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Abstract

Bayesian estimation in Markov random fields is

very hard due to the intractability of the parti-

tion function. The introduction of hidden units

makes the situation even worse due to the pres-

ence of potentially very many modes in the pos-

terior distribution. For the first time we pro-

pose a comprehensive procedure to address one

of the Bayesian estimation problems, approxi-

mating the evidence of partially observed MRFs

based on the Laplace approximation. We also in-

troduce a number of approximate MCMC-based

methods for comparison but find that the Laplace

approximation significantly outperforms these.

1 Introduction

Learning the parameters of a fully observed Markov ran-

dom field is hard when the graphical representation has

high treewidth. The reason is the intractability of the par-

tition function. On the bright side, since the log-likelihood

surface is concave we do not have to deal with the is-

sue of local modes. As we add hidden units however, the

likelihood surface may develop many modes and learning

becomes considerably harder. Despite these difficulties a

number of successful approaches have been proposed and

analyzed (e.g. contrastive divergence (CD) (Hinton, 2002),

persistent CD (Tieleman, 2008), MCMC-MLE (Geyer and

Thompson, 1992)).

Bayesian estimation is hard even in the absence of parti-

tion functions, but also here powerful approximation meth-

ods have been developed (Neal, 1993; Carlin and Chib,

1995; Attias, 2000; Beal and Ghahramani, 2003; MacKay,

1998; Minka, 2001). The problem in the presence of a

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

partition function is “doubly intractable” (in the language

of Murray et al. (2006)). For instance, even running a

Metropolis-Hastings MCMC algorithm would require the

computation of the partition function for both the current

parameters and the proposed parameters at every itera-

tion. Yet, in the absence of hidden units the concavity

of the likelihood extenuates the situation and indeed suc-

cessful approximations have been proposed in the litera-

ture. For instance, Murray and Ghahramani (2004); Fan

and Xing (2006) use Langevin dynamics with approximate

gradients, Welling and Parise (2006); Parise and Welling

(2006) use the Laplace approximation combined with be-

lief propagation, Qi et al. (2005) use expectation propaga-

tion and Møller et al. (2006); Murray et al. (2006) use a

nifty MCMC method for problems where perfect samples

can be drawn. However, when we add hidden units the

situation changes for the worse and many (possibly expo-

nentially many) local modes may appear in the posterior

distribution.

Thus, a Bayesian treatment of partially observed Markov

random fields sits at the confluence of three sources of in-

tractability: 1) Bayesian posterior estimation, 2) computa-

tion of the partition function and 3) multi-modality due to

the presence of hidden units (perhaps one could say this

class of problems is “triply intractable”). To the best of our

knowledge there is no previous work on Bayesian estima-

tion for partially observed MRFs.

In this paper we take the first attempt on this difficult task

and propose a Laplace approximation to address the prob-

lem of evidence estimation for partially observed MRFs.

The intrinsic intractabilities prevent us from providing a

simple panacea, and we combine a series of techniques to

achieve an accurate estimate. The Laplace approximation

takes care of intractability 1. Intractability 2 is dealt with

by annealed importance sampling (AIS) (Neal, 2001). Un-

fortunately, intractability 3 often sticks up its ugly head in

the sense that it prevents us from finding the MAP state.

Worse yet, modes may overlap creating plateaus breaking

the Gaussian assumption in the Laplace method. Also, due

to symmetries in the models many equivalent modes may
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exist resulting in an under-estimate of the evidence. We

identify these problems and introduce a number of effec-

tive corrections for them. We emphasize that, as our ex-

periments show, each of these corrections is necessary and

unavoidable in order to solve these issues.

We compare our proposed method with AIS on restricted

Boltzmann machines (RBMs) for which the partition func-

tion remains tractable. We also propose a number of

algorithms that adapt standard MCMC-based approaches

in Bayesian estimation by replacing the required poste-

rior samples with samples obtained from the approximate

Langevin method of Murray and Ghahramani (2004). In

all experiments the proposed Laplace method has out-

performed all competitors by a significant margin.

