
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

S+Net: extending functional coordination with extra-functional semantics

Poss, R.; Verstraaten, M.; Penczek, F.; Grelck, C.; Kirner, R.; Shafarenko, A.

Publication date
2013
Document Version
Submitted manuscript

Link to publication

Citation for published version (APA):
Poss, R., Verstraaten, M., Penczek, F., Grelck, C., Kirner, R., & Shafarenko, A. (2013).
S+Net: extending functional coordination with extra-functional semantics. arXiv.org.
http://arxiv.org/abs/1306.2743

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/snet-extending-functional-coordination-with-extrafunctional-semantics(19ab0482-c400-4113-83ae-401264c28fc4).html
http://arxiv.org/abs/1306.2743

S+Net: extending functional coordination
with extra-functional semantics

R. Poss, M. Verstraaten, F. Penczek, C. Grelck, R. Kirner, A. Shafarenko
University of Amsterdam, The Netherlands

University of Hertfordshire, United Kingdom

June 13, 2013

Abstract

This technical report introduces S+Net, a compositional coordination
language for streaming networks with extra-functional semantics. Compo-
sitionality simplifies the specification of complex parallel and distributed
applications; extra-functional semantics allow the application designer to
reason about and control resource usage, performance and fault handling.
The key feature of S+Net is that functional and extra-functional seman-
tics are defined orthogonally from each other. S+Net can be seen as
a simultaneous simplification and extension of the existing coordination
language S-Net, that gives control of extra-functional behavior to the
S-Net programmer. S+Net can also be seen as a transitional research
step between S-Net and AstraKahn, another coordination language cur-
rently being designed at the University of Hertfordshire. In contrast with
AstraKahn which constitutes a re-design from the ground up, S+Net
preserves the basic operational semantics of S-Net and thus provides an
incremental introduction of extra-functional control in an existing lan-
guage.

1

ar
X

iv
:1

30
6.

27
43

v1
 [

cs
.P

L
]

 1
2

Ju
n

20
13

Contents
1 Introduction 3

2 Functional specifications 4
2.1 Notations . 4
2.2 Primitive networks . 5
2.3 Basic operational model for state management 7
2.4 Functional combinators and composite networks 7

3 Transducer language 11
3.1 Overview . 12
3.2 Specification language . 12

4 Extra-functional specifications 14
4.1 Overview . 15
4.2 Replication selection . 16
4.3 Identifiers for run-time activities 17
4.4 Network labeling and selection 18
4.5 Environmental exception handling 18
4.6 Extra-functional isolation . 19
4.7 Extra-functional budget . 20
4.8 Projections: mapping specifications into processing agents 20
4.9 Hardware affinity and mapping 22
4.10 Environmental awareness . 23
4.11 Implementation services . 24

5 Relationship to S-Net and design rationales 25
5.1 Overview of functional changes to S-Net 25
5.2 Stream connections and structural typing 25
5.3 Usability of synchrocells . 26
5.4 Aggregate updates . 27
5.5 Identification of run-time activities 28
5.6 Entity-centric vs. record-centric projections 28
5.7 Lifetime of activities . 30
5.8 Environmental awareness . 31

6 Summary and conclusions 32

Acknowledgements 33

References 33

2

1 Introduction
S+Net provides a high level, declarative coordination language based on con-
cepts borrowed from stream processing. S+Net is based on S-Net: a coor-
dination language whose notation describes explicitly the data dependencies in
a computation. As data movement is then exposed in the language semantics,
mapping and managing the application to parallel platforms becomes simpler.
S-Net is specified in [13, 10] and has been reported on in many published works,
including [2, 4, 5, 3, 6, 9, 1, 8, 14, 15].

A key feature of S-Net is its focus on declarative specifications. The nota-
tion declares an intent of functional composition of primitive networks into more
complex applications. The management of execution, including automatic par-
allelisation and automatic concurrent interleaving of activities, is fully delegated
to a run-time system in software.

S+Net answers two general concerns that have been revealed through the
past use of S-Net with industrial applications.

For one, it was believed originally that the S-Net technology ought to be
equipped with intelligence to automatically optimize application execution, both
during initial compilation and at run-time using feedback loops. One of the goals
of the EU-funded ADVANCE1 project was to attempt and demonstrate this.
Unfortunately, one of the unescapable lessons re-learned during ADVANCE is
that at any level of intelligence built into a system, there are some desirable
optimizations that are necessarily out of reach from that system, although they
could be reachable by letting a human author refine the specification manu-
ally [16].

Second, it was believed that the effectiveness of automated optimizations
would most often be superior to the human skill, especially for large parallel
systems, due to the complexity of the systems involved. In practice, we ob-
served a more nuanced reality. S-Net has revealed across its use cases that
each application has its own type of bottleneck, emerging as a consequence
of both over-constraining in the specification and run-time factors in the im-
plementation, such as hardware parameters or implementation quirks of the
software run-time system [7]. Meanwhile, human operators equipped with high-
level monitoring and profiling tools have proved well-able to understand these
bottlenecks and subsequently restructure applications to avoid them, often at
a fraction of the cost that would be otherwise necessary to implement a new
optimization able to recognize and handle the bottlenecks automatically.

This situation has motivated a new perspective on coordination, which we
attempt to capture with S+Net. On the one hand, general principles of software
engineering make it desirable to keep the functional part of a specification devoid
of operational semantics. This enables the automatically derivation of proofs
of correctness (e.g. through the type system) and simplifies the mental model
used programmers during the initial phase of specification. On the other hand,
the coordination layer must provide tools to both describe the actual behavior
of an implementation at run-time (inspectability), and optionally prescribe or
constrain the run-time behavior after a human operator has determined that
the additional prescriptions are desirable (adaptability). These requirements
call for a two-layered system, where functional and extra-functional aspects of

1http://www.project-advance.eu

3

http://www.project-advance.eu

an application co-exist side-by-side and can be used orthogonally from each
other.

With this background requirement in place, the question remains of what
tools to place in the extra-functional toolbox. Following the design guidelines of
S-Net, S+Net strives to provide composable specification operators that each
determine an orthogonal aspect of the system.

This following technical report thus describes S+Net and its extra-functional
contributions to S-Net. In the process of defining S+Net, the authors also took
the opportunity to recognize shortcomings in the functional part of S-Net; the
functional core of S+Net is comparatively more simple and its primitives are
more orthogonal than S-Net’s.

The report is organized as follows. In section 2 we present the part of
S+Net’s dedicated to functional specifications. One of the new functional con-
cepts introduced in S+Net is the “transducer” component, subsequently further
described in section 3. In section 4 then presents S+Net’s extra-functional con-
structs and their semantics. We finally provide a more in-depth discussion of
the differences between S-Net and S+Net in section 5.

2 Functional specifications
The functional core of S+Net uses only two primitive components and defines
component network composition using network combinators over them. The el-
ementary components are boxes and transducers, described in section 2.2. Boxes
abstract entire programs provided externally to S+Net. Transducers enable ex-
pressing simple computation and synchronization constructs within the S+Net
language. Two binary combinators assemble heterogeneous composite networks,
and three unary combinators define more complex functional behaviors for their
network operand. The combinators are detailed in section 2.4.

The interconnect between components appears as if each component had a
single input stream and output stream, that is, the input/output events of a
single component are observed in some total order. Each event on such a stream
is called a record. Records are represented as sets of label-value pairs. Labels are
called field names and values are called fields. Fields are either integer scalars,
or references to data structures from the box language domain. References are
opaque to coordination, although S+Net and box languages must cooperate
to marshall data to and from streams of bytes suitable for communication over
network channels.

2.1 Notations
We present the composition constructs of S+Net in the following sections.

As in S-Net, record types are noted using curly brackets around the set
of field names, for example {a,b} which is equivalent to {b,a}. Furthermore,
S+Net standardizes the following notations:
• source notation, e.g. “A..B” which provides a standard syntax to enter

specifications into the S+Net system;
• algebraic notation, e.g. C(A,B), which provides a symbolic representation

of input specifications, or specifications after partial automatic transfor-
mation by a S+Net implementation;

4

Name Graphical representation Algebraic Source notation
Box A Box(A)

B→N
box A ...

Transducer S Transduce(S)
S→N

[|S|]

Table 1: Notations for S+Net’s primitive networks.

• graphical notation, to visualize specifications and provide a high-level in-
tuition.

The examples hereafter use either algebraic, source or graphical notation, de-
pending on which best illustrates a concept at hand.

2.2 Primitive networks
S+Net provides two primitive networks, from which all specifications are de-
rived: boxes, which capture components developed externally, and transducers,
which are stateful boxes whose behavior is implemented using a simple expres-
sion language within S+Net. The corresponding notations are given in table 1.

2.2.1 Boxes: stateless transformations

The main elementary functional construct is the encapsulation of an entire pro-
gram, called component or box, able to work asynchronously on a stream of
input and producing a stream of output.

Both imperative and declarative languages qualify as box implementation
languages. The box language infrastructure around each component must offer
clear primitives to set up a box, provide it with input, save or checkpoint its
management state (e.g. heap managers, debugging metadata) and tear down the
environment. A box implementation should be resource-agnostic, that is, able
to perform its transformation regardless of the hardware resources seleted for
it by the S+Net coordination layer. In its simplest form, a box encapsulates
a side-effect free, stateless function implemented in a standard programming
language like C or C++.

A box can be described as a function from its input stream to its output
stream. Boxes must appear functionally pure, that is, the output from one input
record can be fully computed using that input record only, and a box terminates
after it produces its last output. A box is characterized by a box signature: a
mapping from an input type to a disjunction of output types. For example,

box foo ((a, b) -> (c) | (c,d));

declares a box foo that expects records with two fields labelled a and b. The
box, when activated, responds with zero or more records that either have only
one field labelled c, or two fields labelled c and d.

The set of field names naturaly induces a type signature for every stream-to-
stream transformation2. Type compatibility and subtyping are determined by

2 General type signatures use set notation for record types, with curly brackets. For box
signatures, order matters: the box implementation might only support positional arguments
and record fields are then provided at run-time in the order specified. This is why box
signatures use parentheses instead of curly brackets.

