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We present a method for determining the average transition path and the free energy along this path in
the space of selected collective variables. The formalism is based upon a history-dependent bias along a
flexible path variable within the metadynamics framework but with a trivial scaling of the cost with the

number of collective variables. Controlling the sampling of the orthogonal modes recovers the average

path and the minimum free energy path as the limiting cases. The method is applied to resolve the path and
the free energy of a conformational transition in alanine dipeptide.
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Direct simulation of atomic motion during a molecular
transition is very often impossible because the transition is
associated with the crossing of a free energy bottleneck,
which is a rare event on the limited time scale accessible to
the simulation method. To nevertheless model such rela-
tively slow processes as chemical reactions, conforma-
tional changes in macromolecules, or nucleation events
in phase transitions, a large number of advanced simulation
methods has been developed in recent years. These meth-
ods either apply a kind of bias along one or a few order
parameters [1-4], focus on localizing transition pathways
[5-11], or increase the temperature to enhance free energy
barrier crossing [12]. Although several of these methods
have become crucial for the study of slow molecular
processes, a number of important difficulties remains.

Arguably the largest challenge to model complex activated
processes remains the so-called “reaction coordinate prob-
lem” of localizing the slow degree(s) of freedom that
characterizes the transition mechanism. For very simple tran-
sitions, such a reaction coordinate may be chosen intui-
tively—for example, the length of a bond that breaks. For
all other interesting processes, the dimensionality and com-
plexity are a problem, especially for methods that require an
appropriate reaction coordinate to enhance the sampling
and compute the free energy landscape. Two solutions are
offered to obtain a reaction coordinate in this case. The first
strategy is to analyze the reactive trajectories from transition
path sampling simulations [13,14], and the second is to
compute a least action pathway or a minimum (free) energy
pathway (MFEP) [5,6,15-17]. Here, we present an efficient
algorithm to locate the average pathway and obtain the free
energy profile in a single ““path-metadynamics” simulation.
Our starting point is metadynamics [2,18], which belongs toa
class of biasing methods [19,20] that apply a history-
dependent repulsive bias to a small set of collective variables
to enhance sampling of activated transitions and probe the
free energy surface (FES). The MFEP connecting the reac-
tant and product minima can be obtained from the computed
FES and used as a reaction coordinate onto which a compli-
cated FES can be projected to provide an intuitive
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one-dimensional picture [21]. However, a FES spanned by
more than three collective variables becomes prohibitively
demanding to converge [22], and its analysis exceedingly
cumbersome. Branduardi et al. provided an analytic expres-
sion for the progress along a path as a sequence of intermedi-
ate molecular structures [23], which can be used as a
collective variable in a metadynamics simulation and, in an
iterative series of simulations, be optimized toward the
MFEP by following the gradient of the free energy, similar
as done in the string method [15]. Contrary to this approach
(and other path finding methods), the current algorithm
makes use of a flexible path that follows the probability
density of a set of collective variables. In this Letter, we
show that the method therefore (1) does not require calcu-
lation of (slowly converging) gradients of the FES, (2) can
locate both the average transition path and the MFEP,
(3) simultaneously obtains the free energy along the path,
(4) allows for very large sets of collective variables due to a
trivial scaling behavior, and (5) is particularly robust and
simple to implement.

Let us consider a many-particle system (q(7), v(¢)) €
N3 X M3 which dynamics evolves in some potential
U(q) with a canonical distribution of temperature 7. Let
us also assume that this system has a FES spanned by a set of
relevant collective variables that are functions of the posi-
tions of the system, {z;(q)} C ", in which the dynamics is
metastable over two states A C Y and B C NV, We want
to describe the reaction coordinate of the process as the
progression along an average transition path in the space of
the N collective variables, z;.

The reaction coordinate is well-defined within the con-
cepts of transition path theory [24] and the committor
distribution. The committor is the probability pz(q") that
a trajectory starting with random (Boltzmann distributed)
velocities from configuration q" will arrive in state B
before going through state A. Close to the attractive basins
of state A or B, the committor will be (close to) zero or one,
respectively, whereas somewhere in between the isocom-
mittor surface pz(q") = 0.5 connects the ensemble of the
transition state structures, which have equal numbers
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of trajectories that “‘commit’ either to states A or B. The
isocommittor surfaces provide a continuous foliation of
configurational space from state A to state B, which is
therefore often seen as the ideal reaction coordinate. The
transition flux density, p, is the number of trajectories that
pass through the surface per unit area. This density will be
peaked at configurations that belong to the ‘transition
valley” in the FES, as illustrated by Fig. 1. The average
transition path can now be defined as the curve that runs
from state A to B and connects the mean values of the
transition flux densities of each isocommittor surface.

