible name-city matches,
12 were significantly different from chance, p< 0.05. From these
12 significant matches, all but two – namely Allen (no. 24) and
Hill (no. 28) – were in support of the NLE hypothesis; in other
words, for 10 surnames significantly more people with that sur-
name deceased in the surname-resembling city than one would
expect based on statistics of the U.S. population.

INTERIM CONCLUSION
Both prevalent methods for analyzing NLE data can be criticized.
Pelham et al. (2002) used complete pooling and calculated an
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Table 2 |The surname cities data set from Pelham et al., 2003,Table 1).

Surname Proportion

of U.S.

surnames

Proportion

in city

resembling

name

City

population

χ2 p

1. Smith 0.01000 0.01235 66,582 37.141 <0.0001

2. Johnson* 0.00749 0.00688 31,532 1.578 0.209

3. Williams 0.00574 0.00636 74,218 4.999 0.025

4. Jones 0.00546 0.00897 36,576 82.984 <0.0001

5. Brown 0.00558 0.00635 28,201 3.013 0.083

6. Davis 0.00433 0.00899 14,133 71.187 <0.0001

7. Miller 0.00485 0.01949 13,956 619.745 <0.0001

8. Wilson 0.00328 0.00372 22,017 1.304 0.254

9. Moore 0.00292 0.00352 13,358 1.652 0.199

10. Taylor 0.00291 0.00311 31,228 0.431 0.512

11. Anderson 0.00336 0.00374 51,346 2.214 0.137

12. Thomas 0.00267 0.00537 44,540 121.935 <0.0001

13. Jackson 0.00248 0.00433 320,516 443.425 <0.0001

14. White 0.00265 0.00321 103,055 12.228 <0.001

15. Harris 0.00236 0.00244 88,932 0.242 0.623

16. Martin 0.00273 0.00408 37,511 25.110 <0.0001

17. Thompson 0.00266 0.00292 5,132 0.131 0.718

18. Robinson 0.00192 0.00260 5,002 1.207 0.272

19. Clark 0.00232 0.00257 52,625 1.421 0.233

20. Lewis 0.00204 0.00205 66,431 0.003 0.954

21. Lee 0.00165 0.00181 43,574 0.677 0.411

22. Walker 0.00201 0.00243 8,231 0.724 0.395

23. Hall 0.00196 0.00254 20,112 3.459 0.063

24. Allen* 0.00191 0.00158 71,320 4.074 0.044

25. Young 0.00191 0.00204 72,163 0.640 0.424

26. King 0.00181 0.00190 120,402 0.540 0.463

27. Wright 0.00176 0.00459 3,485 15.886 <0.0001

28. Hill* 0.00174 0.00157 386,905 6.437 0.011

29. Scott 0.00169 0.00184 58,039 0.774 0.379

30. Green 0.00169 0.00176 386,920 1.124 0.289

For each surname, the table shows the proportion of people with that name

deceased in the U.S. (second column), the proportion of people with that name

deceased in the respective surname city (third column), and the total number

of people deceased in the respective surname city (regardless of their name,

fourth column). As in the original table, surnames with a reverse NLE (no matter

how small) are marked with an asterisk (*). Columns five and six provide χ 2 val-

ues based on one degree of freedom and their associated p-values. Names that

yielded a significant result (p< 0.05) are in boldface.

overall test, ignoring the fact that the cities may differ from each
other. Gallucci (2003) assumed complete independence and cal-
culated a χ2 statistic and an associated p-value for each name
separately. This test ignores the fact that the cities may be similar
to each other.

In the remainder of this article we propose an alternative,
Bayesian method for the analysis of the NLE in large databases.
Our Bayesian method accounts for the hierarchical structure of
the data and hence incorporates both the differences and the sim-
ilarities between cities. Before we outline our Bayesian method,
however, we briefly introduce Bayesian parameter estimation and

hypothesis testing. The reader who is familiar with these concepts
can safely skip to the next section.

BASICS OF BAYESIAN INFERENCE
This section provides a short overview of Bayesian inference.
More detailed information can be found in Bayesian articles
and books that discuss philosophical foundations (Lindley, 2000;
O’Hagan and Forster, 2004), computational innovations (Gamer-
man and Lopes, 2006), and practical contributions (Congdon,
2003; Ntzoufras, 2009). Recent introductions for psychologists are
given for instance by Hoijtink et al. (2008), Kruschke (2010a,b),
Lee and Wagenmakers (to appear), and Wagenmakers et al. (2010).

BAYESIAN PARAMETER ESTIMATION
In Bayesian inference, parameters are random variables. Uncer-
tainty or degree of belief about the parameters is quantified by
probability distributions. For a particular model that contains
a parameter δ, the observed data D update a prior distribu-
tion p(δ)according to Bayes’ rule to yield a posterior distribution
p(δ|D). The prior distribution for δ reflects our knowledge about
δ before observing data D, and the posterior distribution for δ
reflects our knowledge about δ after observing data D. Specifically,
Bayes rule shows that the posterior distribution p(δ|D) is equal to
the product of the prior p(δ)and the likelihood p(D|δ), divided by
the marginal likelihood p(D).