5

set inclusion. For example, the box foo above would accept a record with type
{b,a,c} as input, but not {a} nor {b,c,e}. Subtyping on input types of boxes
raises the question of what happens to the excess fields. S+Net defines flow
inheritance, whereby excess fields from incoming records are not just ignored
in the input record of a network entity, but are also attached to any outgoing
record produced by it in response to that record. Subtyping and flow inheritance
prove to be indispensable features when it comes to combine boxes designed in
isolation into a larger application.

2.2.2 Transducers: stateful, finite synchronizers

A box, already described in the previous section, is stateless and can only split
a record into parts. The transducer construct expresses the complementary
operation: merging two or more records into one, possibly performing compu-
tations on them. Transducers are defined as finite state machines3; the number
of different states is kept finite so that typing and correctness can be decided
statically, and so that liveness and future state behavior can be predicted at
run-time.

All specifications for transducers specify a finite set of states, conditions for
transitions between them, and actions to carry out upon state changes. Actions
include capturing (part of) the input using hold variables and/or constructing
records to emit on the output stream. Hold variables can capture one record
each, and have full/empty semantics: they can only be assigned when empty,
and read or reset to the empty state when full.

Transitions can be conditional on input records, but conditions cannot in-
volve previously captured input. Consequently, the type signature of the trans-
ducer can be determined statically for every state, as well as whether the hold
variables stay consistent, i.e. each hold variable is not set when full and not
reset when empty.

Any input record that arrives to a transducer and not accepted by a transi-
tion from the current state is output, unchanged, by the transducer. A trans-
ducer is said to be inactive whenever it is currently in its initial state and all its
hold variables are empty; it terminates when it reaches a state with no outgoing
transition.

More details on the transducer sub-language are given in section 3.

2.2.3 Multiple input, multiple output and tags

A distinguishing feature of S+Net is that it neither introduces streams as ex-
plicit objects nor does it defines network connectivity through explicit wiring.
Instead, it uses algebraic formulae, described below in section 2.4, to compose
streaming networks. The restriction of type signatures to a single logical input
and a single logical output stream (SISO) is essential for this. However, this is
not to say that S+Net actually implements logical streams using a single com-
munication channel; MIMO specifications are also possible. For this, records
may be additionally be marked using a single tag, noted between angle brack-
ets, for example 〈t〉. The inclusion of a tag in a component signature changes
the type equivalence to only match records with exactly the same tag. Therefore

3theoretical construct of the same name, described in [12, Chap. 4], of which they are a
practical application.

6

tags in one component’s output can only be matched to components with the
same tags in their declared input type, and an implementation can route this
communication through dedicated channels. Tags may also be used as scalars
to distinguish between sub-streams.

2.3 Basic operational model for state management
Stateful constructs like the transducer evolve through a lifecycle at run-time.
Other functional combinators define below also define implicit state. State nec-
essarily occupies space at run-time and breaks referential transparency, and thus
defines objects at run-time that must be managed.

The basic properties of these objects are defined below; the rest of the S+Net
specification refers to these properties and determines how they are managed
by a run-time system.

To start, any stateful construct goes through the following phases:
1. when initially instantiated, it is inactive;
2. during its lifetime, it may go through one or more activity cycles, during

which it is stateful, interleaved by inactivity periods;
3. it may reach a state past which it either always behave like the identity

function, or never processes input records again, at which point it is said
to be terminated.

A (sub-)network is said to be live as long as it is not terminated. Note that
a network can be both active and terminated. For example, a transducer is
known to be terminated whenever it reaches a state with no possible transition.
However, at that point it may still have non-empty hold variables. In accordance
to previous work in process management, we call dead those networks which are
both terminated and inactive; and zombie those which are terminated but still
active (retain state).

When proven at run-time, the death property enables the simplification of
the process network by eliminating replicas or run-time state that have become
unnecessary, i.e. garbage collection [1]. Depending on the application domain,
the implementation may also permit automatic garbage collection of zombie
networks.

In this context, the lifecycle of primitive networks deserves attention. It
is possible to consider a box as a network that starts inactive, then becomes
repeatedly active for each successive input record. Because it is stateless, it is
also possible to consider it as a network which terminates after each succes-
sive input record, then instantiated anew for the next input record. Similarly,
whenever a live transducer becomes inactive, either it can be re-activated for
the next input record or terminated and reinstantiated anew. This duality is
functionally neutral; however, which approach is taken in an implementation
has extra-functional consequences on latency and throughput, and is thus ob-
servable and controllable in S+Net, via the use of projections (cf. sections 4.8
and 5.6).

2.4 Functional combinators and composite networks
S+Net provides the following functional combinators, which compose networks:
• finite composition of two or more networks, to define pipelines;

7

Name Graphical representation Algebraic Source notation

Composition N M C(...)
N∗→N

, eg. C(N,M) N..M
“dot dot”

Selection
N

M

S(...)
N∗→N

, eg. S(N,M) N|M
“or”

Ordered
replication
composi-
tion

N

[G] C∗G(N)
G×N→N

N*G
“star”

Unordered
replication
composi-
tion

N

<t>

<u>

C!
〈t〉,〈u〉(N)
T 2×N→N

N!*<t><u>
“blink star”

Reordering
N

R(N)
N→N

?N#

Table 2: Notations for S+Net’s functional combinators.

• finite selection between two or more networks, to define routing between
alternative processing pipelines;

• arbitrarily deep ordered replication composition, which dynamically repli-
cates a network and composes the replicas in a deterministically ordered
pipeline;

• arbitrarily deep unordered replication composition, which dynamically repli-
cates a network and composes the replicas in an non-deterministically or-
dered pipeline.

Both simple selection and the replication operators introduce processing con-
currency, that is, non-determinism in the order records are visible in the logical
output stream. To force reordering when needed, S+Net also provides a re-
ordering combinator which ensures that output records are visible in the same
order as the input record that caused them.

The corresponding notations are given in table 2. The following sections
introduces each combinator in more details.

2.4.1 Simple composition and selection

Composition (C(A,B), or “A..B” in source) constructs a new network where the
logical streams are connected in series. The composite network can be thought
as performing the function B ◦A concurrently over each input record to produce
output records. This form of composition preserves ordering of the input stream
in the output stream.

Selection (S(A,B), or “A|B” in source) constructs a new network where each
input record is routed to one of the branches. Which route is taken is determined
by best match on the input type of the alternative networks. The composite

8

network can be thus thought as performing a type-based functional choice be-
tween A or B. Moreover, selection introduces stream concurrency between the
alternatives: when two successive records ra and rb are presented on the input
stream, to be routed to A and B, B’s output for rb may appear interleaved in
any way with A’s output for ra on the output stream. Ambiguous selections
are resolved in the specification order4. For example with S(A,B), if A accepts
{a} and B accepts {b}, a record with type {a, b} will be routed to A.

At any point during execution, a selection is active if at least one of its
branches is active; when it is terminated, it terminates also all the branches.
We define by extension the dynamic liveness arity and dynamic activity arity
of a composite, which is the current number of live and active instances of the
inner networks at run-time, respectively. Dynamic liveness arity is intuitively
associated with passive spatial complexity, implied by the cost of maintaining
the network instances in the run-time environment; dynamic activity arity is in-
tuitively associated with active spatial complexity, implied by the cost of actual
accesses to the instances’ state.

The logical output stream of the composite network is the fusion of the con-
current sub-streams after processing by the replicas. As with simple selection,
fusion is non-deterministic and sub-streams may appear interleaved.

2.4.2 Reordering

If the non-determinism in the output order of selection is not desired, it is possi-
ble to encapsulate a network N in the reordering combinator which reintroduces
the input order, noted R(N). For example, with R◦S(A,B), or “?A|B#” in source
form, when presented with successive records ra and rb, A’s last output for ra
will be observed on the output stream of the composite network before B’s first
output for rb.

At any point during execution R(N) is active if either N is currently ac-
tive or if the composite network is currently holding records for reordering. It
terminates N when terminated itself.

2.4.3 Ordered replication composition

The ordered replication composition over N , noted N!G in source form or C∗G(N)
in algebraic form, defines a composite network whose functional semantics are
defined as follows:
• G is a guard pattern, which expresses record types together with an op-

tional field predicate;
• it processes records through an ordered composition of replicas of N as

long as records do not match the guard pattern.
In other words, ordered replication composition can be thought of defining

an infinitely enumerable set of replicas {bNci | i ∈ N} and processing each input
record via the functional definition

bC∗G(N)c = C∗G(bNc0)

C∗G(bNci)(r) =

{
r if r matches G
C(bNci,C∗G(bNci+1)(r) otherwise

4 This selection determinism is a divergence from the approach taken with S-Net’s “parallel
composition” construct; we discuss this in sections 4.2 and 5.

9

N[G] N[G] [G] . . .

(match) (match) (match)

Figure 1: Dynamic unfolding of C∗G(N).

The corresponding dynamic unfolding is illustrated in fig. 1; it implements
guarded functional recursion. This is the alternative proposed by S+Net to
cycles in specification graphs to define repeated behavior.

Like with selection, activity is defined inductively from the corresponding
state of the inner replicas, and termination of the composition implies termi-
nation of the replicas. Dynamic liveness and activity arities are also defined
transparently. In addition, replication composition defines dynamic depth to be
the number replicas involved in the linear chain that are not yet terminated.
Dynamic depth is intuitively associated with the time complexity of processing,
since any terminated replica is neutral w.r.t composition.

An implementation is expected to remove terminated replicas dynamically
from the composition chain, i.e. keep the dynamic liveness arity synchronized
with the dynamic depth.

2.4.4 Unordered replication composition

The unordered replication composition is intended to capture the non-deterministically
ordered sequence of transformations on a shared data structures between com-
putation agents. For example, it can be used to express the transformation
of a graph data structure as an non-deterministically ordered set of concur-
rent subgraph-to-subgraph transformations. The intent is to let the S+Net
implementation schedule the concurrent activities either in parallel using either
locking or speculation and transactional storage to guarantee the linear order
(cf. section 5.4).

The functional semantics are defined as follows. The construct N!*<r><p>
in source form or C!

〈r〉,〈p〉(N) in algebraic form, defines a composite network.
The first tag 〈r〉 marks constructor records and the second tag 〈p〉 marks pay-
load records. Any contiguous sub-sequences of constructor records is called a
constructor sub-sequence. A single constructor sub-sequence (of zero or more
constructors) followed by one payload record is called a processing sub-sequence.
Any record that are neither constructors or payloads, called pass-through records,
are forwarded to the output stream unchanged.