2 Bayesian Model Selection

A Markov random field (MRF) model with visible vari-

ables x and hidden variables z can be represented as a log-

linear model,

p(x, z|λ) = 1

Z(λ)
exp

[

λ
T f(x, z)

]

(1)

where f(x, z) is a vector of features for the state (x, z),
λ specifies the associated parameters for each feature and

Z(λ) is the normalization constant, known as the partition

function. In addition, we assume that the parameters are

random variables subject to a prior distribution p(λ).

An important quantity in Bayesian model selection is the

log-marginal likelihood or evidence defined as,

log p(D) = log

∫

λ

dλp(D|λ)p(λ)

= log

∫

λ

dλ
∏

n

Z(xn,λ)

Z(λ)
p(λ) (2)

where D = {x1, . . . ,xN} is a set of N observations and

Z(xn,λ) =
∑

zn
exp

[

λ
T f(xn, zn)

]

. The merit of using

evidence for model selection has been studied intensively

(see review (Kadane and Lazar, 2004)). Although the ev-

idence for an MRF is more difficult to compute than for a

Bayesian network because the partition function in Eqn. 1

is usually intractable, a proper approximate approach still

retains its advantage over other commonly used frequentist

methods such as cross validation (CV).

We illustrate this point in an example of learning the num-

ber of hidden variables in RBMs. To obtain a model with

ground truth, we randomly generate 50 instances of RBMs

of 10 visible and 5 hidden units with a Gaussian distributed

prior. For each model, i.i.d. samples are drawn and candi-

date models with 1 ∼ 10 hidden units are then compared.

A typical scenario is shown in Figure 1. Cross validation

cannot find the true model, which is concordant with the
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Figure 1: A typical example with 625K samples. Top: mean and
standard deviation of estimated evidence by our Laplace method.
Bottom: log-likelihood per data case in the validation set for CV.
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Figure 2: Mean and standard deviation of the estimated number
of hidden units over 50 models against the size of the training set
by the Laplace method and 10-fold cross validation.

fact that CV is not consistent in model selection (Yang,

2007). In Figure 2, our Bayesian method prefers simple

structures when the training set is small and approaches the

true model with more data. In contrast, the 10-fold CV

tends to overestimate that number.

With this example in mind, we will be focused on how to

estimate the evidence accurately using several approximate

approaches in this paper.

3 Approaches to Bayesian Model Selection

3.1 Laplace Approximation

An MRF with hidden variables may have an exponentially

large number of modes in the posterior distribution which

makes integration over the entire parameter space NP hard.

However, assuming that the maximum a posteriori (MAP)

estimate λMP is unique (except for equivalent modes due to

unidentifiability issues in the hidden variables), as the size
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of D increases, the mass will concentrate around λ
MP. It

is therefore reasonable to approximate the marginal like-

lihood by integration on the single mode. The Laplace

method approximates the posterior as a Gaussian distribu-

tion by Taylor expanding both the log-likelihood and the

log-prior up to the second order around λ
MP:

log p(D|λ) ≈ log p(D|λMP) + κT∆λ

− 1

2
∆λ

T (NC −
N
∑

n=1

Cxn
)∆λ (3)

log p(λ) ≈ log p(λMP) + gT∆λ− 1

2
∆λ

TΛ−1∆λ

(4)

where ∆λ = λ − λ
MP, κ = N(Ex∼D[Ep(z|x,λMP)[f ]] −

Ep(x,z|λMP)[f ]), C = Cov(f)p(x,z|λMP) is the covariance

of the features over the joint distribution of x and z and

Cxn
= Cov(f)p(z|xn,λ

MP) is the conditional covariance ma-

trix given xn. For the prior distribution, g and Λ−1 are the

first and second derivative of log p(λ) at λMP. Combin-

ing Eqn 3 and 4, we get the Laplace approximation for the

log-marginal likelihood,

log p(D) ≈
N
∑

n=1

logZ(xn,λ
MP)−N logZ(λMP)

+ log p(λMP)− F

2
log(N) +

F

2
log(2π) +

1

2
log det(NΣ)

(5)

where F is the number of features and Σ−1 = NC −
∑N

n=1 Cxn
+ Λ−1 is the Hessian matrix of the posterior

distribution at λMP. Notice that the first order terms cancel

at the MAP value.

