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Abstract
We propose an extension to S-NET’s light-weight parallel execu-
tion layer (LPEL): dynamic migration of tasks between cores for
improved load balancing and higher throughput of S-NET stream-
ing networks. We sketch out the necessary implementation steps
and empirically analyse the impact of task migration on a variety
of S-NET applications.

1. Introduction
S-NET is a dataflow coordination language and component tech-
nology [4, 6]. As a pure coordination language S-NET provides (al-
most) no means to describe computations of any kind, but it turns
regular functions/procedures implemented in a conventional pro-
gramming language into asynchronously executing, state-less com-
ponents, named boxes. In principle, any conventional programming
language can be used, but for the time being we provide interface
implementations for the functional array language SAC [5] and for
a subset of ANSI C.
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Figure 1. S-NET streaming network of asynchronous components

S-NET components are connected by and solely communicate
via uni-directional typed streams. Fig. 1 shows an intuitive example
of an S-NET streaming network. Data objects enter the streaming
network via a dedicated input component and then travel alongside
the streams to compute components. Whenever a data object arrives
at box, it triggers a computation as specified by the corresponding
box language function (or procedure). During this computation a
number of data items may be sent to the output stream to trigger
further computations in subsequent boxes. Eventually, data objects
reach the dedicated output box, which writes them to file or some
other output medium.

S-NET streaming networks are not static, but evolve over time.
In Fig. 1 this can be seen best with the box named C. This box is
replicated in parallel meaning that data objects are routed to some
instance of C as indicated by a named index in the data object itself.
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Hence, instances of C (which could also recursively be complete S-
NET networks again) are instantiated as needed. The other dynamic
network aspect is serial replication. In Fig. 1 this is indicated as
a feedback loop around the parallel replication of box C, but in
fact there is no feedback in S-NET, only feed forward (among
others to rule out deadlock by construction). Effectively, the entire
network within the “feedback loop” is dynamically replicated and
the replicas are connected by streams one after the other. Data
objects entering a serial replication network are routed through an
a-priori unknown number of replicas. Before and in between any
two such replicas a certain program-dependent condition is checked
and the data either routed to the next instance of the replication or
to the subsequent network (i.e. box D in the example of Fig. 1).

Serial and parallel replication can arbitrarily be nested, con-
tributing much to the expressive power of S-NET. Consequently,
the number of box instances in a running S-NET streaming net-
work quickly grows and demands a smart mapping to compute re-
sources, e.g. the various cores of contemporary server system or
cluster node. While the deployment and operational execution of
streaming networks is handled by the S-NET runtime system [3],
the mapping of boxes to cores as well as the stream communication
with suspension and activation of boxes is handled by the underly-
ing Light-Weight Parallel Execution Layer (LPEL) [10].

Whenever the S-NET runtime system (due to replication) in-
stantiates a new component, the LPEL layer maps it to some core
for execution according to some heuristics. Once mapped a compo-
nent remains tied to that core for the duration of program execution.
This may lead to load imbalances where some cores have a pile of
data objects to be processed while others remain idle. The highly
dynamic nature of S-NET and the coordination approach that de-
liberately limits information exchange between compute and coor-
dination layer (boxes are effectively black boxes) very much limit
any form of static analysis and scheduling.

Hence, in the work presented in this paper we extend the LPEL
threading layer by means for dynamic task migration. Firstly, we
redefine the interface between LPEL and the S-NET runtime sys-
tem box language interface to temporarily yield control to LPEL
between any two data objects to be processed by some box. This
gives LPEL a handle to change the mapping of components on this
occasion. Secondly, we define an asynchronous scheduler task (a
migration controller) that continuously observes the load balanc-
ing status of a running streaming network. According to selectable
heuristics the migration controller may choose to asynchronously
update the mapping of components to cores. The LPEL layer in
turn implements the re-mapping, which becomes effective with the
next data object to be processed.