Posterior =
prior× likelihood

marginal likelihood
. (1)

Or, expressed symbolically:

p(δ|D) =
p(δ)× p(D|δ)

p(D)
. (2)

The marginal likelihood p(D) is a single number, a normaliz-
ing constant that ensures that the posterior distribution has area
1. Hence, p(D) is not essential for parameter estimation, and one
can simplify the above relation by stating that the posterior distri-
bution is proportional to (i.e., ∝) the prior times the likelihood:

p(δ|D) ∝ p(δ)× p(D|δ). (3)

For parameter estimation, the specific shape of the prior distri-
bution is often not very influential; with the relatively large amount
of data available in most psychological experiments, prior distrib-
utions that are very different nevertheless yield posterior distribu-
tions that are almost identical. Intuitively, this happens because the
posterior distribution is a rational compromise between the infor-
mation we had before we encountered the data (i.e., the prior), and
the information provided by the data themselves (i.e., the likeli-
hood) – as formalized by equation (3). Hence it is said that the data
overwhelm the prior (e.g., Lee and Wagenmakers, 2005). Thus,
rational people with widely different prior beliefs will ultimately
converge to the same posterior beliefs.

For many models, the posterior distribution cannot be obtained
analytically. In such cases, one can use Markov chain Monte
Carlo (MCMC) techniques to draw consecutive samples from the
posterior distribution – by plotting these samples as a histogram,
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this numerical method allows one to approximate the posterior
distribution to any desired degree of accuracy. In this article we
conducted MCMC sampling with the widely used WinBUGS soft-
ware program (i.e., Bayesian inference Using Gibbs Sampling3;
Lunn et al., 2000, 2009). WinBUGS is designed so that the user can
specify and fit complex statistical models without having to hand-
code the MCMC algorithms. The Appendix shows how our model
for the name-letter effect in large databases can be represented in
a few lines of easy-to-understand WinBUGS code.

Note that whenever one uses an MCMC method it is impor-
tant to ascertain that the sequence of samples (i.e., a chain) has
lost its dependence on the starting value such that the samples
are indeed draws from the posterior distribution. Using different
chains, each with a different “overdispersed” starting value, one
can confirm convergence to the posterior using visual inspection4

and statistics such as R̂ (Gelman and Rubin, 1992).
One of the practical advantages of Bayesian inference is that

it allows for the flexible implementation of relatively complicated
statistical techniques such as those that involve hierarchical non-
linear models. In hierarchical Bayesian models, one usually starts
by assuming that individual-level parameters are constrained by
a Gaussian group distribution, N (µ, σ ); because σ corresponds
to the spread of the group distribution, this parameter quanti-
fies the extend to which the individual units differ – low values
of σ indicate that the units are relatively similar; in the limit of
σ→ 0, all units are identical copies of each other. The theoreti-
cal advantages and practical relevance of a Bayesian hierarchical
analysis for common experimental designs have been repeatedly
demonstrated by Jeff Rouder and colleagues (e.g., Rouder and
Lu, 2005; Rouder et al., 2005, 2007, 2008; see also Shiffrin et al.,
2008; Lee, 2011; Nilsson et al., 2011; van Ravenzwaaij et al., 2011).
One of the theoretical advantages is that by hierarchical mod-
eling, researchers automatically obtain an optimal compromise
between the extremes of complete pooling and complete inde-
pendence. One of the practical advantages is that hierarchical
modeling allows for more efficient inference on the individual
level; this happens because extreme individual estimates, when
these are based on few data, are shrunk toward the group mean
(Gelman and Hill, 2007).

After fitting a Bayesian hierarchical model to data, posterior dis-
tributions quantify uncertainty both on the level of the individual
unit and on the level of the group.

BAYESIAN HYPOTHESIS TESTING
In psychological research, competing hypotheses are often for-
mulated as nested models. The null hypothesis H 0 states that a
particular effect is absent, such that the corresponding parameter
equals zero, that is, H 0 : δ= 0. The alternative hypothesis H 1 is
usually not specified exactly and states that the effect is present,
that is, H 1 : δ 6= 0.5 In psychological practice, hypothesis testing

3For more information on WinBUGS see http://www.mrc-bsu.cam.ac.uk/bugs/
4Chains that have converged look like fat hairy caterpillars that are completely
intermixed.
5The fact that H 1 does not contain the single point δ= 0 is inconsequential because
δ is a continuous parameter – inference is therefore unaffected by including or
excluding δ= 0 from H 1

proceeds by calculating a p-value, rejecting H 0 when p< 0.05 and
“failing to reject” H 0 otherwise.