Despite the approximation induced by the Taylor expan-

sion, finding λ
MP, estimating the first and second term of

Eqn 5, and computing the covariance between features re-

main intractable. A second level of approximation given by

the Bethe free energy has achieved good performance for

a fully observed MRF (Parise and Welling, 2006; Welling

and Parise, 2006), but suffers from a significant bias in esti-

mating the MAP value λMP and potential non-positive def-

initeness in the Hessian matrix in the case of hidden units.

3.1.1 Our Proposed Laplace Procedure

Recent developments in training and sampling MRFs pro-

vide alternatives for improved accuracy. We combine these

techniques and propose a comprehensive procedure out-

lined in algorithm 1. This procedure applies to partially

observed MRFs if the following two conditions hold: 1)

λ
MP is locally unique, 2) hidden units can be marginalized

out efficiently given the observed variables. Condition 1 is

for the Laplace approximation to hold, and condition 2 is

for the convenience of computing the conditional covari-

ance matrix Cx and Z(x,λ). The latter condition can be

Algorithm 1 Laplace Method for Partially Observed MRFs

1: Run persistent contrastive divergence to find a MAP

estimate λ
MP.

2: Run MCMC on p(x|λMP) to estimate the covariance

matrix C.

3: Fine-tune λMP for a positive definite Hessian Σ−1 (sec-

tion 3.1.2).

4: Compute log det(Σ−1) and correct overlapping modes

(section 3.1.3).

5: Run annealed importance sampling to estimate the par-

tition function Z(λMP).
6: Plug log det(Σ) and Z(λMP) into Eqn. 5 and count

equivalent modes (section 3.1.4).

satisfied, e.g., when hidden units are structured as a chain

or tree conditioned on x.

We train an MRF with persistent contrastive divergence

(PCD) (Tieleman, 2008) (step 1), and estimate C with

MCMC (step 2) in order to eliminate the bias in the Bethe

free energy approximation in Parise and Welling (2006);

Welling and Parise (2006). Annealed importance sampling

(AIS) (Neal, 2001) in step 5 is able to estimate the partition

function accurately at the cost of a slow annealing sched-

ule. Fortunately, we only need to run AIS once at Z(λMP)
and it is therefore a feasible solution. The problem of multi-

modality in the posterior distribution are further addressed

in step 3, 4 and 6.

Although the Laplace method has a time complexity of

O(F 3) and space complexity of O(F 2) in computing the

log-determinant of the Hessian matrix, Σ−1, it is quite

amenable for a model with thousands of parameters. There-

fore, our proposed algorithm will work generally on any

moderate-sized machine learning and statistical problems.

In fact, the actual time spent in decomposing Σ−1 is negli-

gible compared to searching for the MAP estimate λ
MP in

our experiments with over 1000 parameters.

Another fact worth noticing is that all the additional ap-

proximation and corrections introduced in this section are

aimed to improve the performance of the Laplace approx-

imation under the finite data setting. Our algorithm ap-

proaches the pure Laplace approximation when the train-

ing data size as well as the sample size of the Monte Carlo

method in step 2 approaches infinity. Furthermore, the

Laplace approximation provides a consistent estimate to

the marginal likelihood given we find the exact global MAP

λ
MP. While to satisfy the last condition is still intractable,

it is indeed due to the multi-modal nature of our problem,

and like any other approach we could at the best propose

an approximate solution.

We now discuss the details of some proposed adaptations

in Algorithm 1 in the following subsections.
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3.1.2 Fine-tuning

Although at a local maximum of the posterior distribution

p(λ|D), the Hessian matrix, Σ−1, must (theoretically) be

positive definite, two sources of noise in step 1 ∼ 2 may

break the positive definiteness of the estimated matrix: (1)

λ
MP is estimated by a stochastic optimization algorithm,

(2) C is estimated through Monte Carlo methods. To ad-

dress this issue, we further fine-tune the result by optimiz-

ing an approximate objective function based on the samples

{x(t)}Tt=1 drawn in step 2.

