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Chapter 1 

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis 

(UC), are chronic inflammatory diseases of the intestine of unknown aetiology. Although 

the pathogenesis of these diseases is not well understood, several components of the 

bacterial flora, the epithelial barrier, the immune system, the nervous system and mutations 

in genes that are a part of these components have been shown to play an essential role in 

mucosal inflammation. It has been demonstrated in animal models that the bacterial flora of 

the intestines is involved in pathological processes of IBD; several mouse models that are 

treated with antibiotics or that are housed in a germ-free environment do not develop colitis 
1-5. Moreover, IBD patients show increased mucosal secretion of IgG antibodies against 

commensal bacteria of the resident flora 6,7. A functional intestinal barrier is important to 

prevent commensal bacteria to gain access to the lamina propria (LP) where they can 

induce an inflammatory response. 

We have investigated several aspects of the pathogenesis of IBD, which are 

outlined in this thesis. 
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Intestinal interactions between the epithelial barrier, immune system and nervous system 

The epithelial barrier function 

To prevent access of luminal contents to the LP, the epithelial layer has developed specific 

barrier mechanisms, including adherens junctions, desmosomes, gap junctions and tight 

junctions (TJs). TJs or zonula occludens are the most apical components of these 

intercellular junctions. They prevent the diffusion of membrane proteins and lipids between 

the basolateral and apical membranes so that cell polarity is preserved (fence function) and 

a selective barrier to paracellular transport (barrier function) is formed. In contrast to 

transcellular transport, which is highly selective because of ion channels and active 

transport systems, paracellular transport is a rather passive process. It depends on ion and 

molecular gradients at the basolateral and apical side and does not distinguish between 

different ions and molecules. However, the barrier function of TJs restricts this paracellular 

transport since TJs are selectively permeable for cations, water and small uncharged 

molecules, whereas the passage of macromolecules is obstructed 8. Selectivity for ion size 

and strength is different between tissues and is related to the composition of TJs. 

TJ complexes are composed of a network of proteins that are coupled to actin 

filaments of the cytoskeleton 8-10. The proteins occludin (62-82 kDa), several members of 

the claudin family (20-27 kDa) and junctional adhesion molecule (JAM) (36-41 kDa) make 

up the membrane part of the TJ 11-14. Although occludin and claudin demonstrate no 

significant sequence similarity, they are both tetraspan proteins with two extracellular and 

one intracellular loop and an intracellular N- and C-terminus. To integrate in the TJ, it is 

essential that occludin is phosphorylated, whereas dephosphorylation redirects occludin to 

intracellular pools decreasing transepithelial electrical resistance (TEER) 15-18. 

Nevertheless, occludin-deficient mice are still able to form well-developed TJ strands and 

retain normal intestinal barrier integrity 19,20. Consequently, occludin may increase the 

strength of TJs, but other TJ proteins are obviously more essential. It seems that occludin is 

more involved in cell signalling than in maintaining the epithelial barrier 21. Claudins, 

which consist of a family of at least 24 members, are probably the main barrier-forming 

proteins. Since different types of claudins are expressed in a restricted number of cell types 

or during periods of development, claudins are expected to contribute to tissue-specific 
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functions of TJs. Intestinal epithelial cells express several claudins. It is assumed that 

claudin-2 has the potential to form aqueous channels, whereas the permeability of 

macromolecules is not increased 22. Overexpression of claudin-1 and -4 results in increased 

TEER, indicating that these proteins are involved in tightening the paracellular barrier 23,24. 

In CD patients it has been demonstrated that the pore-forming claudin-2 is upregulated and 

that the sealing claudins 5 and 8 are downregulated 25. JAM and occludin have been 

implicated in the transmigration of leukocytes through the endothelial and epithelial 

barriers, respectively 14,26.  Mice that are JAM deficient are more susceptible for DSS-

induced colitis 27,28. 