The remainder of the paper is organized as follows. In Section 2
we provide additional background information on S-NET, its run-
time system and the LPEL threading layer. Section 3 describes our
technical contribution on task migration in greater detail, followed
by an experimental analysis in Section 4. In Section 5 we draw
conclusions and outline directions of future work.



2. S-NET: Design and Implementation
2.1 S-Net language
The basic building blocks of S-NET streaming networks are boxes.
Each box is connected to the rest of the network by two typed
streams: one for input and one for output. Following the data flow
principle, a box is triggered by receiving a record on its input
stream, upon which the box applies its box function to the incoming
data object. As pointed out before, this box function is implemented
in a box language selected for suitability in the relevant application
domain. During execution the box may send records to its output
stream. As soon as execution of the box function has finished, the
box is ready to receive and process the next item on the input
stream.

It is a distinguishing feature of S-NET that it neither introduces
streams as explicit objects nor defines network connectivity by ex-
plicit wiring. Instead, S-NET uses algebraic formulae for describ-
ing streaming networks in a much more abstract way. The restric-
tion of the boxes to single input streams and single output streams
(named the SISO principle) is essential for this. S-NET provides
four network combinators: static serial and parallel composition of
two networks and dynamic serial and parallel replication of a sin-
gle network. These combinators preserve the SISO property: any
network, regardless of its complexity, again is an SISO entity.

Let A and B denote two S-NET networks or boxes. Serial com-
position (A..B) constructs a new network where the output stream
of A becomes the input stream of B, and the input stream of A and
the output stream of B become the input and output streams of the
combined network, respectively. Parallel composition (A|B) con-
structs a network where incoming records are either routed to A
or to B; their output streams are merged to form the compound
output stream. The type system controls the flow of records. Se-
rial replication A*type constructs an infinite chain of replicas of
box or network A connected by serial combinators. The chain is
tapped before every replica to extract records that match the type
specified as the second operand. Last not least, parallel replication
A!<tag > also replicates box or network A, but this time the replicas
are connected in parallel. All incoming records must carry a prop-
erty <tag> whose integer value determines the replica to which the
record is routed. These four orthogonal network construction prin-
ciples are sufficient to define complex streaming networks.

For more detailed information on the S-NET language we refer
the interested reader to [4, 7]

2.2 S-Net runtime system
The S-NET runtime system [3] is responsible for deployment and
operation of streaming networks. Thanks to the serial and parallel
replication combinators networks evolve dynamically, and thus de-
ployment and operation are not two distinct phases, but rather alter-
nating, i.e. the operation of some network component may trigger
another replication and, thus, the further deployment of network
structures.

Furthermore, the S-NET runtime system turns implicit split in
merge points in the construction of networks into active internal
components that explicitly split an incoming stream into two (or
more) outgoing streams by implementing the routing protocol or
that merge two (or more) incoming streams into a single outgoing
streams. As internal routing components these splitters and mergers
do not comply to the SISO principle, but effectively implement
the various routing protocols derived from the S-NET network
combinators. Fig. 2 illustrates a partially deployed state of the
example network introduced in Fig. 1. For illustration reasons,
splitters and mergers are represented as (anonymous) triangles, but
in fact each split and merge component does have a proper identity.

Each component, both internal split and merge components
as well as user-level boxes, runs a simple event loop. First, a
component checks the input stream for data. If the input stream
is empty the component suspends. Otherwise, the first data item
on the input stream is consumed and processed. If this processing
requires sending a data item to an output stream, the component
may suspend on a full output stream. If a component completes
processing one item, it continues from scratch. Taking a data item
out of a stream automatically wakes up components suspended
on sending data to this stream. Likewise, adding a data item to
some stream wakes up components suspended on reading from this
stream.

2.3 LPEL threading layer
The S-NET runtime system relies on basic threading mechanisms
such as task creation, suspension, wake-up and termination. Such
mechanisms are essentially provided by any multithreading library,
including PThreads to name a specific one. However, even fairly
simple S-NET streaming networks with nested replication com-
binators induce a large number of components to be instantiated
at runtime. This motivates a two-layered approach where a small
number of kernel threads essentially abstract the compute resources
(cores) to be used while the tasks demanded by the S-NET runtime
system are implemented by light-weight user-level thread contexts
that are cooperatively scheduled among the kernel threads.