The logarithm of the unnormalized posterior distribution

can be written as

log p(D|λ)p(λ)

=

N
∑

n=1

logZ(xn,λ)−N logZ(λMP)

−N logEp(x|λMP)

Z(x,λ)

Z(x,λMP)
+ log p(λ)

≈
N
∑

n=1

logZ(xn,λ)−N log
1

T

T
∑

t=1

Z(x(t),λ)

Z(x(t),λMP)

+ log p(λ) + const. , −ℓ(λ) + const. (6)

ℓ(λ) is in fact an importance sampling estimator to

− log p(D|λ), up to a constant, with a proposal distri-

bution p(x|λMP) and weights w(t) = w̃(t)
∑

T
t=1 w̃(t) , w̃

(t) =

Z(x(t),λ)
Z(x(t),λMP)

, which resembles the MCMC-MLE algorithm

(Geyer and Thompson, 1992). ℓ(λ) does not involve the

partition function and can be optimized by any traditional

second order algorithm. When the optimization converges,

the Hessian matrix

∂2ℓ(λ)

∂λ2 = N

T
∑

t=1

w(t)C
x
(t)(λ)−

N
∑

n=1

Cxn
(λ) +Λ−1 (7)

is guaranteed to be a positive definite importance estima-

tor to Σ−1. Unlike MCMC-MLE which can suffer from

degeneration of the importance weights if the posterior dis-

tribution varies significantly, we start the optimization from

a point very close to a local optimum and thus weight de-

generation is rarely observed in our experiments.

3.1.3 Overlapping Modes

While the fine-tuning step solves most nonpositive definite

problems, there are still some cases where the optimization

does not converge or log det(Σ−1) is sensitive to the value

of λMP. Further study shows that small or negative eigen-

values of Σ−1 often occur with overlapping modes along

the corresponding eigen-directions as shown in Figure 3.

In that case, the integration under the Laplace approxima-

tion (Gaussian function) either tends to overestimate the

variance or completely fails.
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Figure 3: Posterior distribution vs Laplace approximation at λMP

along eigenvector vi with a small eigenvalue Si. When multiple
modes overlap, the curve could be close to flat or even convex and
the integral under the approximation curve (green) could be much
larger than that under the true posterior curve (blue).

To address this problem, we decompose the integration of

the Gaussian function N (λ;λMP,Σ) as a product of inte-

grals over all eigenvectors {vi}Fi=1. For a pathological di-

rection whose eigenvalue Si is below a threshold Sthresh, we

approximate p(λ|D) by a trapezoid instead (magenta curve

in Figure 3). The integration along vi is equal to a value

I = tr − tl with tr and tl the two bimedians. We use the

estimator ℓ(λ) (Eqn. 6) to search for the points tl and tr,

where the posterior density drops by a half along direction

vi. We start at t = 0 and iteratively search in direction

vi for tr (−vi for tl) using a doubling step size. When

either e−ℓ(λMP+tvi) < 0.5 or the effective sample size,

1/
∑

t(w
(t))2, drops below 0.9T we stop. The restriction

of the effective sample size is to prevent degeneration of the

importance sampling estimator. Finally, we perform a bi-

nary search in the interval (0, t) ((t, 0) for tl) to find the lo-

cation where either e−ℓ(λMP+tvi) = 0.5 or 1/
∑

t(w
(t))2 =

0.9T . The trapezoid approximation increases accuracy and

reduces variance of the estimated log det(Σ−1). Even if

we would have been better off using a Gaussian instead of

a trapezoid we would only have introduced an error of no

more than | log(2
√

2 log(2)/
√
2π)| ≈ 0.0625.

3.1.4 Counting Equivalent Modes

It is well known that in models with hidden variables cer-

tain symmetries exist. Take restricted Boltzmann machines

for example. The probability distribution is:

p(x, z|W,α, β) =
1

Z
exp

(

K
∑

i=1

zi
(

WT
i x+ βi

)

+ αTx

)

(8)

where W is the interaction weights and α, β are biases.

Exchanging the indices of two hidden variables will not

change the probability of any observed state but will lead

to two distinct modes in the posterior distribution. To com-
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pensate for this effect we would simply need to add these

K! symmetries in the evidence. Unfortunately, life is not so

easy because sometimes the modes corresponding to these

symmetries are located so close together that the proposed

Laplace approximation including the correction described

in the previous section has already counted them in the total

volume. Specifically, if there are R groups of hidden vari-

ables with each Kr hidden units which have very similar

parameter values then exchanging the hidden units within

these groups does not lead to different modes. Hence the

total number of modes will be
K!