In contrast to popular p-value practice, Bayesian hypothesis
testing seeks to quantify the relative plausibility of H 0 and H 1

(Wagenmakers and Grünwald, 2006; Gallistel, 2009; Rouder et al.,
2009; for recent discussions see Wagenmakers et al., 2011; Wetzels
et al., 2011). As in parameter estimation, one starts by assign-
ing prior probability to H 0 and H 1; the prior model odds [i.e.,
p(H 0)/p(H 1)] is then updated through the data D to yield the
posterior model odds [i.e., p(H 0|D)/p(H 1|D)]. The change from
prior to posterior model odds, brought about by the observed data,
is called the Bayes factor (Jeffreys, 1961; Kass and Raftery, 1995):

Bayes factor =
posterior odds

prior odds

=
odds(H0 vs. H1|observed data)

odds(H0 vs. H1)

(4)

When the Bayes factor BF 01 for model H 0 versus H 1 equals 2,
this means that the data are twice as likely to have occurred under
H 0 than under H 1. Thus, a hypothesis test based on the Bayes
factor prefers the model under which the observed data are most
likely. As such, the Bayes factor represents “the standard Bayesian
solution to the hypothesis testing and model selection problems”
(Lewis and Raftery, 1997, p. 648).

In this article we compute Bayes factors using the so-called
Savage–Dickey density ratio. Consider our example above, where
the null hypothesis H 0 : δ= 0 is nested in the alternative hypothe-
sis H 1 : δ 6= 0. When H 0 is nested in H 1, the Savage–Dickey density
ratio states that the Bayes factor can be determined by consider-
ing only the posterior and prior distributions for parameter δ in
H 1, evaluated at the value that is subject to test (e.g., Verdinelli
and Wasserman, 1995; O’Hagan and Forster, 2004, pp. 174–177;
Gamerman and Lopes, 2006, pp. 72–74, pp. 79–80; Wetzels et al.,
2009, 2010; Wagenmakers et al., 2010). To illustrate, when the pos-
terior distribution for δ (under H 1) has height 3 at δ= 0, and the
prior distribution for δ (under H 1) has height 1 at δ= 0, then the
data are three times more likely to have occurred under H 0 then
under H 1. Thus

BF01 =
p(D|H0)

p(D|H1)
=

p(δ = 0|D, H1)

p(δ = 0|H1)
. (5)

Compared to most alternative methods, the Savage–Dickey
density ratio allows for a relatively simple and intuitive assessment
of the Bayes factor. It should be stressed, however, that – in con-
trast to Bayesian parameter estimation – the Bayes factor remains
sensitive to the prior distribution for the parameter δ that is sub-
ject to test, even after a considerable amount of data has been
collected. Thus, in the case of Bayesian hypothesis testing, the data
do not overwhelm the prior. It is therefore essential that particular
attention is paid to the prior distribution for the parameter that
is subject to test. In general, it is good practice to carry out both
parameter estimation (for which the data quickly overwhelm the
prior) and hypothesis testing (for which the prior has a lasting
impact). In many situations the conclusions that are drawn will be
qualitatively the same: when the posterior distribution for δ is far
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away from 0 the Bayes factor indicates strong support for H 1. We
now apply Bayesian parameter estimation and hypothesis testing
to the data sets discussed previously.

BAYESIAN HIERARCHICAL ANALYSIS IN PRACTICE
Recall the two studies testing the notion that people gravitate
toward cities that resemble their name. In both studies, Pelham
and colleagues sampled a number of names and a number of cities
with similar names. For each name, they then compared the pro-
portion of people with that name deceased in the respective city
to the proportion of people with that name deceased in the U.S.
In our first example, this comparison was done for cities whose
names begin with Saint, followed by a person name. In our sec-
ond example, the comparison was done for cities whose names
include complete surnames. Tables 1 and 2 list the Saint city and
the surname city data set, respectively.

BAYESIAN ANALYSIS FOR EXAMPLE 1: THE SAINT CITIES
Let Ni denote the number of people with name i who died in Saint
city i (i.e., the number of people named Louis who died in St.
Louis), and let TNi denote the total number of people who died in
Saint city i, regardless of their name. For each name i, we assumed
that Ni out of TNi is binomially distributed with rate parameter
θ i. To assess whether there is a NLE and θ i is disproportionally
large, we need to compare θ i to what can be expected in the entire
U.S. At first sight, it may seem reasonable to quantify the NLE for
city i by θ i− bi, where bi is the baseline proportion of people with
name i deceased in the U.S.

Unfortunately, both θ i and bi are defined on the rate scale,
which ranges from 0 to 1 and is not suitable for modeling additive
effects. We therefore first transformed θ i to γ i and bi toβ i using the
probit transformation. The probit transform maps probabilities
into z-values using the inverse cumulative distribution function
of the standard Normal distribution. In contrast to the rate scale,
the probit scale ranges across the entire real number line and is
appropriate for modeling additive effects (Rouder and Lu, 2005).

Thus, we obtain the NLE for name i, αi, by subtracting the
probitized U.S. baseline of occurrence from the probitized city-
specific rate of occurrence, that is, αi= γ i−β i. Hence, positive
values for α are in line with Pelham et al.’s (2002) hypothesis and
indicate, for instance, that more people named Louis deceased in
St. Louis than one would expect from the American population.
In contrast, negative values for α indicate a reverse NLE, that is for
instance, fewer people named Louis deceased in St. Louis than one
would expect.