Members of the zonula occludens (ZO) family are proteins that form a bridge 

between these membrane proteins and actin filaments, which are connected to the 

perijunctional ring, a component of the cellular cytoskeleton 29-31. ZO-1 proteins belong to 

the membrane-associated guanylate kinase (MAGuK) homologue family, containing three 

PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dig)/ZO-1] domains, an SH3 domain 

and a guanylate kinase (GuK) domain 32. These and some other domains are essential in the 

bridge function of the ZO proteins. ZO-1 interacts with ZO-2 and -3 by PDZ domains. The 

PDZ-1 domain is necessary to interact with the PDZ regions at the C-terminus of claudins 
29-31. The GuK region of ZO-1 mediates binding to the C-terminus of occludin 29-31,33. 

Besides, the SH3 region of ZO-1 mediates binding to G proteins, like Gi2, and the C-

terminus of ZO proteins interacts to F-actin 29,31,34. The function of ZO-1 is not exclusively 

restricted to the organisation of TJs, as it is also detected in the nucleus where it regulates 

cell growth and differentiation 35,36.  The expression of ZO-1 in colonic epithelium is lost in 

DSS-induced colitis in mice 37. Also in colonic tissues of UC patients, the expression of 

occludin, ZO-1, JAM and claudin-1 is downregulated 38.  

Gi2 proteins are localised within the TJs and have an important function in the 

maintenance and development of TJs, probably through the protein kinase C (PKC) 

pathway that regulates the phosphorylation of the myosin light chain (MLC) 39-41. Mice that 

are Gi2 deficient spontaneously develop colitis similar to that of human patients with UC, 

clinically manifested by diarrhoea and bloody stools 42-46. Phosphorylation of MLC causes 
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Intestinal interactions between the epithelial barrier, immune system and nervous system 

contraction of the perijuctional ring, which is a component of the cellular cytoskeleton, so 

that the permeability of TJs is increased 47-49. MLC is phoshorylated by myosin light chain 

kinase (MLCK), which is regulated by PKC. The activation of PKC is in turn regulated by 

seven-membrane-helix receptors that are coupled to G proteins. G proteins are activated 

following the binding of a ligand to its receptor. Thereafter the  subunit of the G protein 

activates phospholipase C (PLC)- that upregulates the second messengers diacylglycerol 

(DAG) and IP3, so that Ca2+ is released from the endoplasmatic reticulum to the cytoplasm. 

Ca2+ and DAG activate PKC and consequently MLCK is phosphorylated so that its activity 

decreases MLC phosphorylation. In conclusion, activation of PKC proceeds to a decrease 

in transcellular permeability and an increase in TEER. 

Enteric pathogens have developed several mechanisms to disrupt TJs of epithelial 

cells. This occurs mainly by modulating the perijunctional actomyosin ring or by interfering 

with TJ proteins directly 50-53. Bacterial products degenerate or (de)phosphorylate specific 

TJ proteins or use them as a receptor so that these proteins become dysfunctional resulting 

in a decrease of the efficacy of the TJ. The latter is manifested as a decrease of TEER and 

as an increase of the paracellular flux of macromolecules like mannitol, often clinically 

resulting in diarrhoea.  

In IBD the epithelial layer is inflamed without obvious exogenous factors like a 

(bacterial) infection. Nevertheless, colonic biopsies from CD patients contain decreased 

numbers of Lactobaccillus and Bifidobacteria, whereas the mucosa and probably even the 

intraepithelial layer contain an increased population of adherent bacteria 54-56. Increasing 

evidence suggests that the immune system itself modulates TJs and intestinal permeability. 

IBD patients have increased concentrations of pro-inflammatory cytokines, like tumour 

necrosis factor- (TNF-), interferon- (IFN-), interleukin (IL)-8 and IL-1 57-59. In vitro 

studies have demonstrated that these cytokines decrease the barrier function of intestinal 

epithelial monolayers and induce reorganisation of several TJ-associated proteins, including 

ZO-1, JAM-1, occludin and claudin-1, and -4 60-64. An increase of the intestinal 

permeability caused by an activated IFN- receptor complex is also associated with a 
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decrease in the PLC- activity resulting in MLC phosphorylation 64. It seems that IL-1 

increases intestinal permeability by the induction of MLCK gene transcription and 

consequently increases MLCK protein activity, probably mediated by a rapid activation of 

the transcription factor nuclear factor (NF)-B 57,65. IL-1-mediated increased intestinal 

permeability leads to an increased paracellular transport of luminal antigens 65-68 Also TNF-

mediated increased intestinal permeability seems to be NF-B dependent and leads to a 

downregulation of ZO-1 proteins and alteration in junctional localisation 69. In IBD, the 

intestinal permeability could be increased because of the effects on the epithelial barrier by 

these pro-inflammatory cytokines, which are increased in IBD patients. In chapter 8 we 

demonstrate that the neurotransmitter acetylcholine (Ach) and muscarine decrease NF-B 

activation and decrease IL-1- and TNF--induced production of IL-8 by epithelial cells. 