In order to localize the average transition path, we
make the following three assumptions: 1. The normalized
transition flux density, p, can be represented by the config-
urational probability, p(z) = exp( — F(z)/kgT), in the
neighborhood of the path, with F the free energy, T the
temperature, and kg Boltzmann’s constant. 2. The average
transition path can be represented by a parametrized curve
in the space of collective variables, {s(co): R — RV;s(0) €
Aands(1) € B}. 3. The isocommittor hyperplanes S, are
perpendicular to s(o) in the neighborhood of the path.

Although p is a conditional probability that only con-
siders configurations that belong to transition paths that
connect A and B, the first assumption typically holds when
the transition flux is localized in a valley (or transition tube
[24]) in the FES spanned by an appropriate set of collective
variables, {z;}.

To associate the curve of the second assumption to the
progress of the transition, we require a projection of the
collective variable space onto the curve. This projection
yields the free parameter, o(z)|s: WY — [0, 1], a reaction
coordinate that can in principle be connected to the iso-
committor surfaces [14], although a choice of dynamically
coupled collective variables might complicate this map-
ping, as in that case the isocommittor surfaces are no
longer orthogonal to the curve [25,26].

An estimate of the average transition path is obtained by
connecting the mean configurational probabilities of each

FIG. 1 (color online). Dynamic trajectories that start in reac-
tant state A and end in product state B tend to localize in a valley
of the free energy landscape. While reconstructing the free
energy along a guess path s, (o), to escape the stable states
and sample barrier crossings, the guess path is evolved in the
perpendicular (hyper) planes S, , to converge at the average
transition path together with its free energy profile.

hyperplane, S,. The mean configurational probability is
obtained by integrating p(z) over the hyperplane surface,

s(o)= f dS, 7' py (2. 2), with
S0 (1)

1
PEhnh) = [dae P08 ~2)) . 5len =)

with 6 the Dirac delta function and Z the partition function.

Although in principle these equations allow for the
computation of the average transition path by histogram-
ming z in a Monte Carlo or molecular dynamics simula-
tion, in practice the transition is a rare event on the
simulation time scale so that hyperplanes away from the
stable states are too poorly sampled. Applying a bias on z
using, e.g., metadynamics, can overcome the sampling
problem, but in practice only for rather low dimensions
of z;. Instead, we employ a gradually growing, one-
dimensional metadynamics bias potential along a guess
transition path, {s,(c,); o, = a'(z)lsg},

—lo, — Ug(t)|2>’

2u?

Viias(0g 1) = D H exp( 2
t

in which H and w are the height and width of the Gaussian
repulsive potentials that are added to Vi;,, at the current
position a,(t) along the guess path s,(c,(¢)) for discrete
intervals of the time ¢.

In order to locate the actual average transition path from
a biased sampling along a guess path, the ensemble average
of the transition points through the hyperplanes [Eq. (1)] is
replaced by a time average of these points, z, through
hyperplanes perpendicular to the guess path, Sc,g,

1 t
(z), = lim—[[ z(!)dS,, dr, 3)
8 1—00 t 0 So-g 8
in which the subscript g reminds us that these points z
belong to hyperplanes S 7, perpendicular to the guess path,

and are therefore only an estimate of the actual average path.
However, since the probability of these points peaks in the
(closest) free energy valley, this provides us with a recipe to
converge the guess path to the average transition path in an
iterative procedure, simply by relocating the guess path at
regular time intervals to the accumulative average density,

s ((070) = (@), 4

The guess of the average transition path, together with its
foliation of hyperplanes, improves with every update until
convergence. Once the path is converged, the metadynamics
bias potential will tend to an estimator of the free energy
along this path-collective variable: F = — Vy,;,.(0, 1), as with
every sampled recrossing, a new layer of Gaussian potentials
will correct the discrepancies that occurred while the guess
path was still moving through higher regions of the FES.
The numerical implementation of the method requires a
definition of a discrete path in collective variable space as
aset of M nodes s (o, 1) — {sj"}, withj=1,2,..., M and
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t; representing the discrete time parameter of the evolution
of the path. For the geometrical expression for the projec-
tion of a point z onto the path, we use

_m \/(V1 'V3)2 - |V3|2(|V1|2 - |V2|2)
og(z) =—* 2

M 2M|vs|
(v v3) — |V3|2

_ 5
2MIvS? ©)

which only requires knowledge of vectors involving point
z, the closest path node s,,, and its neighboring nodes,
Sym—1 and s,,; [27]. In particular, v; =s,, —(z), v, =
(z) —8,,_1, and v3 = §,,,| — S,,. The expression for the
projection [Eq. (5)] requires equidistant nodes, which is
imposed by a reparametrization step [6] after every update
of the nodes. In the Supplemental Material [28], further
details, including a graph of the foliation of z space by
Eq. (5), are provided.

The numerical expression for the evolution of the path
nodes [Eq. (4)] uses the time averaged distance between z
and its projected point on the path s(o(z)), weighted by w,
which is only nonzero for the two closest nodes

s}"“ = s;f + Zwk - |s'i(o(zy)) — zkI/Zwk,
X k
i -yl ©

wy = max[O, (1 - T 7
|st - Sjl+1|

Here, k is the molecular dynamics step number and
ti+1 — t; is the time interval between two subsequent up-
dates of the path.