K1! · · ·KR!
.

To find the overlapping modes we leverage the Hes-

sian matrix Σ−1. Call two hidden units zi, zj
equivalent and place them in the same group if

exp
(

− 1
2
(λMP−λi,j)

T

2 Σ−1 λ
MP−λi,j

2

)

> 1
2 where λi,j is the

parameter vector obtained by swapping all parameters as-

sociated with zi and zj .

3.1.5 Application to ML-BIC

The same techniques introduced for the Laplace approx-

imation can also be applied to evaluate the Bayesian in-

formation criterion (BIC) at the maximum likelihood esti-

mate (MLE). We compute ScoreML−BIC by only retaining

the first four terms in the log-marginal likelihood (5) with

λ
MP replaced by the MLE λ

ML.

3.2 MCMC Based Algorithms

MCMC approaches have been widely adopted for Bayesian

model selection (Neal, 1993; Carlin and Chib, 1995). It is

usually assumed that 1) one is able to run an MCMC sam-

pling method to draw samples from the posterior distribu-

tion p(λ|D) and 2) it is tractable to compute the likelihood

functions p(D|λ). However, this is not the case for MRFs

due to the intractability of Z(λ). For assumption 1, sev-

eral approximate MCMC methods have been introduced

for Bayesian MRFs among which “brief” Langevin dy-

namics with gradients computed via contrastive divergence

(Murray and Ghahramani, 2004; Fan and Xing, 2006). For

assumption 2, since the partition function has to be eval-

uated for every sample drawn in a MCMC based method,

AIS becomes impractical. Instead, we use belief propaga-

tion (BP) to approximate the likelihood function. Given

samples from the posterior distribution, and a tool to com-

pute the likelihood, we can now use any traditional sam-

pling based algorithm for estimating the marginal likeli-

hood of a Bayesian model.

In this paper, we propose and compare a number of algo-

rithms that integrate brief Langevin sampling, belief propa-

gation with one of the following methods: Harmonic mean

(p̂1 in Newton and Raftery (1994), denoted as Harmonic-

1), a modified version of Harmonic mean (p̂4 in Newton

and Raftery (1994), Harmonic-4) to address stability is-

sues, bridge sampling with Geometric mean (Meng and

Wong, 1996) (Bridge-Geo), bridge sampling with optimal

α (Meng and Wong, 1996) (Bridge-Opt), and deviance in-

formation criterion (DIC). The value of DIC can be infor-

mative in comparing different models but it is not a good

approximation to the marginal likelihood.

3.3 Annealed Importance Sampling for Evidence

AIS is often treated as the gold standard for estimating the

normalization constant of a distribution. In the posterior

distribution p(λ|D) = 1
p(D)p(D|λ)p(λ), the normaliza-

tion term p(D) can be estimated directly with AIS by run-

ning annealed Hybrid Monte Carlo (HMC) chains in pa-

rameter space, denoted as AIS-p(D). This is another us-

age of AIS in this paper besides computing the partition

function Z(λ). However, this approach is impractical in

general because evaluating p(D|λ) in Eqn. 1 involves the

intractable term, Z(λ), and we cannot afford running an-

other AIS to estimate Z(λ) at every step of AIS-p(D).
Therefore, although our proposed Laplace approximation

can handle large models, for the sake of evaluation we will

study models at such a size that Z(λ) can be computed ex-

actly. This allows us to treat AIS-p(D) as ground truth.

4 Experiments

We compare different approaches to estimating the ev-

idence of a special class of partially observed MRFs,

restricted Boltzmann machines, on the 20 Newsgroups

dataset 1 with a vocabulary of 100 words. Hidden variables

in an RBM are conditionally independent given the visi-

ble variables and thus it is tractable to compute Z(x,λ).
We choose the Gaussian distributed prior with σ0 = 1.

Algorithms being compared include our Laplace method

with (Laplace) and without (Laplace0) additional correc-

tion on overlapping and equivalent modes, penalized log-

likelihood at λMP (MAP) which retains the first three terms

in Eqn. 5, ML-BIC, Harmonic-1, Harmonic-4, Bridge-

Geo, Bridge-Opt and DIC. Each method is run 100 times

under every experiment setting. However, error bars are

too small to be visible in the figures below. We first com-

pute the evidence with a subset of the vocabulary, and then

on the complete dataset. We also run 10-fold cross valida-

tion where we train models with persistent contrastive di-

vergence and approximate the partition function in comput-

ing the test log-likelihood with annealed importance sam-

pling, both of which have the same parameter setting as the

Laplace method.