Moreover, Ach and muscarine protect against cytokine-induced enhanced permeability. 
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Antigen interaction with dendritic cells 

Specialised epithelial cells termed M (microfold) cells, which are scattered among the 

epithelial cells (ECs) in the follicle-associated epithelium above the Peyer’s patches (PPs) 

are able to absorb, transport, process and present (microbial) antigens to dendritic cells 

(DCs) in the subepithelial dome (SED) of the PP. In humans, CD11c+ DCs are concentrated 

in the SED and T cell zones and are particularly involved in the activation of T cells that 

support IgA-class switching by B cells and in the induction of oral tolerance. Besides, DCs 

are located in the LP just below the basement membrane, where they interact with antigens 

that have gained access to the LP following disruption of the epithelial barrier because of 

infection and/or inflammation, as presumably appears in IBD. In addition, DCs sample 

antigen directly by expanding dendrites among ECs into the lumen. These DCs are capable 

to open TJs between enterocytes, since they modulate different TJ proteins, including JAM-

1, claudin-1 and ZO-1 70. The chemokine receptor fractalkine (CX3CR1) on LP DCs 

enables them to sample luminal antigens directly by transepithelial dendrite interaction with 

epithelial CX3CL1 71. The authors suggest that the interaction between CX3CR1 and 

CX3CL1 is responsible for the accumulation of DCs and T cells in the LP of IBD patients. 

Rimoldi et al. have shown that the intestinal homeostasis is regulated by the interaction 

between ECs and DCs: EC-conditioned DCs produce IL-10 and IL-6, but not IL-12 and 

induce a Th2 response, even in the presence of pathogens that normally promote a Th1 

response 72. It is possible that CD patients lack an adequate interaction between ECs and 

DCs resulting in a Th1-mediated inflammation. Moreover antigens are taken up by DCs 

indirectly by internalising apoptotic ECs and by taking up antigen-containing exosomes 

shed from ECs 73. Exosomes are small membrane-bound vesicles, which are not only 

secreted by ECs, but also by haematopoietic cells, including DCs and other certain cell 

types. It has been shown that immunosuppressive DC-derived exosomes are capable to 

suppress inflammatory responses in rheumatic arthritis. The exact mechanism is not clear, 

but it is likely that DC-derived exosomes are internalised by endogenous or follicular DCs 

to transfer molecules like MHC class II molecules so that antigen-specific T cell responses 

are induced. 
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Dendritic cell populations 

Human DCs express high levels of human leukocyte antigen (HLA)-DR and are lineage 

negative, which indicate that they do not express specific markers of B and T cells, 

monocytes and natural killer cells. In peripheral blood five distinct subsets of DCs can be 

distinguished, namely CD1c+ (BDCA1), CD16+, BDCA3+, CD123+ and CD34+ DCs 74. 

Myeloid precursor DCs express high levels of CD11c and can be distinguished in DCs that 

express CD1b/CD1c, CD16 or BDCA3 75. These DC populations produce IL-12 in 

response to bacterial compounds or CD40L and are GM-CSF-dependent for survival. In 

contrast, plasmacytoid DCs are CD11c negative and express CD123, BDCA2 and BDCA4 
76,77. These IL-3 dependent DCs respond especially in case of viral infections by the 

production of type I interferon (IFN), including IFN- and IFN-.  