In each processing sub-sequence of the input stream, the behavior is defined
as follows:
• the constructors are collected in a list;
• if there are no constructors, the payload is passed through; otherwise
• one constructor is picked at a non-deterministic position of the list and

removed from the list;
• the picked constructor and the payload are presented as input to a new

(fresh) replica of the inner network;
• any constructor produced by the inner network is appended to the con-

structor list;

10

N N . . .N N

. . .
⟨r=1⟩

⟨r⟩

⟨p⟩ ⟨p⟩ ⟨p⟩ ⟨p⟩

⟨q⟩

⟨r=0⟩⟨r=0⟩ ⟨r=1⟩

⟨r=0⟩,⟨r=1⟩
⟨r=0⟩,⟨r=1⟩

⟨q⟩ ⟨q⟩ ⟨q⟩

⟨q⟩
⟨p⟩
⟨r⟩ ⟨q⟩

⟨p⟩1 32 4

Figure 2: Dynamic unfolding of C!
〈r〉,〈p〉(N).

• the resulting constructor list and the payload produced by the inner net-
work are processed by a new instance of C!

〈r〉,〈p〉(N);
• the original replica is terminated.
An example dynamic unfolding is illustrated in fig. 2. In this example, each

replica of the inner network accepts one {〈r〉} and one {〈p〉} record. Each replica
also emits conditionally two new records {〈r = 0〉} and {〈r = 1〉} followed by
a new {〈p〉} record, possibly interleaved with 〈q〉 records. When the processing
sub-sequence {〈r = 0〉}, {〈r = 1〉}, {〈p〉} is presented on the input, the follow-
ing happens. The first two 〈r〉 records are accumulated in a list. The 2nd
constructor is picked first (〈r = 1〉), a first replica N1 is created, and both the
constructor and 〈p〉 record are presented to N1. The 〈r〉 records produced by N1

are then appended to the list, which becomes [{〈r = 0〉}, {〈r = 0〉}, {〈r = 1〉}].
Again the 2nd constructor is picked first (〈r = 0〉 from N1), and defines a new
replica N2. The 〈p〉 record output by N1 is then sent to N2. The 〈r〉 records
produced by N2 are appended to the list, then the 1st element is picked from
the remaining list (〈r = 0〉 from N2). And so on. Meanwhile, all the interleaved
〈q〉 records are also forwarded to the output stream.

All processing sub-sequences of the logical input stream are processed con-
currently, by distinct processing sets of replicas. In each processing set, any
given replica is only used once, over exactly one constructor and one payload
record. The replica is terminated after it has processed the input payload and
optionally output one new payload. A single top-level processing sequence is
said to complete processing when all replicas in its processing set have termi-
nated and no constructor records are left unprocessed.

As can be seen, this combinator combines two forms of non-determinism:
both concurrency between input processing sequences and concurrency between
constructor records at any level of the recursion, which non-deterministically
change the composition order of the remaining replicas.

As with the previous forms of replication, activity is defined inductively from
the corresponding state of replicas. When terminated, the replication terminates
its replicas. Dynamic liveness and activity arities are defined as the total number
of live/active replicas across all processing sets. The dynamic depth of the
network is is the maximum of the dynamic depths of the individual processing
sets. As with ordered replication composition, an implementation is expected
to remove terminated replicas automatically from the run-time environment.

3 Transducer language
A box, already described in the previous section, is stateless and can only split
a record into parts. Moreover, a box is defined externally to S+Net and its

11

specification is not known at the level of S+Net. In contrast, transducers
provide a way to define simple computations on records within the S+Net lan-
guage itself. Like boxes, once defined, transducers behave as primitive networks
(cf. section 2.2)

3.1 Overview
The transducer construct expresses the complementary operation: merging two
or more records into one, possibly performing computations on them. Trans-
ducers are defined as finite state machines5; the number of different states is
kept finite so that typing and correctness can be decided statically, and so that
liveness and future state behavior can be predicted at run-time.

All specifications for transducers specify a finite set of states, conditions for
transitions between them, and actions to carry out upon state changes. Actions
include capturing (part of) the input using hold variables and/or constructing
records to emit on the output stream. Hold variables can capture one record
each, and have full/empty semantics: they can only be assigned when empty,
and read or reset to the empty state when full.

Transitions can be conditional on input records, but conditions cannot in-
volve previously captured input. Consequently, the type signature of the trans-
ducer can be determined statically for every state, as well as whether the hold
variables stay consistent, i.e. each hold variable is not set when full and not
reset when empty.

Any input record that arrives to a transducer and not accepted by a transi-
tion from the current state is output, unchanged, by the transducer. A trans-
ducer is said to be inactive whenever it is currently in its initial state and all its
hold variables are empty; it terminates when it reaches a state with no outgoing
transition.

3.2 Specification language
S+Net provides a comprehensive syntax for transducers, to keep the specifi-
cation short in simple cases and to factor regular behavior. To start with, it
is common to express housekeeping coordination tasks that are stateless, for
example duplicating records or performing simple arithmetic on scalar fields.
Transducers can be defined with only one state and no captured input as fol-
lows:

[| {a, b, c} -> [emit {a=input.a, z=input.a, t=0}; emit {b,
a=input.b, c=input.c+1}] |]

This transducer consumes records of type {a,b,c} and for each input creates two
new records. The first output record has field a with the original value, field z
with the same value and a scalar t set to zero. The second record has fields b
with the original value, a with the same value as b and the scalar c incremented
by one. A stateless transducer is also called “filter”, and equivalent to the S-Net
construct of the same name.

To capture input, a specification must define hold variables. For example,
the transducer defined with

5Transducers are named after the theoretical construct of the same name, described in [12,
Chap. 4], of which they are a practical application.

12

[| var x;
start: {a} -> [x := input] ha; {b} -> [x := input] hb;
ha: {b} -> [emit input + x; reset x] start;
hb: {a} -> [emit input + x; reset x] start;
|]

has one hold variable x. When in the start state, it accepts either records of
type {a} or {b}, captures them in x and changes to a state where it can accept
a record of the other type, combine it (using set union) and output the result,
before resetting to the initial state.

The record expression after the label must be an exact match on the input
record. The labels must match, and a scalar value, if specified, must match
the input’s scalar as well; this uses first match if there are multiple guards
in the same state. For example, [| {a=9} -> [emit {a=0}]; {a} -> [emit
{a=input.a+1}]; |] specifies a filter that increments a modulo 10.

To enable inheritance, a transducer can accept records with more fields than
are matched in the guard, as follows: [| {a}+x -> [emit {a=input.a+1}+x]
|]. This specifies a filter that accepts any input with at least field a and
produces as output a record with a incremented, together with the remaining
fields of the input. By extension, a guard can omit the match pattern and only
use a “remainder” part, for example: [| a: x -> [emit x+{even=1}] b;
b: x -> [emit x+{odd=1}] a; |]. This transducer adds scalars odd or even
to alternate input records, regardless of their type.

It is also possible to manipulate state labels as integer values within a fixed
range, and use finite-size arrays of hold variables indexed by the state labels.
For example:

[| label [0..3]; var h[3];
n=0..2/ n: x -> [h[n] := x] n+1;

3: x -> [emit union(h)+x; reset h] 0; |]

This specifies 4 states labeled from 0 to 3, and 3 hold variables. The transition
prefix “n=0..2/” defines a label iterator n and causes the duplication of the
remainder of the transition specification for all specified values of n. Therefore,
this transducer merges every successive 4 records into one, regardless of type.

Label iterators can be used with finite-size arrays of guards, too. For exam-
ple, the transducer

[| label [0..3]; var h[3]; guard t[3] = {a},{b},{c};
n=0..3/ n: t[n] -> [h[n] := input] n+1;

4: {d} -> [emit union(h)+input; reset h] 0; |]

merges subsequences of {a}, {b}, {c} and {d} records, exactly in that order.
Finally, it is also possible to express synchronization of multiple successive

records in arbitrary order using label sets defined as finite-size arrays of bits,
as illustrated by the example in fig. 3. This transducer declares an array of 3
state bits, i.e. 8 possible states. For every i ∈ {0, 1, 2}, “˜s[i]” matches any
state of the label array where bit i is not set; i.e. ˜s[0] matches labels 000,
010, 100 and 110; ˜s[1] matches 000, 001, 100 and 101, and ˜s[2] matches
000, 001, 010 and 011. “t[i]” then uses the corresponding guard and “h[i]”
the corresponding hold variable. At the end of the transition “s[i]” sets bit i
of the bit array relative to the actual state matched on the left hand side. In

13

[| guard t[3] = {a},{b},{c}; label s[3]; var h[3];
i=0..2 / ˜s[i]: t[i] -> [h[i] := input] s[i];
s[0..2]: -> [emit union(h); reset h] ˜s[0..2]; |]

(a) Specification

000

001 010 100

011101 110

111

{a}
hold 0

{b}
hold 1

{c}
hold 2

{c}
hold 2

{b}
hold 1

{a}
hold 0

{c}
hold 2

{a}
hold 0 {b}

hold 1

{b}
hold 1

{c}
hold 2

{a}
hold 0

emit 0..2;
reset

em
pt

y
tra

ns
iti

on

(b) Specified transitions

000

001

010

100

011

101

110

{a}
hold 0

{b}
hold 1

{c}
hold 2

{c}
hold 2

{b}
hold 1

{a}
hold 0

{c}
hold 2

{a}
hold 0

{b}
hold 1

{b}
hold 1;

emit 0..2;
reset

{c}
hold 2;

emit 0..2;
reset

{a}
hold 0;

emit 0..2;
reset

not {b} or {c}
emit in

not {a} or {c}
emit in

not {a} or {b}
emit in

not {b}
emit in

not {c}
emit in

not {a}
emit in

(c) Actual transitions

Figure 3: Transducer that merges triplets of {a}, {b}, {c} records in any order.

the second transition specification, s[0..2] applies to the single state where
all bits in the array are set, i.e. label 111. It defines an empty transition, i.e. a
transition whose action is taken as soon as its origin state is reached by another
transition6. Its resulting state specification unset all bits, i.e. resets to label
000. As explained earlier, unspecified transitions cause the input record to be
emitted as-is on the output stream.