The Light-Weight Parallel Execution Layer (LPEL) [10] is
such a two-level threading implementation tailored to the needs
of the S-NET runtime system. On initialization LPEL creates a
user-specified number of worker threads. These workers are kernel
threads and, thus, preemptively scheduled by the operating system
to the available cores. The general assumption is that the number
of workers does not exceed the number of cores, and workers are
bound to individual cores to effectively deactivate the operating
system scheduler.

The instantiation of some S-NET component during a deploy-
ment phase incurs the creation of an LPEL task, or light-weight
thread. This task is assigned to some worker based on some heuris-
tic. Important for the subject of this paper: tasks are never re-
assigned (or migrated) from worker to another once created. Each
worker has a priority queue of ready tasks and a queue of suspended
tasks that wait for data on an empty stream or for space on a full
stream. Reading from and writing to streams accordingly moves
tasks between these queues not dissimilar to standard operating sys-
tem procedures.

3. Task Migration
In this section we will discuss the task migration framework devel-
oped for S-NET and LPEL.

3.1 Challenges
Conceptually, S-NET boxes are nothing more than (pure) functions
that are called on some incoming data item. As a result, migrating
tasks between workers should be as simple as sending the input
data to a different worker and having that worker perform the next
function invocation. However, as already pointed out in Section 2.2
the S-NET runtime system implements boxes as long-lived tasks
with an internal event loop triggered by receiving data on th input
stream and by sending data to the output stream.

Migration of such long-lived tasks would involve halting the
task, migrating the task’s current state (including state of the com-
putation, such as the stack) and then resuming the task. This would
be doable in a shared memory system, but with an eye on DIS-
TRIBUTED S-NET [2] and NUMA architectures, we want to make
the migration of state as explicit as possible to simplify any future
work in these areas.
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Figure 2. Runtime representation of the S-NET streaming network of Fig. 1

Another migration challenge is that any migration mechanism,
and its associated heuristics, will introduce overhead. This over-
head should be less than the performance gained by performing the
migration, otherwise there is nothing to be gained from migrating
tasks.

3.2 Respawning
As a first step towards task migration we modified the S-NET
runtime system to expose more fine-grained concurrency: each task
becomes a one-shot activation of an entity that handles a single
input record. The simple implementation of this idea is to have
every S-NET task spawn a new copy of itself upon termination.
However, this would introduce a significant amount of overhead
for the common case where a task does not migrate. This is due to
LPEL performing expensive allocations upon LPEL thread creation,
such as the task’s stack. These allocations can be reused when a
task does not migrate to a different worker.

To solve this issue we implemented thread continuations in
LPEL, this means that every thread has an optional continuation
associated with it. Whenever a thread exits, this continuation is
checked by LPEL. If the continuation is set, LPEL execute the con-
tinuation is the current thread context. The S-NET implementation
of spawning a new task for the next activation can then be achieved
by setting the continuation to the executing function.

As a result, control flow is returned to LPEL at the end of
each activation of an S-NET entity. At this point, LPEL can check
whether the task should be migrated to another worker or not. If
the task has to migrate, LPEL will simply spawn a new thread on a
different worker and execute the continuation in that thread.

3.3 Synchronous vs asynchronous migration
Now that LPEL is capable of migrating tasks between workers, we
need a way to decide when to migrate tasks. An approach that im-
mediately comes to mind is to define a placement oracle which is
consulted on each continuation. This would be simple to imple-
ment, but would likewise introduce a significant amount of over-
head if the oracle requires a non-trivial amount of computation.
This follows from the every worker having to do a blocking invo-
cation of the placement oracle upon each continuation of an S-NET
task.

Rather than following the above synchronous approach, we de-
cided to make placement decisions asynchronously. For this we ex-
tend the LPEL thread control structure with a next-worker field that
indicates the worker on which the next continuation should run.
This means that LPEL checks, on each continuation, whether the
current and next worker are the same. If they are, the continuation
is invoked. If, however, the next worker is different from the cur-
rent, LPEL spawns the continuation on the new worker, effectively
migrating the task.