Until this point, we only apply a bias along the path,
maintaining a free sampling in the perpendicular directions
and allowing the nodes to move most efficiently toward
the average transition path in the free energy valley.
However, it is trivial to restrain the perpendicular sampling
to a tube using a potential on the distance from the path

|s’i(o(z,)) — zx|, which may be important in cases with
ill-defined valleys (see the following). Moreover, in the
limit of an infinitesimally narrow tube, the nodes follow the
gradient of the free energy and we recover the MFEP.

We have applied this path-metadynamics algorithm to
compute the average transition path and the free energy
profile of a conformational transition in the prototypical
alanine dipeptide molecule in vacuum. The left panel of
Fig. 2 shows the well-known alanine dipeptide FES, or
Ramachandran plot, spanned by the two torsion angles, ¢
and ¢ . The alanine dipeptide has become a standard model
system to illustrate the performance of rare event methods
to sample barrier crossings and compute free energy dif-
ferences and reaction rates [29-32]. Here, we focus on the
transition between the main stable states, denoted C7,, and
C7,«, Which has a barrier of about 9 kcal/mol.

A 3 ns path-metadynamics simulation was performed
using the CM?3D molecular dynamics program. The pep-
tide was modeled using the CHARMM27 force field and
coupled to a single Nosé-Hoover chain thermostat to
maintain a constant temperature of 7 = 298 K. Initially,
the metadynamics bias potential parameters [Eq. (2)] were
setto H = 10 K and w = 0.05 (in normalized length units
of o €[0,1]), and then scaled by factors 0.5 and 0.8,
respectively, after every barrier recrossing to converge
the free energy profile. Using instead the well-tempered
metadynamics approach [33] to converge the free energy
did not change the final results. The initial guess path was
parametrized by 20 nodes using a linear interpolation
between two fixed nodes centered at the two minima
CT.q and C7,, and flanked at each end by 20 nodes
(i.e., 60 nodes in total). Repulsive harmonic potentials on
the path at 0 = —0.2 and o = 1.2 confined the sampling
to the transition in between. The time interval for the
evolution of the nodes was At = 0.5 ps, while the bias
potential was incremented every 0.05-0.5 ps, depending on

3.0 [E
200
10} 0 |
H 2 | oy /| 0.06 %
£ oo 4 Al VRN, . oy A
10§ Ry — / - A | IR 7
| s A ; S ol Jr
20 £ 10 R\//J N 2 0. S #
-12 _g&:; N /// 700-3000ps\\,/ 0.02 N :m.;\-
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FIG. 2 (color online). Left: time evolution of a transition path, s (cr)g, that started from a straight path between C7.q and C7,,
shown on a background of the alanine dipeptide (¢, ) landscape {previously computed using (normal) metadynamics [21]}. Middle:
evolution of the free energy profile along the path-collective variable o ,(z). Right: probability distribution along three hyperplanes,
also indicated in the left panel, illustrating the poorly bound reaction valley at B.
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the system displacement. The evolution of the path and the
free energy profile during a single 3 ns molecular dynamics
simulation are shown in Fig 2. Convergence is reached
after 1250 ps, with the final path and profile (transition
free energy AF = 1.7 and barrier AF¥ = 8.7 kcal/mol) in
excellent agreement with previous results [6,23].

The main strength of the method is that it simultaneously
obtains the average transition path and the free energy
profile of an activated process, provided that the transition
can be described as a motion through a valley in a free
energy landscape spanned by a set of well-chosen collec-
tive variables. Although the latter requirement is rather
common to rare event methods and generally holds true
for activated molecular transformations, it is not unambig-
uously satisfied for the alanine dipeptide model system.
The difficulty is illustrated in the right panel of Fig. 2 by
the probabilities, p,(z), along three S, planes perpendicu-
lar to the valley, as indicated by the white lines in the left
panel. The p,(z) along the planes through the C7., state
(line A) and the transition state (line C) are nicely peaked
and bound by high free energy (i.e., low probability) re-
gions. However, halfway at hyperplane B, the valley is
hardly bound on the more negative (¢, ) side, resulting
in a significant probability to escape the valley and fall into
the C5 minimum at the bottom left of the left panel of Fig. 2.
Here, the aforementioned ‘“tube potential” aided in con-
verging the mean probability [Eq. (1)], and thus s(o), close
to the shallow minimum of the valley at / = 0, rather than at
the deep C5 minimum at / = —2.4.

We conclude that the C7.4 to C7,, transition in alanine
dipeptide may be particularly challenging as a model system
due to the poorly defined free energy valley. Nevertheless,
the path-metadynamics method very efficiently finds the
average transition path and free energy profile. Other
advantages of the method are that it can make use of the
existing metadynamics machinery, such as the multiple-
walker parallelization or a distance-to-path collective
variable to find multiple reaction valleys.

We acknowledge financial support through an NWO-
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