Figure 1 shows our model for the Saint cities data in stan-
dard graphical model notation (e.g., Gilks et al., 1994; Lunn et al.,
2000; Lee and Wagenmakers, to appear). In this notation, nodes
represent variables and the dependency of these variables is indi-
cated by arrows with children depending on their parents. Circular
nodes represent continuous variables (e.g., rate θ), and square
nodes represent discrete variables (e.g., number of people TNi).
Observed variables are shaded (and denoted by Latin letters, e.g.,
baseline proportion bi for city i) and unobserved variables are not
shaded (and denoted by Greek letters, e.g., inferred name-letter
effect αi for city i). Double borders indicate that the variable is
deterministic (i.e., calculated without noise from other variables,
e.g., γ i is given by β i+αi) rather than stochastic.

i = 1, . . . , 27

δ

µ σ

αi

bi

βi γi

θi

Ni

TNi

Ni ∼ Binomial θi, TNi

θi = Φ γi

γi = βi + αi

βi = Φ− 1 bi

αi ∼ Normal µ, σ2

µ = δ × σ

σ ∼ Uniform 0, 10

H0 : δ = 0

H1 : δ = 0

H2 : δ > 0

FIGURE 1 | Bayesian graphical model for the Saint cities data.
Parameter α i quantifies the name-letter effect for city i, that is, the
difference between the probit-transformed U.S. population rate β i and the
inferred probit-transformed rate for city i. In turn, α i is modeled as a random
effect, that is, it is governed by a group-level Normal distribution with mean
µ and SD σ . The plate indicates that this group-level structure holds for all
i =1,. . ., 27 cities. Effect size δ is defined as µ/σ , and the prior on δ is a
standard Normal.

It has been argued that the NLE is not the same for every name.
For instance, the NLE may differ due to the frequency of the name
(e.g., disappear “for extremely common and thus less self-defining
male first names,” Pelham et al. (2003, p. 802) or due to the size
of the Saint city: “Implicit egotism should be stronger for rare
rather than common names. Rare names tend to generate small
sample sizes.” Pelham et al. (2003, p. 802). Consequently, rather
than assuming that the NLE is a fixed effect, we assume that it
is a random effect. Specifically, we assumed that an individual αi

is drawn from a group-level Gaussian distribution with mean µ
and SD σ . The hierarchical aspect of our model is indicated in
Figure 1 by the plate that encloses subsets of the graph that have
independent replications.

Because our analysis is Bayesian, the group-level parameters
µ and σ require prior distributions. For the SD σ of the group-
level distribution, we chose an uninformative uniform prior from
0 to 10. Instead of assigning a prior to µ we assigned a prior to
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the effect size δ=µ/σ . Effect size is a dimensionless quantity that
applies across different studies. Therefore, for effect size, a princi-
pled default prior is relatively easy to define. One uninformative or
objective prior on effect size is the standard Normal distribution
(Rouder et al., 2009). This prior is known as the “unit information
prior” and carries as much information as a single observation
(Kass and Wasserman, 1995).

The computational implementation of our model and the
details of the MCMC sampling are described in the Appendix. The
results below are based on 150,000 draws from the joint posterior
distribution.

Parameter estimation: NLEs for individual names
In order to assess the NLE for individual names, Figure 2 shows
violin plots (Hintze and Nelson, 1998) for the posterior distrib-
utions of α. A violin plot combines box plot and density trace.
The box plot part shows center, spread, and asymmetry of a vari-
able, where a circle marks the median and the bounds of the box
indicate the first and third quartile. The density trace is plotted
symmetrically to the left and right of the vertical box plot, making
it easier to see the magnitude of the density.

Figure 2 shows that for Saint Henry (city no. 10) the median of
the NLE is clearly above zero, indicating that more people named
Henry deceased in Saint Henry than one would expect from the
U.S. base rate. A positive NLE is also observed for Saint Louis (city
no. 18), a relatively large city for which the NLE can be estimated
precisely; this high precision is reflected in the small spread of the
posterior distribution for α18.

Figure 2 also shows that for Saint Elmo (city no. 6), the median
of the NLE is approximately zero, although there is substantial
uncertainty about this estimate; for Saint Paul (city no. 23), the
median of the NLE is also approximately zero, but this estimate
has relatively little uncertainty. Finally, Figure 2 also suggests that
a few names show a reliable reverse NLE; for instance, in the case
of Saint Joseph (city no. 16), the median is clearly below zero. The
finding of a reverse NLE is not easily accommodated by current
theories of how implicit egotism influences major life decisions.

Although informative, Figure 2 does not allow a precise assess-
ment of the presence of a positive NLE on the group-level. Some
names show a positive NLE, some names show a negative effect,
and many names do not allow a definitive judgment. To quantify
the evidence for and against the NLE on the group-level we now
turn to a Bayes factor hypothesis test.