This specific example can be reused to synchronize any finite set of record
types by simply extending the size of the arrays; we found it so ubiquitous
in concrete applications that S+Net proposes a simplified syntax for it: [|
{a},{b},{c} |]. This extends S-Net’s “synchrocell” concept, as discussed in
section 5.3.

4 Extra-functional specifications
S+Net also provides extra-functional combinators, described in the following
sub-sections, which can be layered on top of arbitrary networks. In contrast to
functional combinators, the extra-functional combinators were designed so that
adding them to a network does not influence its input-output value relationship.

More specifically, although they can influence value computations, the S+Net
programmer should not expect the extra-functional combinators to yield the
desired functional effects. This is because any particular implementation of
S+Net may not support some of the extra-functional combinators and replace
them with transparent constructs with no effect. For instance, the “environment
awareness” enables a program to read values that describe the environment into
a record’s tag, for example the number of cores in the resource where a sub-
network is currently running. An application can make use of this number, but

6Of course, a cycle of empty transitions is not permitted, otherwise a transducer could
define non-terminating actions.

14

Name Graphical representation Algebraic Source notation

Replication
selection

⟨c⟩p N
S∗〈c〉p(N)
T 3×P×N→N

N!<c>p

Labeling N

α:X
αX(N)
L×N→N

N’X

Environmental
exception
handling

Na

β:E

βX(a=E)(N)
L×E×F×N→N

N$X(a=E)

Extra-
functional
isolation

N

θX/+RθX/R

θX/R(N)

θ+X/R(N)
L ×R×N → N

N/X/R
N/X/+R

Extra-
functional
budget

N

ρX:R

ρX:R(N)
L×R×N→N

N/X:R

Projections to
agents

N

γX:R γX:E τX:ωτX:ε

γeX(N) τωX(N)
γrX(N) τ εX(N)
L × N → N

N/X!ge
N/X!gr
N/X!to
N/X!te

Resource
affinity and
assignment

N

ϕX:Y:a

φX@Y :a(N)
L2×P×N→N

N/X@Y :a

Environment
awareness

δ: ⟨t⟩.a = E
δ〈t〉.a(E)
T ×F×D→N

[<t>.a=E]

Table 3: Notations for S+Net’s extra-functional primitive network and combi-
nators.

acknowledge that a particular implementation may not support this combinator
and always leave the record tag unmodified instead.

4.1 Overview
S+Net provides a new primitive network for environment feedback, noted δ,
and the following combinators:
• replication selection, noted S∗;
• network labeling, noted α, used to designate sub-networks in the specifi-

cation of other extra-functional combinators;
• environmental exception handling, noted β;
• extra-functional requirements on isolation and budget, noted θ and ρ;
• projection into processing agents, noted γ and τ ;
• hardware affinity and mapping, noted φ.

15

The corresponding notations are given in table 3. All these constructs, except
for β, δ and S∗, are functionally neutral: they do not change the input-output
relationship of the encapsulated network.

Both β and δ read and modify scalar values in records, and thus establish
a bridge between functional and extra-functional semantics; S∗ explicitly ma-
nipulates network replicas and thus can influence the functional semantics via
output reordering and state management. However, we consider that an S+Net
specification is only well-formed if its input-output relationship stays valid for
the application when all extra-functional combinators or δ are elided.

4.2 Replication selection
The network combinator S∗ expresses replication selection with optional extra-
functional choice between replicas. This construct can be used to manually
fine-tune the exploitation of parallel hardware; it is not intended for use dur-
ing an initial specification or to when determining functional correctness of a
specification.

The construct S∗〈c〉p(N) is a network specification if N is a network specifi-
cation. It is also noted “N!<c>p” in source form. N is called the inner network ;
〈c〉 is the selection tag and p is called the selection policy.

The semantics are as follows:
• the network S∗〈c〉p(N) maintains an ordered processing set of indexed repli-

cas of N over time;
• whenever it receives a record tagged by 〈c〉:

– if the tag’s scalar value is stricly positive, it forwards the record to
the replica indexed by the tag’s scalar value, creating the replica if
necessary;

– if the scalar is negative, it forwards the record to the replica indexed
by the absolute value, then signals termination to the replica;

• if 〈c〉’s value is zero, and for all records of another type, it routes the record
to a replica according to the policy (described below). Moreover, if 〈c〉’s
value is zero, then the value of 〈c〉 is automatically set upon entry by S∗

to the index of the selected replica.
If there are no replicas currently defined upon receiving a 〈c〉 record where

〈c〉’s value is zero or upon receiving a record of another type, or if 〈c〉’s value
is negative and there is currently no replica indexed by the absolute value, the
record is forwarded directly to the output stream.

The following policies are available:
• S∗e for even distribution: best effort is made to distribute the records

evenly to the current replicas;
• S∗lr for last replica: records are distributed to the last replica selected by
〈c〉;

• S∗la,ha for lowest or highest available replica: records are distributed to any
replica currently able to accept input, preferring replicas with the lowest
index or highest index respectively.

If the policy is not specified, it defaults to the even distribution.
Activity and termination are further determined for S∗ like for selection and

replication composition earlier.

16

4.3 Identifiers for run-time activities
As discussed in section 2 and more specifically in section 2.3, any static network
specification translates, at run-time, into zero or more replicas, and for each
replica, into a lifecycles of zero or more activations before eventual termination.
Any run-time activity, either communication or processing or records, can thus
be traced back to the static specification using:
• for transformations, the path to the sub-network defining the transforma-

tion, augmented at each level of nesting with an identifier for the replica
where the transformation takes place and an identifier for the activation
of that replica;

• for records, the identity of the transformation that has produced the
record, augmented with the causal index7 of that record.

To identify run-time activities, S+Net standardizes the notion of network
index. A network index is a list of triplets (x, y, z) where x is the functional
path through the specification, y an identifier for the replica and z an identifier
for a particular activation. Functional paths and replica identifiers are defined
“naturally” for functional combinators:
• for simple composition C and selection S, the functional path designates

the position of the sub-network in specification order, and the replica
identifier is typically 0 (although that may be changed by extra-functional
combinators below);

• for ordered replicated composition C∗, the functional path is the position
of the replica in the dynamic unfolding8, and the replica identifier is merely
unique for that position;

• for unordered replicated composition C!, the functional path is an identifier
for the processing subsequence on the input, the replica identifier is merely
unique for that subsequence;

• for replicated selection S∗, the functional path is the scalar value that
identifies which alternative to use, and the replica identifier is typically
equal to the static path.

For example, consider the network

C (N, S (C∗ ◦ C (M,O) , P))

or “N..((M..O)*|P)” in source form. An activity on behalf of the 3rd activation
of the 12th replica of network N would be identified by [(0, 11, 2)]. The value
0 indicates the first argument of the first C combinator. Likewise, the index
[(1, 0, 12); (0, 0, 12); (12, 0, 12); (0, 0, 12)] identifies an activity on behalf of the
second position of the outer C, of the first position of S, of the 13th unfolding
of C∗ and at the first position of the inner C, i.e. in M .

From network indices we derive the notion functional network indices, which
are lists formed by taking the first index of each element in a full network index.
This notion is equivalent to the network indices defined in [6, App. B.3]. Func-
tional network indices are often sufficient to establish functional causality for
observed values, but they may lose information about extra-functional causes.

7The causal index is due to multiplicity: any input record processed by a box can cause
zero, one or more output records, and these can need to be distinguished by other means than
their type.

8The position is given prior to garbage collection, i.e. the index may be larger than the
dynamic depth.

17

α:X

A

α:X

B C

α:X

“ ((A..B)’X..C’X)’X ”

Figure 4: Graphical representation of αX ◦ C(αX ◦ C(A,B), αX ◦ C)

α:N

A

α:X

B C

α:Xα:X

“ ((A’X..B)’X..C’X)’N ”

Figure 5: Graphical representation of αN ◦ C(αX ◦ C(αX ◦A,B), αX ◦ C)

4.4 Network labeling and selection
The α combinator helps naming and identifying run-time instances of subnet-
works. The construct αX(N) (“N’X” in source) is a network specification if N is
a network specification. X is called the network label. The functional semantics
of αX(N) are those of N .

Network labels are used as anchors by the extra-functional features defined
hereafter. There are two possible uses of anchors:
• the constructs β, θ, ρ, γ, τ and φ refer to the set of outermost inner
network(s) with some label. For example in fig. 5, N ’s outermost inner
networks labeled by X are C(A,B) and C;

• the constructs δ and φ refer to the innermost outer network using some
label. For example in fig. 4, A’s innermost outer network labeled by X is
C(A,B), whereas C’s is itself.

Note that S+Net’s construct “net X ...” in source notation also implic-
itly generates a use of αX around the enclosed network specification in S+Net.

4.5 Environmental exception handling
The network combinator β provides a facility to handle extra-functional excep-
tions in the run-time environment. The construct βX(a=E)(N) (“N$X(a=E)” in
source) is a network specification if N is a network specification. E is called the
exception specification; a is called the exception label. X, if specified, is called
the target network selector.

β applies to all the outermost inner networks labelled by X, or to the in-
ner network directly if X is omitted. The selected network(s) are called target
networks. Semantically, the input of β(a=E)(N) is provided to N in-order, un-
changed. If the processing of an input record r by any of the target networks
causes an uncaught extra-functional exception of type E, it is reported as fol-
lows:
• all outputs of N produced causally from r are not output from β(N);
• if r has no field labelled a, or if a’s value is non-zero, then the exception

is propagated to the enclosing network; otherwise:

18

– the state of N is restored to prior to r’s input; and
– r is re-injected as input to N with its scalar field a modified to a

non-zero value (indicating an exception has occurred).
• whenever an exception escapes the scope of a β network, all the replicas

of the inner network are terminated, even if they are active. Subsequent
input records cause a new instantiation.

A β network may let subsequent records of the input flow in the protected
network before the faulty record is retried without violating causality. This is
possible to implement if the protected network is stateless, if the environment
supports transactions and an aborted transaction has no impact on the process-
ing of subsequent records, or if the specific application tolerates such reordering.
To obtain determinism, that is, preservation of input order, R ◦ β can be used.

Any exceptions generated by sub-networks others than the target network(s)
are not caught and propagated to the enclosing environment instead.

