UvA-DARE (Digital Academic Repository)

Hurwitz numbers, moduli of curves, topological recursion, Givental's theory and their relations

Spitz, L.

Publication date

2014

Link to publication

Citation for published version (APA):

Spitz, L. (2014). Hurwitz numbers, moduli of curves, topological recursion, Givental's theory and their relations. [Thesis, fully internal, Universiteit van Amsterdam].

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Bibliograpfy

[1] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A008955 and http://oeis.org/A008956.
[2] D. Abramovich, T. J. Jarvis. Moduli of twisted spin curves - Proc. Amer. Math. Soc. 131 (2003), no. 3, 685-699.
[3] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño, and C. Vafa, Topological Strings and Integrable Hierarchies, Commun. Math. Phys. 261, 451-516 (2006).
[4] A.Alexandrov, A.Mironov, A.Morozov, Solving Virasoro Constraints in Matrix Models, Fortsch.Phys. 53, 512-521 (2005).
[5] A.Alexandrov, A.Mironov, A.Morozov, M-Theory of Matrix Models, arXiv:hep-th/0605171.
[6] A.Alexandrov, A.Mironov, A.Morozov, Instantons and Merons in Matrix Models, Physica D235:126-167,(2007).
[7] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, Integrability of Hurwitz Partition Functions. I. Summary, arXiv:1103.4100v1.
[8] G. Borot, B. Eynard, M. Mulase and B. Safnuk, Hurwitz numbers, matrix models and topological recursion, Journal of Geometry and Physics 61, 522-540 (2011).
[9] V. Bouchard, D. Hernandez Serano, X. Liu, and M. Mulase, Mirror symmetry for orbifold Hurwitz numbers, arXiv:1301.4871 [math.AG].
[10] V. Bouchard and M. Mariño, Hurwitz numbers, matrix models and enumerative geometry, in "From Hodge theory to integrability and TQFT tt*-geometry," Proc. Symposia Pure Math. 78, 263-283 (2008).
[11] S. Brassesco, M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894.
[12] L. Caporaso, C. Casagrande, M. Cornalba. Moduli of roots of line bundles on curves. Trans. Amer. Math. Soc. 359 (2007), no. 8, 3733-3768.
[13] R. Cavalieri, P. Johnson, H. Markwig, Tropical Hurwitz Numbers, J. Algebr. Comb. 32 (2010), no. 2, 241-265.
[14] R. Cavalieri, P. Johnson, H. Markwig, Chamber Structure of Double Hurwitz numbers, arXiv:1003.1805v1
[15] L. Chekhov, B. Eynard. Matrix eigenvalue model: Feynman graph technique for all genera. - J. High Energy Phys. 2006, no. 12, 026, 29 pp.
[16] A. Chiodo. Stable twisted curves and their r-spin structures. - Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1635-1689,
[17] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and r-th roots, Compos. Math. 144 (2008), no. 6, 1461-1496.
[18] A. Chiodo. Witten's top Chern class via K-theory. - J. Algebraic Geom. 15 (2006), no. 4, 681-707.
[19] A. Chiodo, Y. Ruan. Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations - Invent. Math. 182 (2010), no. 1, 117-165.
[20] A. Chiodo, D. Zvonkine. Twisted Gromov-Witten r-spin potential and Givental's quantization. - Adv. Theor. Math. Phys. 13 (2009), no. 5, 1335-1369.
[21] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W-function, Adv. Computational Math. 5, 329-359 (1996).
[22] R. Dijkgraaf, Intersection Theory, Integrable Hierarchies and Topological Field Theory, New symmetry principles in quantum field theory (Cargése, 1991), 95-158, NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, (1992).
[23] R. Dijkgraaf, L. Hollands, and P. Sułkowski, Quantum curves and D-modules, Journal of High Energy Physics 0810.4157, 1-58 (2009).