3.4 Placement scheduler
The open question is still where, when and how the next-worker
field is updated. As a starting point we introduce the notion of a
placement scheduler. This is a conceptual task in the LPEL system
that periodically inspects tasks and determines whether they should

migrate on their next invocation. The placement scheduler is set up
so that it can use any arbitrary oracle to decide the new placement.
As a small starting experiment to test the migration code and
placement scheduler we implemented two very simple strategies
for placement. To accommodate these strategies we added optional
hooks to each scheduling event. These hooks update any strategy
specific state that is used by the placement scheduler to determine
placements.

3.5 Placement strategies
The first implemented strategy is random migration. After every
invocation a task is marked for migration with probability p. The
placement scheduler updates the next worker field of selected tasks
with a random worker. This strategy can then be used as a baseline
to see whether placement has any effect (positive or negative) at all,
in terms of performance gain or overhead introduced.

The second strategy does placement based on the waiting times
of tasks. That is, the time that a task is runnable, but not running.
The waiting time Tready is the sliding window average of the past
n run-suspend cycles. For every worker we maintain the average
µTready of the Tready of each task on that worker. A task is selected
for migration if its Tready is larger than the µTready of its worker.
The task is then migrated to the worker with the lowest µTready .
The goal of this strategy is to minimize the time a ready task
spends waiting to run, aiming at increasing the average utilization
of workers and balancing their loads.

4. Analysis
In this section we investigate the performance impact of task mi-
gration. Our first implementation of task migration did not yet use
scheduling hooks to update the migration state of tasks. With this
we did experiments on a dual 6-core Intel(R) L5640 2.27 GHz
Xeon(R) system with 24 GiB memory. Our first benchmark was
an S-NET adaptation of raytracing following a standard domain
decomposition approach [9].

The results of our experiments are shown in Figure 3 and in Fig-
ure 4. It quickly became apparent that task migration, regardless of
the concrete placement strategy, had an adverse effect on runtimes
and scalability of the S-NET raytracer. The overhead introduced by
the placement scheduler clearly outweighs any potential benefits of
task migration.

After these disappointing results we redesigned the implemen-
tation of the placement scheduler to avoid unnecessary locking
and use atomic operations where synchronization between threads
could not be avoided. This new implementation reduced the over-
head created by the placement scheduler to an insignificant amount
in the range of timing accuracy.

However, we still did not observe any benefits of task migration.
To find an explanation for this at first glance counter-intuitive be-
haviour, we thoroughly analyzed the S-NET raytracer application.
It turned out that the raytracer implements a very regular concur-
rent execution pattern: a splitter box divides the image to be com-
puted into a given number of slices. Each slice is then routed to one
specific solver box for the actual raytracing. There is exactly one
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Figure 3. Raytracing runtimes for different placement strategies
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Figure 4. Raytracer scaling for different placement strategies

solver box per slice, and the solver boxes are arranged in parallel
via the parallel replication combinator. The slices are of equal size
and, at least in our scenarios, each slice inflicted roughly the same
computational needs for raytracing. A subsequent merger network
reconstructs the overall image from the slices.

Rather than unfolding a high degree of concurrency and trusting
on S-NET to efficiently and effectively map this down to the avail-
able compute resources, this (and many other) S-NET application
actually manages the application-specific concurrency explicitly.
This makes dynamic task migration largely obsolete as the static
task distribution of the LPEL layer is silently anticipated by the
design of the application and shows optimal results. To conclude
the raytracer is not a good candidate to evaluate dynamic task mi-

gration, other than providing a quantification of potential negative
performance impacts due to continuous observation of program ex-
ecution.