We only consider RBMs with up to 9 hidden variables so

that the partition function can be computed exactly in AIS-

p(D). We run one iteration of Hybrid Monte Carlo algo-

rithm with 10 leapfrog steps at each temperature in a linear

1http://www.cs.nyu.edu/˜roweis/data.html
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annealing scheme, and the step size is chosen to keep the

average acceptance rate around 90%. It takes up to 4.5
hours to run a single chain on the complete dataset, and we

run 100 chains for an accurate estimate of the ground truth.

For the Laplace and ML-BIC methods, we trained RBMs

with persistent CD with a 1/t annealing schedule for the

step size. State samples, {x(t)}Tt=1, are drawn by Gibbs

sampling. Running AIS with 100 chains to estimate the

partition function takes less than half an hour on the large

dataset. The fine-tuning is implemented by L-BFGS with

an extra stopping criterion of 90% on the effective sample

size to prevent importance weights degeneration (see sec-

tion 3.1.3 for its definition). Sthresh = 1/σ2
0 is used to detect

overlapping modes.

The performance of Langevin based methods strongly de-

pends on the mixing rate of the sampling process. We use

one step of Gibbs sampling at every iteration to minimize

variance as suggested in Fan and Xing (2006) and choose

the step size carefully so that a set of 10 Markov chains con-

verge within about 2 hours. We assess the convergence by

monitoring the “multivariate potential scale reduction fac-

tor” (MPSRF) with a threshold of 1.1. Running each chain

takes up to 3 hours including drawing samples and com-

puting the approximate likelihood with BP. For bridge sam-

pling methods, we choose the prior distribution as q2(λ) in

Meng and Wong (1996).

4.1 Newsgroups Dataset with 5 Words

In the small dataset, we only use the 5 words with the high-

est frequencies in the 20 Newsgroups dataset. Subsets of

training documents are randomly selected with the con-

straint that every word occurs in at least one document.

Figure 4 shows the evidence per document of an RBM with

3 hidden units as a function of the data size. We com-

pare Laplace methods with MAP and ML-BIC in the upper

panel which are all based on the evaluation around a single

point of λ, and with MCMC based methods in the bottom

panel. Better methods should stay close to the black-dashed

AIS-p(D) curve.

Both Laplace0 and Laplace provide very accurate estima-

tion of p(D) for different sizes of the training set. ML-BIC

and MAP over penalize due to the absence of the second

order term. MCMC methods work well on small training

sets, although they are still inferior to the Laplace methods.

The sharp drop in scores of MCMC methods on N = 1000
results from a change in the step size of Langevin dynam-

ics. As the Markov chain has difficulty converging on large

datasets, we have to use a larger step size to achieve suffi-

cient mixing within 2 hours which leads to large errors. We

anticipate that Langevin based methods could also work

reasonably well if we allowing a smaller step size and a

longer running time. However, part of the error could also
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(b) Comparison Laplace with MCMC based methods

Figure 4: Log-marginal likelihood of a model with 5 visible vari-
ables and 3 hidden variables. The size of the training set N varies
from 10 to 1000. Closer to AIS-p(D) (black dashed) line means a
better approximation. AIS-p(D) almost completely overlaps with
Laplace0

come from the bias introduced by the brief CD sampling as

well as the Bethe free energy approximation.

Next, we study the posterior distribution approximated by

brief Langevin sampling and the Laplace method, in com-

parison with samples drawn from a Hybrid Monte Carlo

sampler where the partition function is computed exactly.

Both sampling methods are initialized at λ
MP, and use

very small step sizes so that they do not escape from

their modes. Typical histograms of parameter samples are

shown in Figure 5. Both the Laplace approximation and

Langevin dynamics fit the posterior distribution well with-

out significant deviation.