[24] R. Dijkgraaf, L. Hollands P. Sułkowski, and C. Vafa, Supersymmetric gauge theories, intersecting branes and free Fermions, Journal of High Energy Physics 0802.106, (2008).
[25] R. Dijkgraaf and C. Vafa, Two Dimensional Kodaira-Spencer Theory and Three Dimensional Chern-Simons Gravity, arXiv:0711.1932 [hep-th].
[26] N. Do, O. Leigh, and P. Norbury, Orbifold Hurwitz numbers and Eynard-Orantin invariants, arXiv:1212.6850.
[27] B. Dubrovin, Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), 120348, Lecture Notes in Math., 1620, Springer, Berlin, (1996).
[28] B. Dubrovin, Painleve' transcendents and two-dimensional topological field theory, arXiv:math/9803107
[29] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, a new 2005 version of arXiv:math/0108160v1.
[30] O. Dumitsrescu, M. Mulase, A. Sorkin and B. Safnuk, The spectral curve of the EynardOrantin recursion via the Laplace transform, arXiv:1202.1159 [math.AG].
[31] Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein. Hurwitz numbers and intersections on moduli spaces of curves. - Invent. Math., 146 (2001), 297-327,
[32] B. Eynard, Recursion between Mumford volumes of moduli spaces, arXiv:0706.4403.
[33] B. Eynard, Intersection numbers of spectral curves, arXiv:1104.0176 [math-ph].
[34] B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, arXiv:1110.2949.
[35] B. Eynard, M. Mulase and B. Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers, Publications of the Research Institute for Mathematical Sciences 47, 629-670 (2011).
[36] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Communications in Number Theory and Physics 1, 347-452 (2007).
[37] B. Eynard, N. Orantin, Weil-Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models, arXiv:0705.3600.
[38] B. Eynard, N. Orantin, Algebraic methods in random matrices and enumerative geometry, arXiv:0811. 3531
[39] B. Eynard, N. Orantin, Computation of open Gromov-Witten invariants for toric CalabiYau 3-folds by topological recursion, a proof of the BKMP conjecture, arXiv:1205.1103.
[40] C. Faber, R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139, 173-199 (2000).
[41] B. Fantechi, R. Pandharipande, Stable maps and branch divisors, Compositio Mathematica, 130 (2002), p. 345-364.
[42] C. Faber, R. Pandharipande, Hodge integrals, partition matrices, and the λ_{g} conjecture, Ann. of Math. 157, 97-124 (2003).
[43] C. Faber, R. Pandharipande, Relative maps and tautological classes. J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 13-49.
[44] C. Faber, S. Shadrin, D. Zvonkine, Tautological relations and the r-spin Witten conjecture, arXiv:math/0612510.
[45] A. Givental, Semisimple Frobenius structures at higher genus, IMRN (2001), no. 23, 12651286.
[46] A. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians, Mosc. Math. J. 1 (2001), no. 4, 551-568.
[47] A. Givental, Symplectic geometry of Frobenius structures, In "Frobenius manifolds", 91112, Aspects Math., E36, Vieweg, Wiesbaden, 2004.
[48] I.P. Goulden and D.M. Jackson, The Number of Ramified Coverings of the Sphere by the Double Torus, and a General Form for Higher Genera, J. Comb. Theory, Ser. A 88 (1999), no. 2, 259-275.
[49] I. P. Goulden, D. M. Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997), no. 1, 51-60.
[50] I.P. Goulden, D.M. Jackson, R. Vakil, The Gromov-Witten Potential of A Point, Hurwitz Numbers, and Hodge Integrals, Proc. Lond. Math. Soc. 83 (2001), no. 3, 563-581.