4.6 Extra-functional isolation
The network combinators θ and θ′ express extra-functional isolation require-
ments on the execution environment. The constructs θX/R(N) and θ+X/R(N)

(“N/X/R” and “N/X/+R” in source) are network specifications if N is a network
specification. R is called the isolation property ; X, if specified, forms the target
network selector. Both θ(N)’s and θ+(N)’s functional semantics are those of
N . Like γ and τ , θ and θ+ apply to the outermost inner networks labelled by
X, or to the inner network directly if X is omitted; the selection is also called
target network(s). The functional semantics of θ(N) and θ+(N) and are those
of N .

Extra-functionally, θR specifies that the execution environment guarantees
that all replicas of the target networks are isolated from each other relative to
property R. In contrast, θ+R specifies that the target replicas are isolated from
each other and also from their enclosing network relative to R. In particular
with θ, the management activities of the enclosing network need not be isolated
from the replicas of the target networks; only θ+ guarantees this isolation.

S-Net proposes the following isolation specifications:
• θ/f for relative progress independence (fairness), i.e. the progress of each

replica not starved on input or blocked on output is guaranteed indepen-
dently from other replicas (and from the enclosing network with θ+). This
may be implemented using preemptive time sharing;

• θ/b for relative bandwidth independence, i.e. the internal bandwidth of
processors and channels onto which each replica is mapped is reserved and
free of contention from other replicas (and from the enclosing network with
θ+). This may be implemented using round-robin real-time scheduling on
one processor/channel, or via true hardware parallelism;

• θ/s for relative storage independence, i.e. the storage allocated by the run-
ning components and network management is sourced from storage pools
separate between replicas (and from the enclosing network with θ+);

• θ/p for relative energy supply independence, i.e. the power demands of each
replica are satisfied independently from the power usage of other replicas
(and from the enclosing network with θ+).

An implementation of S+Net may be unable to satisfy a θ requirement at
run-time. In this case, best effort is made to report this inability statically; oth-

19

erwise an exception of type Violation(R) is raised at the first network activation
without the required guarantee.

4.7 Extra-functional budget
The network combinator ρ expresses extra-functional budget requirements on
the execution environment. The construct ρX:R(N) (“N/X:R” in source) is a
network specification if N is a network specification. R is called the budget
specification; X, if specified, forms the target network selector. ρ(N)’s func-
tional semantics are those of N . Like γ, τ and θ previously, ρ applies to the
outermost inner networks labelled by X, or to the inner network directly if X is
omitted; the selection is also called target network(s). The functional semantics
of ρ(N) are those of N .

Extra-functionally, ρX:R(N) specifies that the execution environment caps
the extra-functional budget R available to all replicas of the target networks, to
a proportion of the budget available to the surrounding network. The following
budget specifications are supported:
• mp(x) for maximum power, i.e. the amount of power collectively consumed

by all target networks;
• mc(x) for maximum storage, i.e. the amount of storage collectively allo-

cated;
• mfl(x) and mll(l) for maximum first/last latency, i.e. the maximum dura-

tion between the moment a record is input by a replica and the first/last
output causally produced;

• mti(x) and mto(x) for maximum input/output throughput, respectively;
• mdla(x), mdaa(x) and mdpa(x) for maximum dynamic liveness/activity/a-
gent arity, respectively.

The parameter x establishes a budget relative to the budget available to the
enclosing network. This can be either a ratio (e.g. 10%) or maximum absolute
value (e.g. 10ms). The coordination layer makes a best effort to enforce the
requirement, possibly throttling the execution strategy and processing rates
to match the constraint. If a maximum value cannot be satisfied from the
outer budget, or when a network is known to behave in violation with the
requirement, an exception of type Violation(R) is raised at run-time. This may
happen while a box is computing; for example, with ρmfl if a latency bound is
exceeded while a box is still transforming its input record, the behavior can be
aborted preemptively.

4.8 Projections: mapping specifications into processing
agents

The network combinators γ and τ express how run-time agents are spawned
to process activations. γ chooses between entity-centric and record-centric pro-
jections, and thus helps control locality and the trade-off between computation
and communication (cf. section 5.6). τ decides the lifetime of agents, and thus
helps control the trade-off between jitter and throughput (cf. section 5.7).

The constructs γeX(N), γrX(N), τωX(N) and τ εX(N) are network specifications
if N is a network specification. They are noted N/X!ge, N/X!gr, N/X!to, N/X!te
in source form. X, if specified, is the target network selector. Their functional
semantics are those of N . As with the previous combinators, their semantics

20

apply to the target network(s) selected by X, or to the inner network directly
if X is omitted.
• γe specifies that the target networks should be mappped to run-time agents

using an entity-centric projection, that is, agents are created for the entities
in the specification. For example, for the network C(A,B) one agent
is created for A and another for B. Agents communicate over buffered
channels, which implement the S+Net streams, and terminate when the
corresponding functional entity terminates as per section 2.3;

• γr specifies that the target networks should be mapped to run-time agents
using a record-centric projection, that is, agents are created for each suc-
cessive input records. For example, for C(A,B) one agent for a first input
record r1 executes code for A(r1) then code for B(A(r1)); another agent
for r2 executes code for A(r2) then code for B(A(r2));

• τω specifies that agents created for the target networks should be lingering :
once an agent is created, it tries to consume records/entities as long as it
can. Agents with γr may terminate at transducers and reordering points,
at the latest at the output edge of N . Agents with γe terminate when a
network terminates;

• τ ε specifies that agents for the target networks should be ephemeral : an
agent only runs for the duration of an “elementary” processing: with γe,
only for one agent cycle (cf. section 2.3); with γr, only for one step through
the network graph.

Agents correspond to cooperatively scheduled tasks, threads, processes or
virtual machines depending on the implementation and the requirements ex-
pressed via θ and ρ (cf. sections 4.6 and 4.7). Agents are identified by the full
network index of the activation that created them. Agents may run concur-
rently, either interleaved over time on sequential processors or simultaneously
on parallel hardware. With γe the concurrency of agents stems from the con-
currency between the logical entities in the specification; whereas with γr the
agent concurrency stems from stream concurrency.

From the projection of specifications into agents we derive the notion of
dynamic agent arity for a sub-network, which is the current number of running
agents for this sub-network.

4.8.1 Composability of γr and γe

Any γr sub-network maps to a set of agents under control of a single “input”
agent which reads the input records of the entire sub-network from its surround-
ing environment. Moreover, all the agents of a γr network eventually synchro-
nize so that all final outputs of the network appear as if produced by a single
“output” agent. Therefore, any γr network is a valid operand for combinators
captured within a γe combinator. For example, the network

γe ◦ S (γr ◦ C(M,N), γr ◦ C(O,P))
“ ((M..N)/!gr | (O..P)/!gr) /!ge ”

(also: “ ((M..N)’x | (O..P)’x) /!ge /x!gr ”)

expresses that the transformations for C(M,N) and C(O,P) should be car-
ried out in a record-centric fashion, but that different (groups of) entity-centric
agents should be used to create a pipeline-like parallelism between the subnet-
works of the selection.

21

α:Y

ϕX@Y:a

B

α:X

A C

α:Y

“ ((A..B’X) /X@Y:a ..C’Y)’Y ”

Figure 6: Graphical representation of αY ◦ C(φX,Y :a ◦ C(A,αX ◦B), αY ◦ C)

Conversely, all agents created for a γe network can be drained of input, and
their left-over state serialized to be re-instantiated later or elsewhere. Therefore,
any γe network is also a valid operand for a γr network.

4.8.2 Sequential execution

ρmdpa can interact with γ to obtain sequential execution. For example, γr ◦
ρmdpa(1) forces each input record to be processed, in turn, sequentially through
the inner network. γe ◦ρmdpa(1) forces the first entity to process the entire input
stream sequentially, accumulating all its output records in temporary buffers,
only then lets the second entity process all the intermediate records sequentially,
and so forth.

4.9 Hardware affinity and mapping
Resource mapping assumes that hardware resources are structured in a tree that
reflects locality and granularity, and where the leaves are processing and storage
units; for example cluster nodes at the top level, then processor sockets, then
processor cores, with hardware threads and memories as leaves. The tree need
not be homogeneous nor balanced. Each node in the tree is enumerable (by index
from its parent node) and some nodes may also be annotated by metadata that
indicate special features, e.g. hardware accelerators or specialized (IP) cores.

There are two parts to resource mapping in S+Net: assignment and place-
ment. Assignment establishes a mapping from a set of sub-networks sharing a
common network label to a node in the hardware resource tree, possibly higher
than leaves. Placement occurs at the point processing agents are created, us-
ing the resources previously assigned to the corresponding sub-network. Once
placed, an agent stays placed at the same resources until it terminates; the τ
introduced earlier in section 4.8 thus helps control opportunities for work mi-
gration.

The combinator φ only helps manage assignment of hardware resources.
Placement is automatically managed by the coordination layer to satisfy the
demands of θ and ρ within the resources assigned by φ. However, δ(h) (cf. sec-
tion 4.10) can observe placement after it is computed.

Semantics in S+Net

The construct φX,Y :a(N) (“N/X@Y:a” in source) is a network specification if N is
a network specification. a is called the assignment specification; X is the target
network selector and Y is called origin selector. The functional semantics of
φX,Y :a:p(N) are those of N .

22

α:Y

α:Y

α:X

ϕ@:

BA C

ϕY@:b

D

“ (((A..B’X) /@ ..C’Y)’Y .. D) /Y@:b ”

Figure 7: Graphical representation of φY,:b◦C(αY ◦C(φ◦C(A,αX◦B), αY ◦C), D)

Like the previous combinators, φ applies to the target network(s) selected by
X or the inner network direcly if X is omitted. It also refers to the innermost
outer network labelled by Y , or to the innermost outer network targeted by an
outer φ if Y is omitted; this selection is called origin network. For example in
fig. 6, φ’s target network is B whereas its origin network is the entire group
C(A,B,C). In fig. 7, the inner φ’s target network is C(A,B) because there is
no target selector. Its origin network is the one labeled by the outer Y , i.e. the
entire group C(A,B,C), because that is the innermost outer network targeted
by the outer φ.

