

UvA-DARE (Digital Academic Repository)

An inequality between perpendicular least-squares and ordinary least-squares

Boswijk, P.; Neudecker, H.

DOI 10.1017/S0266466600008537 Publication date 1994 Document Version Final published version Published in Econometric Theory

Link to publication

Citation for published version (APA):

Boswijk, P., & Neudecker, H. (1994). An inequality between perpendicular least-squares and ordinary least-squares. *Econometric Theory*, *10*(2), 441-442. https://doi.org/10.1017/S0266466600008537

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023

PROBLEMS AND SOLUTIONS 441

94.2.4. An Inequality Between Perpendicular Least-Squares and Ordinary Least-Squares, proposed by H. Peter Boswijk and Heinz Neudecker. Let $Z = [Z_1: Z_2]$ be an $n \times p$ matrix with n > p, and with Z_i matrices of order $n \times p_i$, i = 1,2. Define $M_2 := I_n - Z_2 Z_2^+$, where Z_2^+ is the Moore-Penrose inverse of Z_2 ; if rank $(Z_2) = p_2$, then $M_2 = I_n - Z_2 (Z'_2 Z_2)^{-1} Z'_2$. Moreover, let $\lambda_1 \leq \cdots \leq \lambda_p$ denote the eigenvalues of Z'Z. 1. Prove that

$$\sum_{i=1}^{p_1} \lambda_i \le \operatorname{tr}(Z_1' M_2 Z_1),$$
 (1)

where rank $(Z_2) = l \leq p_2$.

2. Let S denote a $p \times p$ random matrix with a standard central Wishart distribution with n degrees of freedom, i.e., $S \sim W(I_p, n)$, let $\mu_1 \leq \cdots \leq \mu_p$ denote its eigenvalues, and define

$$s_1 := \sum_{i=1}^{p_1} \mu_i.$$
 (2)

Finally, let s_2 denote a random variable with a χ^2 distribution with $p_1(n - p_2)$ degrees of freedom. Use (1) to prove that s_1 is stochastically dominated by s_2 , i.e., for any c > 0,

 $\mathcal{D}(-\infty, -1) \to \mathcal{D}(-\infty, -1) \tag{2}$

 $P\{s_1 > c\} \le P\{s_2 > c\}.$

(3)

Remarks.

(i) The right-hand side of (1) is equal to the trace of the residual sum of squares from a multivariate ordinary least-squares (OLS) regression of Z_1 on Z_2 . The left-hand side is the corresponding quantity for a multivariate version of perpendicular least-squares (PLS). Hence, (1) entails that PLS yields a smaller residual sum of squares than OLS.

(ii) An application of (3) can be found in reduced rank regression, cf. Anderson [1]. Consider the multivariate normal linear regression Y = XB + U, with $Y, U: n \times g, X: n \times k$, and $B: k \times g$, and with $n > g \ge k$. The likelihood ratio (LR) statistic for the hypothesis rank $(B) \le r, r < k$, has an asymptotic χ^2 distribution with (g - r)(k - r) degrees of freedom under the null hypothesis, provided that rank(B) = r. On the other hand, if rank(B) = q < r, then the LR statistic has the same asymptotic distribution as the sum of the (k - r) smallest eigenvalues of a $W(I_{k-q}, g - q)$ matrix. Result (3) shows that the latter distribution is more concentrated towards the origin, so that if χ^2_{α} is the $100\alpha\%$ critical value of the $\chi^2((g - r)(k - r))$ distribution, then under the null hypothesis and as $n \to \infty$, $P\{LR > \chi^2_{\alpha}\} \to \alpha_q \le \alpha$. Thus the size of the test is controllable (cf. Cragg and Donald [2, Theorem 2] for a related result).

PROBLEMS AND SOLUTIONS 442

REFERENCES

1. Anderson, T.W. Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of Mathematical Statistics 22 (1951): 327-351. 2. Cragg, J.G. & S.G. Donald. Testing identifiability and specification in instrumental variable models. Econometric Theory 9 (1993): 223-240.