Hypothesis testing: unrestricted analysis
Even though Figure 2 allows a detailed assessment of the NLE
on the level of each individual name or city, we have not yet
combined this information to make a group-level judgment on
the plausibility of the NLE. In order to do so, we contrast two
hypotheses with respect to the group-level effect size δ. The first
hypothesis is the null hypothesis and it states that there is no over-
all NLE; hence, the effect size is zero, H 0 : δ= 0. The alternative,
unrestricted hypothesis states that there is an overall NLE, which
might be positive, as hypothesized by Pelham et al. (2002), or
“reverse”; hence, the effect size is free to vary, H 1 : δ 6= 0. As men-
tioned above, the Bayesian analysis necessitates that one is precise
about the prior for δ under H 1, and here we make use of the default
standard Normal prior: p(δ)∼N (0,1).

The left panel of Figure 3 shows the prior and posterior distrib-
utions for effect size parameter δ under H 1.6 Although most of the
distribution lies to the right of zero, the 95% confidence interval
ranges from−0.247 to 0.750 and overlaps with zero.7 The two dots
mark the height of the prior and posterior distribution at the point
of interest δ= 0, obtained from a logspline non-parametric den-
sity estimate (Stone et al., 1997). According to the Savage–Dickey
density ratio BF 01≈ 2.47, which means that the data are about
2.47 times more likely under the null hypothesis H 0 than under
the unrestricted alternative H 1. In sum, the unrestricted analysis
suggests that there is no overall NLE, although the evidence is not
strong.

Hypothesis testing: order-restricted analysis
In the unrestricted analysis, we tested whether δ 6= 0. However,
Pelham et al.’s (2002) hypothesis was more specific: cities should
attract and not deter people with the same name. Thus, the
hypothesis of an overall NLE can be recast as δ > 0. Hence, our
order-restricted analysis tests: H 0 : δ= 0 versus H 2 : δ > 0.

We implemented this order-restriction in two ways. The first
method is based on renormalization, dividing the height of the
unrestricted posterior at δ= 0 by the area to the right of δ= 0.
The same is done for the height of the prior. The ratio of these
renormalized heights is then the Bayes factor for H 0 versus the
order-restricted H 2. This method resulted in BF 02.M1≈ 1.48. In
the second method one discards the MCMC samples that are
inconsistent with the order-restriction. The remaining samples
that obey the order-restriction are then used to plot histograms
and construct a density estimate. The procedure is otherwise
the same as described for the unrestricted analysis. This method
resulted in BF 02.M2≈ 1.54. This is visualized in the right panel of
Figure 3. Thus, both methods indicate that the data are about 1.5
times more likely under the null hypothesis H 0 than under the
order-restricted alternative H 2. This evidence in favor of the null
is slightly weaker than it was in the unrestricted analysis.

In sum, our hierarchical Bayesian analysis of the Saint city data
provided no support for the hypothesis that people gravitate to
cities that resemble their name. In fact, our analysis provided some
arguably weak support in favor of the null hypothesis.

BAYESIAN ANALYSIS FOR EXAMPLE 2: THE SURNAME CITIES
The structure of the surname cities data set is equivalent to the
Saint cities data set. Therefore, we used the same model and
the same analysis procedure. As before, the results are based on
150,000 draws from the joint posterior distribution (see Appendix
for details).

Parameter estimation: NLEs for individual names
In order to assess the NLE for individual names, Figure 4 shows
the posterior distribution αi for each surname city as a violin
plot. For most names, the median of the posterior distribution

6For continuous distributions the definition of probability involves the area under
the curve, not the height of the curve at a particular point. Therefore, the density
values can exceed 1.
7A Bayesian confidence interval is often called “credible interval,” but here we retain
the standard terminology.
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FIGURE 2 | Violin plot of the posterior distributions of α for each
of the Saint cities. Note that the distributions do not integrate to 1
in this representation. 1, Anthony; 2, Augustine; 3, Bernard; 4,
Charles; 5, David(s); 6, Elmo; 7, Francis; 8, Gabriel; 9, George; 10,

Henry; 11, Ignace; 12, Jacob; 13, James; 14, Joe; 15, John(s); 16,
Joseph; 17, Leonard; 18, Louis; 19, Mark(s); 20, Martin; 21,
Matthew(s); 22, Michael; 23, Paul; 24, Peter; 25, Stephen(s); 26,
Thomas; 27, Vincent.

is clearly above zero. The NLE seems to be particularly pro-
nounced for Miller (city no. 7). For only three out of 30 cities
(Johnson, no. 2; Allen, no. 24; Hill, no. 28) is there a clear
indication of a reverse NLE. Hence, Figure 4 suggests that the
surname city data set may indeed show a positive NLE on the
group-level. To quantify the evidence for and against the NLE on
the group-level more precisely we again turn to a Bayes factor
hypothesis test.