Figure 6 shows the log-marginal likelihood on a dataset

of 100 documents and different numbers of hidden units

K. The Laplace methods again provide the most accurate
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Figure 5: Histogram of samples from accurate Hybrid Monte
Carlo (pink solid), Langevin with brief sampling (red) and
Laplace approximation (blue)

scores. With increasing K, the chance of having overlap-

ping modes increases rapidly and Laplace0 tends to give an

over-estimate of the integral (see Figure 3) while Laplace

with mode-corrections improves the robustness.

4.2 Newsgroups Dataset with the Full Vocabulary

On the full vocabulary, we show the comparison on a

dataset of 100 documents in Figure 7. Evaluating the ev-

idence on a larger set is straightforward for the Laplace

method, but it becomes much more difficult for AIS-p(D).
For Langevin dynamics we collect 10k samples after the

burn-in period with a subsampling interval of 500 itera-

tions. For bridge sampling methods, we draw an additional

10k samples from the prior distribution (100k samples for

Bdg-Opt/Geo*).

The results for all the methods are shown in Figure 7.

K varies from 1 to 9. We also compute the scores with

K = 11 and 13 for the Laplace method to illustrate its

potential for larger models. MAP and ML-BIC suffer seri-

ously from the increasing number of parameters, and those

algorithms depending on only posterior samples show in-

ferior performance to the Laplace method possibly due to

the large error from the Langevin dynamics. Even worse

are the bridge sampling methods which completely fail, be-

cause in the high dimensional parameter space (∼ 1k pa-

rameters when K = 9) the likelihood of samples from the

prior distribution has a variance that is too large. Increasing

the number of samples drawn from the prior helps to some

extent (Bdg-Opt/Geo*) and a better choice of q2 might as

well be considered. Although Laplace and Laplace0 fit the

AIS-p(D) curve very well, we do observe an increasing

gap in the inset. This is mainly because the Laplace approx-

imation cannot cover the increasing number of local modes.

The score of Laplace is slightly higher than Laplace0 be-

cause it corrects for additional equivalent modes.
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(b) Comparison Laplace with MCMC based methods

Figure 6: Log-marginal likelihood of a model with 5 visible vari-
ables and 100 training data items. The number of hidden variables
K varies from 1 to 9.

Lastly, although our main interest in this paper is to provide

an accurate estimate to the marginal likelihood, we also fol-

low the example in the introduction and show how the 10-

fold cross validation performs on this experiment in Figure

8. Similar to Figure 1, while there is a slight tendency of

decrease (increase) in the small (large) data set, the one

standard deviation intervals overlap with each other by so

much that CV provides little confidence on model selection

in these experiments.

5 Conclusion

For the first time we have proposed and evaluated a method

for what is perhaps the hardest class of Bayesian estima-

tion problems: partially observed Markov random fields.

The method we propose is based on the Laplace approxi-

mation, annealed importance sampling to estimate the par-
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Figure 7: Log-marginal likelihood of a model on Newsgroups
dataset with 100 words and 100 training documents. The number
of hidden variables K varies from 1 to 9. Closer to AIS-p(D)
(black dashed) line means a better approximation.

tition function and a series of correction terms to deal

with the multi-modality of the posterior distribution. In all

cases where we were able to estimate the ground truth, our

method seems to work very well. In particular, the Laplace

approximation seems superior to MCMC-based methods

which draw approximate samples using Langevin dynam-

ics combined with contrastive divergence.

While this represents a first comparative study we be-

lieve much work still needs to be done on more datasets

of various sizes and difficulty and different MRF mod-

els. Also, while there are a lot of interesting problems

in machine learning and statistics that require no more

than O(1000) model parameters, it would be worthwhile

to consider scaling up our algorithm further for large-scale

problems. In that case the computational burden of de-

composing and storing the precision matrix would become

noticeable and we may want to exploit certain properties

of the covariance/precision matrix such as sparsity (irrele-

vant parameters are weakly correlated) and parameter shar-
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Figure 8: Average and standard deviation of the log-likelihood
per data point using cross validation with 100 training data items.
The number of hidden variables K varies from 1 to 9.

ing/clustering (parameters for similar features tend to have

similar values). We leave this for future investigation. But

given the positive results obtained in this study we do be-

lieve that approximate Bayesian estimation for this class of

models is feasible and can become a useful tool for model

selection and model averaging for partially observed MRF

models.
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