Extra-functionally, φ assigns sub-resources from the origin network to repli-
cas of the target networks. If a is omitted, the construct inherits the resources
assigned to the origin network. For example in fig. 7, the resources assigned
are inherited from the outer Y (therefore this inner φ does not specify anything
useful).

The following assignment specifications are supported:
• share(x): all replicas of the target networks are commonly assigned the

sub-resources selected by x;
• split(x): each new replica is assigned one of the sub-resources selected by
x.

The syntax of x will be detailed in future work; it permits either to select
a path in the resource tree (to achieve resource partitioning) or filter sub-trees
based on a predicate on metadata (to select specialized resources), relative to
the resources assigned at the origin network. If there are no sub-resources
selected, or if new replicas run out of unassigned sub-resources, an exception of
type Exhaustion is raised. δ(h) can be used to inspect the arity of the selected
sub-resources and the number of sub-resources yet unassigned.

4.10 Environmental awareness
Environment observations are noted δ〈t〉.a(E) in algebraic form or “[<t>.a=E]”
in source form. 〈t〉 is called the matching tag ; a is called the payload field, and
E is the environment function.

A δ network reproduces its input records to its output stream unchanged
and in-order, except that for each record consumed that matches tag 〈t〉, the
value of the field a, if present, is updated depending on E before forwarding
the record. If 〈t〉 is not specified, a is modified in all records that contain the
field label, regardless of tag. If a is not specified, the scalar value of the tag
itself is modified. Implementations of S+Net provide at least the following
environment functions:

23

α:X

δ: a = dla(X,[1])

α:X

A B

“ (A..([a=dla(X,[1])]..B)’X)’X ”

Figure 8: Graphical representation of αX ◦ C(A,αX ◦ C(δa(dla(X, [1])), B))

I A
B

C
⟨t⟩

Y
Y

X

“(I..(A’Y..(B|C)’Y)!<t>)’X”

Figure 9: Graphical representation of αX◦C
(
I, S∗〈t〉 ◦ C (αY ◦A,αY ◦ S (B,C))

)

• time(g): difference between the current time and the scalar’s previous
value;

• c(X, i, g): current amount of storage used by activities;
• p(X, i, g): current power used by activities;
• ti(X, i, g), to(X, i, g): current input/output throughput;
• fl(X, i, g), ll(X, i, g): current first/last output latency (from the input of a

record r and the first/last output causally produced from r);
• dla(X, i), daa(X, i) and dpa(X, i): current dynamic liveness/activity/agent

arity, respectively;
• h(X, i, p): value of the property p of the hardware resources currently

assigned.
For each function parameterized by a network label X and functional index

i, the observation pertains to the sub-network identified by i relative to the
innermost outer network labeled by X. For example in fig. 8, the observation
pertains to network B. The network index is necessary to disambiguate which
network to observe when the same label is used multiple times; future work will
explore semantics to gather observations across multiple sub-networks.

Throughputs are expressed in records per g−1 seconds, power in g−1 watts,
time and latencies in multiples of g−1 seconds, and storage in multiples of g
bytes. The values are averaged over time using a sliding window or exponential
smoothing. If the environment does not support a function E at run-time, an
exception of type Unimplemented is raised.

4.11 Implementation services
Next to the application specifications constructs defined so far, the S+Net
executionb environment provides the following services, available to the operator
of a running application:
• lookup, which given a run-time event and a network label, produces the

network index relative to the most inner α construct that identifies the
run-time event.
To illustrate, consider for example the application in fig. 9. Consider

24

then a run-time observation of an activity related to the inner B network
instantiated from tag 〈t〉 = 123 in the replication selection. When looked
up from label X, the functional network index is [1; 123; 1; 0]; when looked
up from label Y , the network index is simply [0].

• arity inspection, which given a network index approximates the activi-
ty/liveness/agent arity of the replica identified by n.
To illustrate, consider the example from fig. 9 after 〈t〉 has run through the
network with values 123 and 124. In a single instance of X, the liveness
arity for both sub-networks identified by Y is 2. A has two live replicas
[1; 123; 0] and [1; 124; 0]; whereas S(B,C) has replicas [1; 123; 1], [1; 124; 1].

• state inspection, which given a network index enumerates all the inner
constructs that currently have state and the type of state they hold. Active
transducers are listed with the name of the state they are currently in and
the content of their currently full hold variables; active reorderings (R)
with the number of records currently held; replications with the number
of replicas currently maintained, etc.

The lookup service is akin to the reverse lookup service commonly found in
debuggers. The arity and state inspection services are intended to provide a
handle on the current management state maintained by the coordination layer.

5 Relationship to S-Net and design rationales

5.1 Overview of functional changes to S-Net
S+Net uses the same streaming foundations as S-Net and reuses its primitive
networks for boxes and filters. There are however three major functional updates
in S+Net, motivated by practical experiences using S-Net. As we discuss in
section 5.2, S+Net introduces exact type match and dedicated channels via
type tags where S-Net uses mostly structural record subtyping. As we motivate
in section 5.3, S+Net merges S-Net’s filters and synchrocells into the single
finite state machine construct called transducer. S+Net furthermore introduces
unordered replication composition, as motivated in section 5.4.

Next to these major updates, a few aspects of S-Net have been clarified and
simplified in S+Net. S+Net makes reordering orthogonal to other functional
composites via its reordering combinator, while S-Net provides separate vari-
ants of combinators that preserve input order. While S-Net solves the routing
ambiguity in its selection combinator “non-deterministically” without stating
what strategy is actually used, S+Net specifies it; any non-determinism, if so
desired, can be expressed and controlled using extra-functional selection (cf. sec-
tion 4.2).

5.2 Stream connections and structural typing
Both S-Net and S+Net are based on the transformation of a general acyclic
application graph into a serial-parallel structure with bypasses for non-matching
types. Support for cyclicity was added in S-Net via replication composition.
The overall design seems to work very well with most of our industrial use cases.
It is not free, however, from certain design drawbacks.

First of all, the serial-parallel representation, i.e. a pipeline of groups of boxes

25

connected in parallel, generally requires a bypassing mechanism as the original
transformation suggested. To understand this requirement, one can think of a
node of the graph sending directly to another node, whose maximum distance
from the sources of the graph is greater by more than one than that of the
sending node. After the transformation those nodes will be separated by one or
more pipeline stages that would have to be bypassed. The original S-Net design
did not appreciate the ubiquity of bypasses in any real program, even though
special compact notation (->) was included to avoid long-handed specifications.

From the bulk of experience that we have accumulated over the recent years
it does appear that the remedy should come from the type system. Indeed,
already (and according to some, rather inelegantly) tags in S-Net are classified
into ordinary and binding, the latter category intended for pruning the flow
inheritance tree that results from combining input types when the most gen-
eral acceptable set of records is being determined. Binding tags are indeed not
only necessary but they should be seen as “normal” as they are the only ones
that can separate variants. For example a network accepting {a}, {b} and {c}
as three variants and one which has a response to each of those would indeed
have to have a response to all seven distinct nonempty unions of these sets
as various subtypes of the originals. Worse still, all but the singleton sets of
these unions would lead to a nondetrministic choice in identifying which origi-
nal variant they should be assigned to, with the extra members of the set being
flow-inherited. Unfortunately, explicitly separating the variants with tags in the
spirit of algebraic data types as well as standard practice of imperative program-
ming languages does not solve the problem: the variants {〈i〉, a}, {〈ii〉, b} and
{〈iii〉, c} are as prone to the undesired inheritance as the original ones because
the tags, too, can be inherited unless they are binding. Consequently in this
example only {〈#i〉, a}, {〈#ii〉, b} and {〈#iii〉, c} represent a solution that is
free of spurious subtyping, as it only accepts records that contain either a or b
or c as befits a proper variant record type.

In the light of this, we found desirable to simplify the typing rules of S-Net
and promote a single form of tags that is always binding, and explicitly defines
the end-points of streams. Such tags also inhibit inheritance but in a different
way: while S-Net’s binding tags demand that the receiving end of the match
offers the same tag or else this would be a type error, when S+Net’s new tags
fail to match they cause the record they belong to to be bypassed over the
unmatched entity. S+Net’s tags delay a type error, rather than merely causing
it to be ignored. If a record carrying a tag reaches the exit of a net environment,
or fails to match an explicit network type signature, a type error does result.

5.3 Usability of synchrocells
Another problem was that S-Net does not have a satisfactory solution for is
the variety of synchronisers that are required in the real world. Its simple n-
ary synchrocells have a finite and rather trivial state machine behaviour. The
idea behind them was originally that any behaviour more complex than that
would be realised via unfolding replicative structures that contain synchrocells
and boxes that compute transitions between various states of the required com-
pound synchroniser. For instance if the application needs a synchrostructure
that combines records of type 1 with some persistent record value of type 2,
which is also periodically updated by records of type 2, such a structure could

26

be realised as a network where records of type 2 cause synchronisation in a
synchro-queue while at the same time duplicating themselves to be send to the
next stage of the queue thus mimicking real persistency. Unfortunately, this
method is not just awkward, it also requires a really inelegant action when the
persistent values are to be modified. At such moments, a spurious record of type
1 would need to be produced only to be discarded at the exit of the network (for
which a tag should be flow-inherited to indicate that the record is spurious).
These regrettable manoeuvres seem unavoidable in the original vision while at
the same time they are also illogical as far as the basic principle is concerned.
The principle was to divide the boxes into “can compute, have no state” and
“have a state, cannot compute”, the latter in the sense of modifying box values.
This principle does not exclude synchronisers with complex behaviour as long
as all they do is select what to store and what to pass on. The original S-Net
synchrocells seem as undeservedly specialised for one kind of synchronisation
task as would boxes with only one output variant be for one task of computing.
To make matters worse, the behaviour described above is very plausible: any
application that wishes to tune the parameters of its algorithm from time to
time would need the above kind of synchroniser as a building block.

The solution lies in introducing a synchro-construction language similar to
the filter language from S-Net. Such a language can be simple and elegant,
allowing the coordination programmer to specify state transitions between the
synchroniser states as well as output and stored values in terms of set operations
on input and stored records. The state transitions should logically be allowed
to depend on values found in input records. It is easy to satisfy oneself that the
corresponding transducer language in S+Net is not much larger than the filter
and synchrocell languages from S-Net. Besides, as soon as this language exists,
it becomes possible to express stateless synchronizers that perform simple tasks
on input records, and the filter construct from S-Net can be dropped in favor
of the more general construct.