In the gut, DCs are present in the primary sites for the induction of intestinal T and 

B cell responses which include the PPs located in the small intestine, isolated lymphoid 

follicles in the colon and mesenteric lymph nodes (MLNs), all structures that are part of the 

gut-associated lymphoid tissue (GALT).  Te Velde et al. had demonstrated two distinct DC 

subpopulations in IBD patients: an ICAM-3 grabbing non-integrin (DC-SIGN)+ population 

that was present scattered throughout the mucosa and a CD83+ population that was present 

in aggregated lymphoid nodules and as single cells in the LP 78. Only DC-SIGN+ DCs 

produce the pro-inflammatory cytokines IL-12 and IL-18. Interestingly, in CD patients the 

expression of both populations was increased compared to healthy controls. In chapter 4 

we demonstrate that the myeloid DC populations positive for CD1a and BDCA-1 are absent 

in colonic mucosa and MLNs, whereas BDCA3+ DCs are highly expressed throughout the 

LP and around (sub)capsular and medullary sinuses, blood vessels and B-cell follicles in 

the MLN 79. In MLNs and lymph follicles in the colon the expression of s-100+ DCs is 

increased in CD patients.  
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Antigen recognition by DCs 

Since the gut contains massive numbers of microbes, it necessary that the immune system is 

able to discriminate between commensal and pathogenic microbes. Therefore DCs and 

other immune cells such as macrophages are able to recognise pathogen-associated 

molecular patterns (PAMPs) through binding to pattern recognition receptors (PRRs) on 

their membrane 80. Most important PRRs are the Toll-like receptors (TLRs), the nucleotide 

oligomerisation domain (NOD)-like receptors (NLRs) and the C-type lectins. 

Toll-like receptors 

TLRs are highly conserved proteins and so far, eleven members of the TLR family have 

been identified in mammals. Toll was first identified as a protein involved in the controlled 

dorsoventral formation during the (embryonic) development of the Drosophila 

melanogaster. Drosophila that are Toll deficient are not able to clear infections caused by 

fungi, since some antimicrobial products will not be produced. Because Drosophila does 

not have an adaptive immune system, TLRs are involved in an evolutionary conserved 

signal pathway that induces innate immune responses. TLRs are characterised by amino-

terminal leucine-rich repeats that are responsible for the recognition of PAMPs and they 

possess a carboxy-terminal Toll-IL-1 receptor (TIR) domain of which the sequence is 

homologous to that of interleukin receptor-1 (IL-R1) family proteins. Each TLR recognises 

different PAMPs and the first human TLR member to be discovered was TLR4, which is a 

transmembrane protein that has to be demonstrated the receptor for lipopolysaccharide 

(LPS), a component of the outer membrane of gram-negative bacteria 81-83. Recognition of 

LPS by TLR4 is a complex process and several accessory molecules are necessary. First 

LPS has to bind to the plasma protein LBP (LPS-binding protein) so that it is able to 

interact with the soluble or GPI-anchored protein CD14, which is produced by monocyte-

derived cells and this complex binds to TLR4 84,85. Mice that are TLR4 or CD14 deficient 

are hyporesponsiveness to LPS 81,86.  Individuals with a mutation in TLR4 have a slightly 

increased risk to develop CD 87. 
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TLR2 recognises different components of mainly bacteria and yeast, such as 

peptidoglycan from gram-positive bacteria, lipoteichoid acid, zymosan from yeast and 

lipoproteins. TLR2 forms heterodimers with TLR1 when activated by bacterial 

lipoproteins, whereas mycoplasma-derived lipoprotein triggers TLR2 to form heterodimers 

with TLR6 88,89. 

TLR5 recognises flagellin, which is a protein that forms bacterial flagella 90. 

Intestinal ECs express TLR5 at the basolateral side where they can sense flagellin from 

pathogenic bacteria such as Salmonella 91. Mice lacking TLR5 develop colitis 

spontaneously 92. Interestingly mice that are both TLR5 and TLR4 deficient have elevated 

bacterial loads in the colon; however they do not develop colitis 92. Serum IgG to flagellin 

is elevated in CD and UC patients and a dominant-negative TLR5 polymorphism reduces 

adaptive immune responses to flagellin and in some ethnicities heterozygous carriage is 

associated with a protection from CD 93,94.  