8.4. Bibliography

[51] I. P. Goulden, D. M. Jackson, R. Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005), no. 1, 43-92.
[52] T. Graber, R. Vakil, Hodge integrals and Hurwitz numbers via virtual localization, Compositio Math. 135 (2003), no. 1, 25-36.
[53] S. Gukov and P. Sułkowski, A-polynomial, B-model, and quantization, arXiv:1108.0002v1 [hep-th].
[54] R. Hain, Normal Functions and the Geometry of Moduli Spaces of Curves. arXiv:1102.4031.
[55] E. N. Ionel, Topological Recursive Relation in $H^{2 g}\left(\mathcal{M}_{g, n}\right)$. Invent. Math., 148 (2002), no. 3, pp. 627-658.
[56] C. Itzykson, J.-B. Zuber. The planar approximation. II. - J. Math. Phys. 21 (1980), no. 3, 411-421.
[57] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math., 682. Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[58] T. J. Jarvis. Geometry of moduli of higher spin curves. - Internat. J. Math., 11 (2000), 637-663, arXiv:math/9809138.
[59] P. Johnson, Double Hurwitz numbers via the infinite wedge, arXiv:1008.3266.
[60] P. Johnson, R. Pandharipande, H.H. Tseng, Abelian Hurwitz-Hodge integrals, Michigan Math. J. 60, 171-198 (2011).
[61] V. Kac, A. K. Raina, Bombay lectures on highest weight representations of infinitedimensional Lie algebras, Adv. Ser. Math. Phys., 2. World Scientific, Teaneck, NJ, (1987).
[62] M. Kazarian, Deformations of cohomological field theories, preprint 2007.
[63] M. Kazarian, S. Lando. An algebro-geometric proof of Witten's conjecture. - J. Amer. Math. Soc. 20 (2007), no. 4, 1079-1089.
[64] M. Kazarian, S. Lando, D. Zvonkine, Universal cohomological expressions for singularities in $\overline{\mathcal{M}}_{0, n}\left(\mathrm{CP}^{1}\right)$. In preparation.
[65] S. Kerov, G. Olshanski, Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 2, 121-126.
[66] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys. 147, 1-23 (1992).
[67] I. Kostov, N. Orantin, CFT and topological recursion, JHEP 1011:056 arXiv:1006.2028.
[68] Y.-P. Lee, Witten's conjecture, Virasoro conjecture, and invariance of tautological equations, arXiv:math/0311100.
[69] Y.-P. Lee, Invariance of tautological equations I: conjectures and applications, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 399-413.
[70] Y.-P. Lee, Invariance of tautological equations II: Gromov-Witten theory (with Appendix A by Y. Iwao and Y.-P. Lee), J. Amer. Math. Soc. 22 (2009), no. 2, 331-352.
[71] Y.-P. Lee, Notes on axiomatic Gromov-Witten theory and applications. Algebraic geometry -Seattle 2005. Part 1, 309-323, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009.
[72] J. Li. Stable morphisms to singular schemes and relative stable morphisms. J. Differential Geom. 57 (2001), no. 3, 509-578.
[73] J. Li. A degeneration formula of $G W$ invariants. J. Differential Geom. 60 (2002), no. 2, 199-293.
[74] C.-C. M. Liu, Lectures on the ELSV formula, In: Transformation groups and moduli spaces of curves, 195-216, Adv. Lect. Math. (ALM), 16, Int. Press, Somerville, MA, 2011.
[75] A. Losev, Y. Manin, New moduli spaces of pointed curves and pencils of flat connections. Michigan Math. J. 48 (2000), 443-472.
[76] Y. L. Luke. The Special Functions and their Approximations, vol. I, Academic Press, New York, 1969.
[77] T. Milanov. The Eynard-Orantin recursion for the total ancestor potential. arXiv:1211.5847.
[78] T. Miwa, M. Jimbo, E. Date, Solitons. Differential equations, symmetries, and infinitedimensinal algebras, Cambridge Tracts in Math., 135. Cambridge University Press, Cambridge, 2000.
[79] A. Mironov, A. Morozov, S. Natanzon, Complete Set of Cut-and-Join Operators in Hurwitz-Kontsevich Theory, arXiv:0904.4227
[80] A. Mironov, A. Morozov, S. Natanzon, Algebra of differential operators associated with Young diagrams, arXiv:1012.0433
[81] M. Mulase and P. Sułkowski, Spectral curves and the Schrödinger equations for the EynardOrantin recursion, arXiv:1210.3006 [math-ph].
[82] M. Mulase, N. Zhang, Polynomial recursion formula for linear Hodge integrals, arXiv:0908. 2267
[83] D. Mumford. Towards enumerative geometry on the moduli space of curves. - In: Arithmetics and Geometry (M. Artin, J. Tate eds.), v.2, Birkhäuser, 1983, 271-328.
[84] P. Norbury, N. Scott, Gromov-Witten invariants of \mathbf{P}^{1} and Eynard-Orantin invariants, arXiv:1106.1337.
[85] A. Okounkov Toda equations for Hurwitz numbers, Math. Res. Lett. 7, 447-453 (2000).
[86] A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and Matrix models, I, arXiv:math/0101147.
[87] A. Okounkov and R. Pandharipande, The equivariant Gromov-Witten theory of \mathbb{P}^{1}, arXiv:math/0207233 [math.AG].