5.4 Aggregate updates
The data flow model on which S-Net is built requires complete encapsulation:
all that a box can read is its input record and all that it is supposed to write
into is output records. This has worked surprisingly well in most use cases.
However, when the application requires parallel processing of a large shared
datastructure, such as a large graph or a distributed database, the basic as-
sumption of dataflow could easily become burdensome. What is required is a
slightly different discipline: sharing should be allowed but the box must yield to
the coordinator’s control when it attempts sharing. Specifically, we anticipate
the need to access a large shared data structure from a box and only to read and
modify a small part of it; we expect that such modifications done by different
boxes collide infrequently and that when they do a transaction discipline must
be enforced to preserve serialisability as its essential semantics. In other words
a box should be able to access the shared object, read a small part of it and
modify a small part of it and then terminate (as boxes usually do), without any
other box modifying the data being read by the first box before it terminates.
The ordering of such modifications would be linear but nondeterministic, which
in practice means optimistic parallelism with failures and retractions.

In terms of S-Net language constructs, we are lacking a combinator which

27

would connect replicas of its operand serially in non-deterministic order and
stream the data structure through them, while at the same time delivering
parameter records to the replicas in a parallel fashion: a non-deterministic
parallel-serial combinator. This combinator is introduced as unordered repli-
cation composition in S+Net.

5.5 Identification of run-time activities
Perhaps the most painful shortcoming of S-Net while using it in practice is the
lack of insight during application execution to relate a run-time behavior back
to its origin in the application specification.

For example, a common situation is to detect that a particular procedure in
the S-Net application’s binary code concentrates most of the execution time,
but only for some of its activations. This situation can appear when a component
box has different behavior classes depending on the data provided as input. The
question then appears: in which path through the application network is this
behavior class triggered?

A textual locus in the static application specification is usually not sufficient
to isolate the origin of a behavior. With replication, a single component may
be instantiated multiple times during execution, with all replicas executed con-
currently. In general, the run-time identifier of a network replica is necessary
to identify the cause of an observation. Another realization is that not only
component code is worthy of the optimization engineer’s attention. In [7], the
authors demonstrate that internal S-Net management tasks were the cause of a
load imbalance in a parallel computation. Unfortunately, in contrast to compo-
nent boxes all the internal tasks of S-Net are anonymous and cannot be easily
related to the input application specification.

What these scenarios have revealed is that S+Net, like any programming
environment, needs a “reverse lookup” mechanism from space/time loci during
execution back to a specification’s source code. However, a simple mechanism
based on a static mapping of memory addresses to source locations, like those
used by traditional debuggers, would be insufficient for a highly concurrent en-
vironment where multiple processes running at the same address may emerge
from multiple source locations or paths through the specification. Consequently,
we introduce a naming scheme with S+Net (section 4.3), a new labeling com-
binator α and selection scheme (section 4.4), and run-time services to inspect a
running application (section 4.11).

5.6 Entity-centric vs. record-centric projections
When S-Net was originally designed, its language operators were constructed
as abstractions of common patterns when engineering applications made of con-
current processes. The unphrased assumption behind the design of S-Net was
that entities in a specification should abstract run-time processes, and con-
versely that each entity would be reifed during execution using a process; and
thys that inter-component streams would be naturally implemented as buffered
channels connecting the processes together. In this vision, a run-time execution
of an S-Net application defines processes for each box, plus additional con-
trol processes for the composition operators: “splitter” processes before parallel
composition to redirect records to the sub-processes depending on their type,

28

time

A B

r1

A(r1)

B(A(r1))

B(A(r2))

B(A(r3))

A(r2)

A(r3)

r2

r3

CPU1 CPU2

(a) Entity-centric exe-
cution.

time

r1

r2

r3

B

A

B

A

CPU1

B

A

CPU2

B(A(r1))

B(A(r2))

B(A(r3))

(b) Record-centric execu-
tion.

Figure 10: Two valid run-time projections of A..B onto processes.

“merger” processes after composition to restore order, “synchronizer” processes
for synchrocells, etc.

Meanwhile, the functional definition of S-Net did not altogether mandate
that an implementation must use this projection onto process networks to actu-
ally carry out the application’s execution. This under-specification led multiple
researchers to realize later on, separately, that there exist other possible run-
time projections of an S-Net specification.

One such approach can be found in [6], where the author suggests to cre-
ate processes for each individual record, instead of box or control entity. Each
record-process then computes sequentially and recursively the transformation
operated for that input record over the length of the S-Net application specifi-
cation. To illustrate this approach, we can consider for example the pipeline of
A and B in sequence, i.e. A..B. The “natural” projection of this network onto
processes is given in fig. 10a: one process is created to compute transformations
of inputs by function A; another process is created to compute transformations
by B. The “transposed,” record-centric projection is given in fig. 10b: one pro-
cess is created for each input; each process sequentially computes A then B for
this input, then terminates. It is easy to see that both projections are function-
ally equivalent, in that they compute the same relationship between input and
output according to the S-Net semantics.

In a record-centric vision, stream synchronization can be implemented by
joining concurrent threads; boxes with multiplicity by creating new streams for
any new additional record injected in the network. The reader is referred to [6,
Chap. 7] for a detailed description of the mechanisms involved. The existence
of multiple valid projections of S-Net was quickly recognized as more than a
mere intellectual curiosity. Indeed, the projection that maximizes throughput
or reduces latency for a given execution platform depends on the platform’s
parameters and the algorithmic complexity of the boxes themselves.

An entity-centric projection is desirable for compute-bound applications,
when the objective is to specialize processors to the component’s function in or-
der to accelerate them. However, an entity-centric projection pays a price in lo-
cality: the intermediate results between components travel spatially and internal
communication costs are increased. If the platform does not provide sufficient
bandwidth between processors, this projection quickly becomes communication-

29

bound. In practice, we have seen this happen when the computational complex-
ity of components was not enough to mask the limited memory bandwidth
available to multiple cores in a shared-memory system, or when attempting to
map S-Net applications to platforms with GPU accelerators.

Conversely, a record-centric projection is desirable for applications with large
communication requirements on their internal streams compared to the require-
ment on their input and output streams, i.e. when the objective is to maximize
locality. A record-centric projection pays a price in efficiency. Each processor
must be sufficiently general to perform all the transformations in the applica-
tion, and code locality can become an issue. Moreover, synchronization state is
likely to be shared across arbitrary processors in the system, and synchroniza-
tion operations may thus have higher latencies.

The existence of this duality and its consequences w.r.t optimization op-
portunities suggests to equip S+Net with mechanisms to let an optimization
engineer select which type of execution projection to use, separately from the
functional specification of the application. This is introduced via the γ combi-
nator (cf. section 4.8).

5.7 Lifetime of activities
The most recent entity-centric implementation of S-Net, currently used as
research vehicle, uses cooperative scheduling of lightweight tasks over worker
threads pinned to hardware processors [11]. Cooperative scheduling lowers the
cost of concurrency management overall by avoiding context switches to the op-
erating system and maintaining separate task state and scheduling queues per
worker. However, cooperative scheduling, by construction, places the scheduling
responsibility in the hands of the tasks themselves: once started by a worker
scheduler, it stays assigned to that worker until it terminates. Extending the
implementation to allow dynamic task migration while a box-task is transform-
ing records is undesirable for two reasons: it would require to re-introduce the
overhead of preemption, as well as mutual exclusion for task management state
between workers, which the lightweight task/worker infrastructure was intended
to avoid in the first place. In contrast, a mapping decision prior to a task’s cre-
ation is cheap to implement since there is no state yet to synchronize nor activity
to preempt. Intuitively, an application’s execution where tasks are short-lived
thus offers more opportunities for cheap dynamic load balancing than a system
where tasks persist after their creation.

This is the starting point of a modified implementation of S-Net that was
finalized in the second half of 2012: instead of projecting S-Net entities into
long-lived tasks that repeatedly read from their input stream and process one
input record, in a loop (fig. 10a), this implementation causes each entity-task
to terminate as soon as one record is processed, so as to allow a new mapping
decision to be made for the next input record (fig. 11).

In other words, by shortening the lifetime to a task to the minimal amount
of computation, that is the handling of exactly one input record by a box, we ob-
tain the maximum flexibility for scheduling short of re-introducing fully-fledged
preemption. However, this comes at a cost: the number of tasks created and
cleaned up by unit of time increases, which amounts to re-introducing some
management overhead. For homogeneous workloads this overhead is as undesir-
able as it is unnecessary, since homogeneity implies that fine-grained scheduling

30

time

r1

A(r1)

B(A(r1))

B(A(r2))

r2

CPU1 CPU2

A

B

B

A

A(r2)

Figure 11: Short-lived entity-centric tasks for A..B.

decisions have a low impact on overall execution time.
While we have understood these trade-offs in the specific context of cooper-

ative scheduling of tasks over worker threads, this context is merely an instance
of a more general, fundamental aspect of concurrency management. Regardless
of the mechanism used to implement concurrency over hardware processors,
the chosen granularity for non-preempted, non-migrated activities determines
a trade-off between throughput and jitter. Furthermore, there does not seem
yet to exist any consensus about the best way to detect the optimal granularity
for a given workload/platform combination. In particular, any approach which
sets global values (e.g. the HZ property that sets the time slice duration on Unix
systems, commonly set to 1 or 20ms) is typically inappropriate in the light of
heterogeneous applications or resources where the granularity should change
depending on the application part, possibly dynamically.

With S+Net, we thus propose to explore this trade-off using a novel ap-
proach based on two principles. First, we state that a computing agent (either
a task, thread, or any other mechanism used to perform an elementary com-
putation on the platform at hand) is assigned to hardware resources upon its
creations and is not migrated throughout its lifetime. This assignment can be
guided with the φ combinator (cf. section 4.9). Then, we establish that each
transformation specification in the S+Net abstraction can be projected not
onto only one, but multiple successive agents during execution; this granularity
can be in turn controlled via the τ combinator (cf. section 4.8). This way, the
throughput/jitter trade-off can be controlled flexibly for each sub-network in an
application.

5.8 Environmental awareness
The practical application of S-Net has revealed consistently that some tuning
parameters in an application specification are highly dependent on the execution
resources actually available at run-time.