TLR3, TLR7, TLR8 and TLR9 are intracellular receptors present in endosomal 

compartments and are specialised in the recognition of nucleic acids. TLR3 recognises 

double stranded (ds)RNA generated during the replication of viruses. It has been shown 

that mice that are TLR3 deficient are more susceptible for infections with cytomegalovirus 

and West Nile virus 95. DSS-induced colitis in mice is ameliorated by systemic, but not oral 

administration of synthetic viral RNA that activates TLR3 95. TLR7 and TLR8 are involved 

in the recognition of single stranded (ss)RNA rich in guanosine or uridine derived from 

RNA viruses 96. Mice that are TLR7 deficient are not capable to induce inflammatory 

cytokines, type I IFN and plasmacytoid DC maturation 97. Although TLR7 and TLR8 

recognise both ssRNA, TLR7 activation is characterised by a strong induction of type I 

IFNs, whereas TLR8 activation results in the induction of pro-inflammatory cytokines as 

TNF- 98,99. Unmethylated 2'-deoxyribo (cytidine-phosphate-guanosine) (CpG) DNA 

motifs found in bacteria and several viruses are recognised by TLR9. TLR9-dependent 

activation by DNA-containing immune complexes seems to be mediated by the high-

mobility group box-1 protein (HMGB-1) and the receptor for advanced glycosylated end 

products (RAGE) 100,101. DSS-induced colitis is exacerbated in TLR9-deficient mice, 
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probably because of a disturbed homeostasis 102. It has been shown that TLR9 at the apical 

site of the epithelial barrier does not give an immune reaction as a result of binding its 

ligand CpG DNA 102-104. However, micro-organisms that pass the epithelial barrier are 

recognised by TLR9 at the basolateral site resulting in activation of the NF-B pathway. 

Most TLRs activate the transcription factor NF-B through a myeloid 

differentiation factor 88 (MyD88)-dependent pathway, resulting in the expression of genes 

encoding for inflammatory cytokines, including TNF-, IL-6 and IL-1. All TLRs, with the 

exception of TLR3, recruit the intracellular protein MyD88 through TIR domain 

interactions. These interactions result in the recruitment of IL-R1 associated kinase 

(IRAK)-1 and -4 to arrange a complex 105,106. Mice that are MyD88 deficient are more 

susceptible for DSS-induced colitis 107. Recognition of commensal bacteria seems to be 

important for maintaining the integrity of the epithelial barrier. Macrophages of MyD88-

deficient mice are not able to activate IRAK-1 after exposure of LPS and the production of 

TNF-, IL-6 and IL-1 is inhibited 108. IRAK-1 is a serine-threonin kinase of which the N-

terminal region contains a death domain that interacts with the death domain of MyD88 109. 

Mice that are deficient for IRAK-1 confirm an insufficient response to LPS 110. The adaptor 

protein TNF receptor associated factor 6 (TRAF-6) is also recruited to the complex by 

association to phosphorylated IRAK-1. TRAF-6-deficient mice have osteoporosis and 

macrophages derived from the bone marrow of these animals are insufficient in the 

production of nitric oxide in response to LPS 111. Phosphorylated IRAK-1 and TRAF-6 

dissociate from this complex to form a complex with transforming growthfactor activated 

kinase (TAK)-1, TAK-1 binding protein (TAB1) and TAB2 at the plasmamembrane 

resulting in the phosphorylation of TAB2 and TAK1. IRAK-1 is degraded and 

ubiquitylation of TRAF-6 leads to the activation of TAK1, which phosphorylates both 

mitogen-activated protein (MAP) kinases and the inhibitor of nuclear factor IB kinase 

(IKK) complex. The IKK complex consists of two catalytic subunits, IKK and IKK and 

one regulatory subunit, IKK or NF-B essential modulator (NEMO). Activation of this 

complex results in the phosphorylation of IBs so that NF-B translocates from the cytosol 

into the nucleus where it induces the expression of its target genes. Although NF-B is 
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thought to induce the transcription of mainly pro-inflammatory genes, mice that are NEMO 

deficient and consequently do not signal via the NF-B pathway develop colitis 

spontaneously 112. This indicates that NF-B signalling regulates epithelial integrity and 

intestinal immune homeostasis. 