Hypothesis testing: unrestricted analysis
As for the Saint cities data set, we again contrast two hypotheses
with respect to the group-level effect size δ. The first hypoth-
esis is the null hypothesis and it states that there is no over-
all NLE; hence, the effect size is zero, H 0 : δ= 0. The unre-
stricted alternative hypothesis states that the effect size is free to
vary, H 1 : δ 6= 0; again, we assigned δ a standard Normal prior
distribution.

The left panel of Figure 5 shows the prior and posterior distri-
bution for effect size δ under H 1. For the posterior distribution,
almost all of the mass lies to the right of zero and the 95% confi-
dence interval (i.e., 0.260–1.075) does not overlap with zero. The
two dots mark the height of the prior and posterior distribution

at the point of interest δ= 0, and, according to the Savage–Dickey
density ratio, BF 01≈ 0.03, which means that the data are about
BF 10= 1/BF 01≈ 37.23 times more likely under the unrestricted
alternative H 1 than they are under the null hypothesis H 0. In sum,
the unrestricted analysis suggests that there is indeed an overall
NLE for the surname cities data.

Hypothesis testing: order-restricted analysis
The order-restricted analysis tests the notion that people gravitate
toward and not away from cities whose names include their own
(Pelham et al., 2003). That is, the order-restricted analysis tests
H 0 : δ= 0 versus H 2 : δ > 0.

We again used two methods to compute the Bayes factor for the
order-restricted test. The first method uses renormalization and
yielded BF 02.M1≈ 0.01 in favor of the null hypothesis, or – equiva-
lently – BF 20.M1≈ 74.42 in favor of the order-restricted alternative
hypothesis. The second method uses only the samples that obey
the order-restriction and yielded BF 02.M2≈ 0.01 in favor of the
null hypothesis or BF 20.M2≈ 77.45 in favor of the order-restricted
alternative hypothesis. This result is visualized in the right panel of
Figure 5. Thus, both methods indicate that the data are about 75
times more likely under the order-restricted alternative H 2 than
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FIGURE 3 | Prior and posterior distributions of the group-level effect size
δ for the hierarchical analysis of the Saint cities data set. Left panel:
unrestricted analysis, right panel: order-restricted analysis. The prior
distribution is the standard Normal (thin line). The posterior distribution is
indicated by a histogram of MCMC samples (thick line) and the corresponding

logspline non-parametric density estimate (thin line). The 95% confidence
interval for the posterior extends from −0.247 to 0.750 for the unrestricted
analysis (left panel), and from 0.020 to 0.770 for the order-restricted analysis
(right panel). The black dots mark the height of the prior and the posterior at
the point of interest δ= 0.

under the null hypothesis H 0. The evidence in favor of the alterna-
tive hypothesis is about twice as strong as it was in the unrestricted
analysis.

In sum, our Bayesian hierarchical analysis of the surname cities
data set clearly indicated the presence of an overall NLE: the data
are about 75 times more likely to have occurred under H 2, the
hypothesis that the group-level effect size δ is greater than zero,
than under H 0, the hypothesis that δ is equal to zero. Simonsohn
(2011c) recently suggested that this effect is spurious, because “a
staggering number of towns containing a last name in their name
were founded by individuals with such last names.” The evalua-
tion of whether or not the NLE is entirely produced by confounds
is beyond the scope of this paper – here we merely quantify the
statistical evidence for and against the presence of the effect, with-
out recourse to its possible cause. This is consistent with the main
purpose of this paper, which is to provide a tutorial-style intro-
duction to the advantages of hierarchical Bayesian modeling, the
assessment of evidence, and the proper visualization of data.

ALTERNATIVE MODELS AND PRIOR DISTRIBUTIONS: A
SENSITIVITY ANALYSIS
In our modeling efforts we had to make several choices, and it
is true that alternative models and alternative prior specifications
could be proposed. For instance, one could implement the hier-
archical structure using a beta-binomial, and impose an additive
structure on the probit-transformed mean of the group-level beta
distribution. One could also use a logit transformation instead of a
probit transformation, or assume the group-level structure follows
a t distribution instead of a Normal distribution.

We found that our results are robust against many such
changes, although it is impossible to investigate all of the different

possibilities. In general, our modeling choices were made for good
reasons – for instance, we used the probit transform to stay in
the family of generalized linear models, we used the prior on δ
for theoretical reasons (i.e., as a unit information prior), we used
the uniform prior on σ because of a recommendation by Gelman
(2006).