For example, a common pattern found in compute-bound applications is the
divide-and-conquer network: a “splitter” box splits large input records into sub-
streams of smaller records to be processed concurrently by parallel “compute”
boxes. Users of this pattern typically face a challenge: how to decide the size of
the smaller workloads?

31

In this example, there are two main scenarios. When the workload is het-
erogeneous, an incentive exists to split the workload in smaller sizes to give
the coordination layer more opportunities to balance load dynamically across
hardware resources. However, as the granularity becomes finer, the overheads of
coordination increase relative to computation time; after a threshold the coordi-
nation overheads dominate and the throughput is actually reduced. Of course,
this threshold depends both on the application and the execution platform: any
specification-time granularity choice must be revised after profiling.

When the workload is homogeneous, an incentive exists to spread the work-
load evenly across the available hardware resources. The granularity should be
as coarse as possible to minimize coordination overheads while obtaining the
maximum parallelization possible on the platform. However, two obstacles pre-
vent an optimal specification-time choice. For one, the size of memory caches in
the execution platform determines a threshold past which cache thrashing will
actually reduce throughput. Second, if more concurrent transformations are de-
fined than there are processors available at run-time, context switch overheads
also reduce throughput scalability.

This example is only one instance of a need for an environmental feed-back
loop, whereby the coordination engineer can specify tuning parameters, such as
sub-workload granularity selection in the example, as a function of the resources
actually available on the execution platform. In S+Net, we propose to introduce
such feed-back loops via the primitive network δ (cf. section 4.10) which observes
the execution environment and injects observations as scalar values that can be
used in the application’s coordination logic. These can be then combined with
ρ, θ and φ to tune the application’s behavior according to extra-functional
requirements and budgets.

6 Summary and conclusions
This report has presented the design of S+Net, a declarative language for
describing networks of asynchronous components and their execution semantics
in resource-contrained execution environments. While it reuses concepts from
its predecessor S-Net, S+Net simplifies S-Net’s set of functional combinators
and adds a more comprehensive synchronization facility, the transducer. In the
extra-functional domain, S+Net provides facilities for:
• naming of networks and non-local name references to coordinate behavior;
• environment awareness, to react to resource availability;
• fault tolerance by enabling explicit exception handling;
• constraining the operational semantics of arbitrary sub-networks towards

either a process-centric projection or a record-centric projection;
• contraining the mapping of networks to processing resources;
• constraining the execution to satisfy resource budgets.
The definition of S+Net is an effort concurrent to the definition of As-

traKahn, another coordination language by the same research groups. The main
difference between S+Net and AstraKahn is that all valid S+Net programs are
serializable, whereas valid AstraKahn programs may contain non-serializable
network cycles.

32

Acknowledgements
This research was partly supported by the European Union under grant num-
ber FP7-248828 ADVANCE9. The authors would like to thank the ADVANCE
partners for the constructive criticism of S-Net that has resulted in S+Net.

References
[1] C. Grelck. The essence of synchronisation in asynchronous data flow. In

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, pages 1159–1167, May 2011. ISSN
1530-2075. doi:10.1109/IPDPS.2011.277.

[2] C. Grelck and F. Penczek. Implementation architecture and multithreaded
runtime system of S-Net. In Sven-Bodo Scholz and Olaf Chitil, editors, Im-
plementation and Application of Functional Languages, volume 5836 of Lec-
ture Notes in Computer Science, pages 60–79. Springer Berlin Heidelberg,
2011. ISBN 978-3-642-24451-3. doi:10.1007/978-3-642-24452-0_4.

[3] Clemens Grelck, Jukka Julku, and Frank Penczek. S-Net for multi-memory
multicores. In DAMP ’10: Proceedings of the 5th ACM SIGPLAN workshop
on Declarative aspects of multicore programming, pages 25–34. ACM, New
York, NY, USA, 2010. ISBN 978-1-60558-859-9. doi:10.1145/1708046.
1708054.

[4] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A gentle intro-
duction to S-Net: Typed stream processing and declarative coordination
of asynchronous components. Parallel Processing Letters, 18(1):221–237,
2008.

[5] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Asynchronous
stream processing with S-Net. International Journal of Parallel Program-
ming, 38(1):38–67, 2010. doi:10.1007/s10766-009-0121-x.

[6] Philip Kaj Ferdinand Hölzenspies. On run-time exploitation of concur-
rency. PhD thesis, University of Twente, Enschede, the Netherlands, April
2010. Available from: http://doc.utwente.nl/70959/, doi:10.3990/1.
9789036530217.

[7] Kenneth MacKenzie, Philip Kaj Ferdinand Hölzenspies, Kevin Hammond,
Raimund Kirner, Nguyen Vu Tien Nga, Rene te Boekhorst, Clemens
Grelck, Raphael Poss, and Merijn Verstraaten. Statistical performance
analysis of an ant-colony optimisation application in S-Net. In Clemens
Grelck, Kevin Hammond, and Sven-Bodo Scholz, editors, Proc. 2nd
HiPEAC Workshop on Feedback-Directed Compiler Optimization for Multi-
Core Architectures, 2013. Available from: http://www.project-advance.
eu/wp-content/uploads/2012/07/proceedings.pdf.

[8] Frank Penczek, Stephan Herhut, Clemens Grelck, Sven-Bodo Scholz,
Alex Shafarenko, Rémi Barrière, and Eric Lenormand. Paral-
lel signal processing with S-Net. Procedia Computer Science,

9http://www.project-advance.eu/

33

http://dx.doi.org/10.1109/IPDPS.2011.277
http://dx.doi.org/10.1007/978-3-642-24452-0_4
http://dx.doi.org/10.1145/1708046.1708054
http://dx.doi.org/10.1145/1708046.1708054
http://dx.doi.org/10.1007/s10766-009-0121-x
http://doc.utwente.nl/70959/
http://dx.doi.org/10.3990/1.9789036530217
http://dx.doi.org/10.3990/1.9789036530217
http://www.project-advance.eu/wp-content/uploads/2012/07/proceedings.pdf
http://www.project-advance.eu/wp-content/uploads/2012/07/proceedings.pdf
http://www.project-advance.eu/

1(1):2079–2088, 2010. ISSN 1877-0509. ICCS 2010. Avail-
able from: http://www.sciencedirect.com/science/article/
B9865-506HM1Y-88/2/87fcf1cee7899f0eeaadc90bd0d56cd3, doi:
10.1016/j.procs.2010.04.233.

[9] Frank Penczek, Stephan Herhut, Sven-Bodo Scholz, Alex Shafarenko, Jung-
Sook Yang, Chun-Yi Chen, Nader Bagherzadeh, and Clemens Grelck. Mes-
sage driven programming with S-Net: methodology and performance. In
Proc. 3rd International Workshop on Programming Models and Systems
Software for High-End Computing (P2S2’10), San Diego, USA, 2010.

[10] Frank Penczek, Jukka Julku, Haoxuan Cai, Philip Kaj Ferdinand Hölzen-
spies, Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. S-Net
language report, version 2.0. Technical Report 499, University of Hertford-
shire, School of Computer Science, Hatfield, AL10 9AB, United Kingdom,
April 2010.

[11] Daniel Prokesch. A light-weight parallel execution layer for shared memory
stream processing. Master’s thesis, TU Wien, Karlsplatz 13, A-1040 Wien,
February 2010.

[12] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University
Press, October 2009. ISBN 978-0521844253.

[13] Alex Shafarenko. Non-deterministic coordination with S-Net. In Wolf-
gang Gentzsch, Lucio Grandinetti, and Gerhard Joubert, editors, High
Speed and Large Scale Scientific Computing, number 18 in Advances in
Parallel Computing. IOS Press, 2009. ISBN 978-1-60750-073-5. doi:
10.3233/978-1-60750-073-5-74.

[14] M. Verstraaten. High-level programming of the Single-chip Cloud Com-
puter with S-Net. Master’s thesis, University of Amsterdam, Amsterdam,
the Netherlands, January 2012.

[15] Merijn Verstraaten, Clemens Grelck, Michiel W. van Tol, Roy Bakker, and
Chris R. Jesshope. Mapping distributed S-Net on to the 48-core Intel SCC
processor. In 3rd Many-core Applications Research Community (MARC)
Symposium. KIT Scientific Publishing, September 2011. ISBN 978-3-
86644-717-2. Available from: http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000023937.

[16] Jeroen Voeten. On the fundamental limitations of transformational de-
sign. ACM Trans. Des. Autom. Electron. Syst., 6(4):533–552, October
2001. ISSN 1084-4309. doi:10.1145/502175.502181.

34

http://www.sciencedirect.com/science/article/B9865-506HM1Y-88/2/87fcf1cee7899f0eeaadc90bd0d56cd3
http://www.sciencedirect.com/science/article/B9865-506HM1Y-88/2/87fcf1cee7899f0eeaadc90bd0d56cd3
http://dx.doi.org/10.1016/j.procs.2010.04.233
http://dx.doi.org/10.1016/j.procs.2010.04.233
http://dx.doi.org/10.3233/978-1-60750-073-5-74
http://dx.doi.org/10.3233/978-1-60750-073-5-74
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://dx.doi.org/10.1145/502175.502181

	1 Introduction
	2 Functional specifications
	2.1 Notations
	2.2 Primitive networks
	2.3 Basic operational model for state management
	2.4 Functional combinators and composite networks

	3 Transducer language
	3.1 Overview
	3.2 Specification language

	4 Extra-functional specifications
	4.1 Overview
	4.2 Replication selection
	4.3 Identifiers for run-time activities
	4.4 Network labeling and selection
	4.5 Environmental exception handling
	4.6 Extra-functional isolation
	4.7 Extra-functional budget
	4.8 Projections: mapping specifications into processing agents
	4.9 Hardware affinity and mapping
	4.10 Environmental awareness
	4.11 Implementation services

	5 Relationship to S-Net and design rationales
	5.1 Overview of functional changes to S-Net
	5.2 Stream connections and structural typing
	5.3 Usability of synchrocells
	5.4 Aggregate updates
	5.5 Identification of run-time activities
	5.6 Entity-centric vs. record-centric projections
	5.7 Lifetime of activities
	5.8 Environmental awareness

	6 Summary and conclusions
	Acknowledgements
	References