8.4. Bibliography

[88] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. Math. 163, 517-560 (2006).
[89] A. Okounkov, R. Pandharipande, Virasoro constraints for target curves, Invent. Math., 163 (2006), no. 1, 47-108.
[90] N. Orantin, From matrix models' topological expansion to topological string theories: counting surfaces with algebraic geometry, Ph.D. thesis Université Paris 6 - Pierre et Marie Curie, arXiv:0709.2992.
[91] N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635.
[92] A. Pixton, R. Pandharipande, D. Zvonkine Relations on $\overline{\mathcal{M}}_{g, n}$ via 3-spin structures. arXiv:1303.1043.
[93] A. Polishchuk, A. Vaintrob. Algebraic construction of Witten's top Chern class. - Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), pp. 229-249, Contemp. Math., vol 276, Amer. Math. Soc., Providence, RI, 2001, math. AG/0011032.
[94] P. Rossi, Gromov-Witten invariants of target curves via symplectic field theory, J. Geom. Phys. 58 (2008), no. 8, 931-941.
[95] S. Shadrin, Some relations for double Hurwitz numbers, Funct. Anal. Appl. 39 (2005), no. 2, 160-162.
[96] S. Shadrin, On the structure of Goulden-Jackson-Vakil formula, Math. Res. Lett. 16 (2009), no. 4, 703-710.
[97] S. Shadrin, BCOV theory via Givental group action on cohomological fields theories, Mosc. Math. J. 9 (2009), no. 2, 411-429.
[98] S. Shadrin, M. Shapiro, A. Vainshtein, Chamber behavior of double Hurwitz numbers in genus 0, Adv. Math. 217 (2008), no. 1, 79-96.
[99] S. Shadrin, D. Zvonkine, Changes of variables in ELSV-type formulas, Michigan Math. J. 55 (2007), no. 1, 209-228.
[100] S. Shadrin, D. Zvonkine, Intersection numbers with Wittens top Chern class, Geom. Topol. 12 (2008), no. 2, 713-745.
[101] Jun S. Song, Yun S. Song, On a conjecture of Givental, J. Math. Phys. 45 (2004), no. 12, 4539-4550.
[102] Jun S. Song, Descendant Gromov-Witten invariants, simple Hurwitz numbers, and the Virasoro conjecture for P^{1}, Adv. Theor. Math. Phys. 3 (1999), no. 6, 17211768.
[103] C. Teleman, The structure of 2D semi-simple field theories, arXiv:0712.0160.
[104] R. Vakil. The moduli space of curves and Gromov-Witten theory. - Enumerative invariants in algebraic geometry and string theory, 143-198, Lecture Notes in Math. 1947, Springer, Berlin, 2008, math.AG/0602347.
[105] R. Vakil, Problem session of the workshop "Diamant meet GQT", Lorentz Center, Leiden, October 2008, available at:
http://www.lorentzcenter.nl/lc/web/2008/313/extra.pdf
[106] A. Vershik, A. Okounkov, A new approach to the representation theory of the symmetric groups, Selecta Math. (N.S.) 2 (1996), no. 4, 581-605.
[107] E. Witten, Two dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry 1, 243-310 (1991).
[108] E. Witten. Algebraic geometry associated with matrix models of two-dimensional gravity. - Topological methods in modern mathematics (Stony Brook, NY, 1991), 235-269, Publish or Perish, Houston, TX, 1993.
[109] J. Zhou, Intersection numbers on Deligne-Mumford moduli spaces and the quantum Airy curve, arXiv:1206.5896.
[110] J. Zhou, Quantum mirror curves for \mathbb{C}^{3} and the resolved conifold, arXiv:1207.0598.
[111] D. Zvonkine, A preliminary text on the r-ELSV formula, preprint 2006.

Publications of L. Spitz Related to the topics of the thesis

[112] S. Shadrin, L. Spitz, D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. (2) 86, no. 2, 407-432 (2012).
[113] P. Dunin-Barkowski, N. Orantin, S. Shadrin, L. Spitz. Identification of the Givental formula with the spectral curve topological recursion procedure. - to appear in Comm. Math. Phys., arXiv:1211.4021.
[114] M. Mulase, S. Shadrin, L. Spitz. The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures. Communications in number theory and physics, Volume 7, Number 1, 125143, 2013.
[115] A. Buryak, S. Shadrin, L. Spitz, D. Zvonkine. Integrals of ψ-classes over double ramification cycles. -arXiv:1211:5237
[116] S. Shadrin, L. Spitz, D. Zvonkine, Equivalence of ELSV and Bouchard-Mario conjectures for r-spin Hurwitz numbers, -arXiv:1306:6226.
[117] P. Dunin-Barkowski, M. Kazarian, N. Orantin, S. Shadrin, L. Spitz. Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proff of the ELSV formula arXiv:1307:4729

Other publications of L. Spitz

[118] P. Dunin-Barkowski, S. Shadrin, L. Spitz. Givental graphs and inversion symmetry. Letters in Mathematical Physics May 2013, Volume 103, Issue 5, pp 533-557