Nevertheless, it is certainly the case that the prior on effect size
δ can have a pronounced effect on the Bayes factor. This is under-
standable; when the prior on δ is highly peaked around the value
δ= 0, the hypotheses H 0 and H 1 are actually highly similar. The
more similar the competing hypotheses, the more difficult it is for
the data to conclusively support one hypothesis over the other.
We illustrate this with a sensitivity analysis where we studied the
effect that the prior on δ has on the Bayes factor for the surname
cities data set. We considered three different priors for effect size δ.
As before, we used the unit information prior, p(δ)∼N (0,1). We
also considered the “knowledge-based prior,” p(δ)∼N (0, 0.303),
a prior proposed by Bem et al. (2011) for the effect of extra-
sensory perception; therefore, this prior is a plausible lower bound
for the effect sizes expected under the NLE hypothesis. Finally,
we considered an in-between prior, namely p(δ)∼N (0, 0.6). We
also considered three different priors for the group-level SDs:
p(σ )∼U (0, 10), p(σ )∼U (0, 5), and p(σ )∼U (0, 2). We calcu-
lated the Bayes factor for all 3× 3 combinations of priors for δ and
σ , both for the unrestricted test of H 0 :δ= 0 against H 1 : δ 6= 0 and
the order-restricted test of H 0 against H 2 : δ > 0. Table 3 shows the
results.

As is evident from the table, the prior on σ does not exert much
of an influence on the Bayes factor. Also, because most of the poste-
rior mass is consistent with the order-restriction, the Bayes factors
for the order-restricted tests are about twice as strong in favor of
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FIGURE 4 | Violin plot of the posterior distributions of α for each of
the surname cities. Note that the distributions do not integrate to 1 in
this representation. 1, Smith; 2, Johnson; 3, Williams; 4, Jones; 5,
Brown; 6, Davis; 7, Miller; 8, Wilson; 9, Moore; 10, Taylor; 11, Anderson;

12, Thomas; 13, Jackson; 14, White; 15, Harris; 16, Martin; 17,
Thompson; 18, Robinson; 19, Clark; 20, Lewis; 21, Lee; 22, Walker; 23,
Hall; 24, Allen; 25, Young; 26, King; 27, Wright; 28, Hill; 29, Scott; 30,
Green.

the alternative hypothesis as the Bayes factors for the unrestricted
tests. Finally, it is also evident from Table 3 that the prior on δ does
have an influence on the Bayes factor: when p(δ)∼N (0, 0.303),
the alternative hypothesis is relatively similar to the null hypothe-
sis and this reduces the diagnostic value of the data. Nevertheless,
the data support H 1 over H 0 across a range of specifications for δ.

GENERAL DISCUSSION
In this article we have outlined a Bayesian hierarchical test for the
analysis of associations between people’s names and their behavior
(i.e., the city they live in, the professions they choose, the part-
ners they pursue, the companies they work for, or the products
that they buy). The test is easily implemented in WinBUGS (see
Appendix) and it allows for coherent inference both on the level
of the individual units and on the level of the group.

Our hierarchical analysis strikes an automatic and rational
compromise between two existing traditions of analysis, that of
complete pooling – in which all names are treated as identical – and
that of complete independence – in which every name is treated
uniquely. Violin plots show the posterior distribution of the name-
letter effect (NLE) for each individual unit (e.g., Figures 2 and 4)
and provide a quick overview of the precision and location of the

individual-unit NLE. This individual-unit analysis revealed that
for several cities there was a clear indication of a reverse NLE,
meaning that people gravitate away from cities that resemble their
name. We believe this finding may challenge current theories of
implicit egotism (see also Gallucci, 2003).

To quantify the evidence for and against a group-level NLE, we
used Bayes factors that pitted H 0 against a possibly order-restricted
alternative hypothesis. This group-level assessment showed that
the Saint city data set did not support a NLE, but the surname
city data set did. What are we to conclude from this?8 Do people
gravitate toward cities that resemble their surnames, but not
toward cities that resemble their first names? We do not believe this
is a plausible or parsimonious explanation. An alternative explana-
tion is that, even though the Bayes factors suggest a conflict when
the two studies are evaluated in isolation, they are in fact consistent;
the Saint city data set shows a positive effect size, and so does the
surname city data set. In order to assess whether the two data sets

8A reviewer on an earlier draft felt that these conflicting conclusions showed that
Bayesian inference has failed. We disagree: the method of Bayesian inference can-
not be held accountable for the quality or consistency of the data with which it is
confronted.
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FIGURE 5 | Prior and posterior distributions of the group-level effect
size δ for the hierarchical analysis of the surname cities data set.
Left panel: unrestricted analysis, right panel: order-restricted analysis.
For the prior, the distribution is shown (thin line). For the posterior, a
histogram (thick line) and the logspline non-parametric density estimate

(thin line) are depicted. The 95% confidence interval for the posterior
extends from 0.260 to 1.075 for the unrestricted analysis (left panel), and
from 0.259 to 1.075 for the order-restricted analysis (right panel). The
black dots tag the height of the prior and the posterior at the point of
interest δ= 0.

Table 3 | Results of a sensitivity analysis for the surname cities data

set.