Consequently, we proceeded to explore several other example
S-NET applications with various thresholds to examine the perfor-
mance impact of placement on less regular workloads. Two of the
applications have been used as benchmarks in previous research, an
ant colony optimization program[1] and an acoustic target tracker
using the MTI-STAP algorithm[8]. In addition to these we used
an example network generated by our automatic benchmark gen-
erator. All these experiments were done on a 48-core system with
four 12-core AMD Opteron(tm) 6172 2.1GHz system with 128 GiB
memory.
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The results of these benchmarks are shown in Figure 5, Figure 6
and Figure 7. These graphs illustrate that placement is a very
application specific problem. For the ant colony optimization there
is no significant difference between no placement, smart placement
and random placement. The MTI-STAP application, on the other
hand, shows fairly big differences between execution times with
placement and execution times without placement. With increasing
worker counts random and smart placement both outperform the
statically placed version. Lastly, our generated benchmark shows
two different distributions of execution times. No placement and
smart placement end up performing and scaling identically. The
executions using random placement are all identical in performance
and scaling too, but are slightly slower than those with ready time
placement or without dynamic task migration.

While our graphs, unfortunately, do not show clear performance
improvements through dynamic task migration, they do show that
placement can positively affect the runtimes of applications, as
illustrated by the results of the MTI-STAP application. It would be
interesting to determine in what ways the MTI-STAP application
differs from the ant colony and the generated benchmark. This
would help us to realize which scenarios are amenable to dynamic
placement scheduling and would allow us to target our placement
strategies to these.

For example, one notable difference is that the MTI-STAP ap-
plication does not use the parallel replication combinator. This
combinator is usually used to give the application some control over
the amount of concurrency to use, but could also function as throt-
tle, limiting the amount of possible concurrency. However, drawing
any in-depth conclusions on how placement relates to different ap-
plications requires much more exhaustive testing and analysis than
we can give here, it is thus left as future work.

5. Conclusion
We presented the design and implementation of automatic task mi-
gration for S-NET through concerted extensions of the S-NET run-
time system and the underlying LPEL threading layer. An asyn-
chronous placement scheduler task continuously monitors work-
load distribution between cores. Depending on a migration oracle
the placement scheduler, asynchronously to all other runtime ac-
tivities, decides to migrate a task from its current worker/core to
another presumably less loaded worker/core or not. This decision
only becomes effective as soon as an S-NET streaming component
processes its next input, upon which it will be respawned on a dif-
ferent worker/core if the placement scheduler made this decision in
the mean time.

We experimented with two concrete placement scheduler im-
plementations. One simply migrates tasks with a certain probability
and does not actually monitor any dynamic behaviour. The other,
more elaborate placement scheduler implementation monitors av-
erage waiting times per worker and migrates tasks from workers
with a long average waiting time to workers with shorter average
waiting time.

Extensive experiments with a range of applications show mixed
results. We did manage to reduce the overhead inflicted by the
placement scheduler, in particular, for monitoring the dynamic be-
haviour of an S-NET application after adverse experiences with
an initial implementation. So, we can conclude that task migration
does not adversely affect the runtime performance of S-NET pro-
grams.

However, none of the S-NET applications available to us for
experimentation demonstrated task migration as a killer feature ei-
ther. Our explanation for this unexpected and somewhat surpris-
ing observation is that all existing S-NET applications were written
with the knowledge that task migration or similar dynamic load
balancing and adaptation mechanisms were missing. Quite typi-



cally, S-NET applications rather manage concurrency themselves.
Prominent examples are essentially data parallel problems such as
raytracing. Such problems are approached with explicit domain
decomposition done by some box and explicit work distribution
through a parallel replication combinator. We can observe this pat-
tern also in the ant colony optimization application.

An application that deviates from domain decomposition is the
MTI-STAP application, which implements a classical signal pro-
cessing pipeline. Here, we can indeed observe a positive impact of
our ready-queue placement scheduler and task migration. Unfortu-
nately, this application does not scale well due to other limitations
in the combination of S-NET runtime system and LPEL threading
layer.

We are, thus, confident that automatic task migration will, in the
long run, prove useful by making S-NET application more robust
against particularly unfortunate scheduling decisions.
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