Prior on effect size δ

N (0, 0.303) N (0, 0.6) N (0, 1)

Prior on σ BF 10 BF 20 BF 10 BF 20 BF 10 BF 20

Uniform (0, 2) 6.51 12.97 25.39 50.73 33.62 67.19

Uniform (0, 5) 6.81 13.57 24.36 48.68 33.08 76.12

Uniform (0, 10) 6.70 13.35 23.91 47.77 37.23 74.42

The prior on effect size changes the similarity between the null hypothesis and

the alternative hypotheses, and therefore the prior affects the diagnostic value

of the data (i.e., the Bayes factor). The order-restricted test is based on the

renormalization method.

are indeed consistent with each other one could either compare
the two studies directly (Gelman and Stern, 2006), or, better still,
one could collect many similar data sets and then carry out a meta-
analysis. Our Bayesian framework can easily be extended to carry
out such a meta-analysis; for example, each study j could be char-
acterized by a group-level NLE µj, and these study-specific NLE’s
can be assumed to follow from a higher-level Normal distribution.

On a related note, we feel it is important that researchers inter-
ested in the NLE investigate not a single data set, but an entire
array of data sets. For instance, it is not convincing when a study
shows that, say, people whose surname starts with the letter “A” are
disproportionally likely to live in Amsterdam – after all, this result
may have been obtained by cherry-picking. It would be much more

convincing if the same result hold for all letters, and for most major
cities (for an illustration of this important point see McCullough
and McWilliams, 2010). The results from these different units may
then be combined using our hierarchical Bayesian model.

On a priori grounds, some researchers may be skeptical about
the impact of name letters on major life decisions. Therefore, the
evidence presented in this paper may not be enough to overcome
a researcher’s strong prior belief that name letters do not influ-
ence major life decisions (see also McCullough and McWilliams,
2010, 2011; LeBel and Paunonen, 2011; Simonsohn, 2011a,b,c).
These strong prior beliefs do not influence our Bayesian hypoth-
esis test (which is based on the Bayes factor), but they can be
incorporated in our statistical framework via the prior model
odds p(H 0)/p(H 2). For example, the surname cities data set
yielded a Bayes factor of about 75 in favor of H 2. If the prior
model odds are strongly biased against H 2 (e.g., 0.99/0.01= 99),
then a researcher’s posterior model odds may still favor the null
hypothesis, albeit less strongly than before.

In sum, our analysis provides a useful novel perspective on the
analysis of name-behavior associations in large databases. In addi-
tion, our analyses seamlessly carry over to data analysis problems
of a similar structure. We believe that hierarchical Bayesian mod-
els allow for an assessment of the name-letter effect that is more
comprehensive and more coherent than the one that is currently
standard.
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APPENDIX
WINBUGS CODE FOR THE SAINT CITIES AND THE SURNAME CITIES
This appendix provides the model specification code that implements the graphical model shown in Figure 1 in WinBUGS. For our
analyses, we called WinBUGS from R using the R2WinBUGS package (Sturtz et al., 2005). R is a free software distributed under the
GNU license (R Development Core Team, 2008). Some calculations are done in R before calling WinBUGS:

1. Transform the baseline proportion bi (proportion of people with a particular name deceased in the U.S.) to the probit scale.

βi = 8
−1(bi), in R: beta = qnorm (b)

2. Calculate the number Ni of people with a particular name deceased in the respective city from “proportion in city” and “city
population” TNi and round to integers.

Ni = proportion in cityi × T Ni , in R: N = round ((N.prop ∗ TN), digits = 0)

3. Introduce a variable M that indicates the number of independent replications (the part enclosed by the rounded rectangle in
Figure 1). For the Saint cities data set, there are 27 cities, thus M= 27. For the surname cities data set, there are 30 cities, thus M= 30.

In R: M = length(beta) sets M equal to the number of elements in the vector“beta”.

In the WinBUGS code below, the twiddle symbol “∼”means “is distributed as” and the hash sign “#” is used for comments. Note
that in WinBUGS, a Normal distribution is specified in terms of mean and precision (i.e., the inverse of the variance).

model
{

for(i in 1:M)
{

# number of people with particular name in
# name-resembling city is binomially distributed:
N[i] ˜ dbin(theta[i],TN[i])
# probit transformation of rate parameter:
theta[i] <- phi(gamma[i])
# probitized rate parameter = probitized baseline + NLE:
gamma[i] <- beta[i] + alpha[i]
# NLEs for individual cities drawn from a
# group-level Gaussian distribution:
alpha[i] ˜ dnorm(mu,lambda)

}
# GROUP-LEVEL PARAMETERS:
# mean mu is defined in terms of effect size delta and
# standard deviation sigma

mu <- delta * sigma
# precision lambda is the inverse of the variance:

lambda <- pow(sigma, -2)
# uniform prior from 0 to 10 on sigma:

sigma ˜ dunif(0,10)
# standard Normal prior on effect size delta:

delta ˜ dnorm(0,1)
}

For the analysis of both the Saint city data set and the surname city data set, the above WinBUGS code was used to generate
five MCMC chains, each comprised of 50,000 iterations; after discarding the first 20,000 iterations from each chain as burn-in and
confirming convergence by visual inspection and the R̂ statistic (Gelman and Rubin, 1992), we collapsed the samples across the five
chains so that our inference was based on a total of 150,000 samples from the joint posterior.
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