Nucleotide oligomerisation domain-like receptors  

NLRs are intracellular recognition proteins that contain similar to TLRs C-terminal leucine-

rich repeats and an N-terminus consisting of protein-protein interaction domains, such as 

caspase recruitment domains (CARD) or pyrin domains. NOD1 is involved in the 

recognition of -D-glutamyl-meso-diaminopimelic acid (ie-DAP), which is a cell-wall 

derivate of gram-negative bacteria, whereas muramyl dipeptide (MDP), a component of 

both gram-negative and -positive bacterial peptidoglycan (PGN), is a ligand for NOD2 
113,114. In theory, mutations in NOD2 will result in a decreased activation of the NF-B 

pathway and consequently in a decreased production of pro-inflammatory cytokines. 

However, mouse models and family studies have revealed that mutations in NOD2 are 

associated with the development of CD accompanied with an increased production of pro-

inflammatory cytokines including TNF- and IL-12 87,115-117. It is still not clear what causes 

this discrepancy and whether a mutation in NOD2 will result in a gain 116 or a loss of 

function 115,117. Different mutations in NOD2 have been described in which the 

substitutions R702W and G908R and the C-insertion mutation at nucleotide 3020 

(3020inC) are most common in humans 118,119. Mutations associated with CD are located in 

the leucine-rich repeats, whereas mutations in the NACHT domain results in Blau 

syndrome 120. 

MDP is not only recognised by NOD2, but also another member of the NLR 

family, NALP3/CIAS1/cryopyrin/NLRP3, is activated by MDP 121. NALP3 has a similar 

structure of NOD2, but contains a pyrin domain instead of a CARD domain. Gain-of-

functions mutations in the NACHT domain of NALP3 are associated with three auto-

inflammatory diseases, Muckle-wells syndrome (MWS), familial cold auto-inflammatory 

syndrome (FCAS) and chronic infantile neurological cutaneous and artricular syndrome 
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(CINCA), which are characterised by periodic fever syndromes 122. Recently is discovered 

that a polymorphism in NALP3 is also associated with an increased risk of CD 123. NALP3 

is involved in the activation of the pro-inflammatory cytokines IL-1 and IL-18 through the 

activation of caspase-1 that cleaves the inactive cytoplasmic precursors pro-IL-1 and pro-

IL18 into its mature active forms 124. Activated NALP3 forms together with two adapter 

molecules ASC and CARDINAL the so-called ‘inflammasone’ resulting in the recruitment 

of two caspase-1 molecules and consequently in the induction of active IL-1 and IL-18 125. 

These cytokines seem to be important in the pathogenesis of CD since IL-1 production is 

increased in morphological normal intestinal biopsies from patients with CD 126 and in mice 

it has been shown that neutralisation of IL-18 ameliorates TNBS-induced colitis 127.  

C-type lectins 

C-type lectins are transmembrane proteins that recognise carbohydrate structures in a 

calcium-dependent manner using highly conserved carbohydrate recognition domains 

(CRDs) 128. Glycosylated molecules and micro-organisms that bind to C-type lectins 

expressed by DCs will be internalised, processed in endosomes and finally presented to T 

cells, together with MHC class I and II molecules. Since in the cytoplasmic regions of C-

type lectins immunoreceptor tyrosine based activation (or inhibitory) motifs (ITAMs or 

ITIMs) are present, activation of C-type lectins may result in pro- or anti-inflammatory 

responses 129,130. In contrast to TLRs and NOD proteins, C-type lectins recognise not only 

foreign, but also self-proteins, so that activation of C-type lectins will not always result in 

DC maturation and T cell activation 131,132. The balance between the activation of C-type 

lectins and TLRs regulates the outcome of the innate immune response 133. 

Several micro-organisms such as HIV, dengue virus, hepatitis C virus, 

Mycobaterium tuberculosis and Candida albicans interact with the C-type lectin DC-SIGN 
134-138. Nevertheless, activation of DC-SIGN alone will not result in sufficient innate 

immune responses; however DC-SIGN ligation on DCs after TLR4 activation increases 

cytokine production dramatically 139,140. Nagaoka et al. demonstrated that DC-SIGN 

associates with the TLR4-MD-2 complex and that signal transduction by the recognition of 
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LPS in gram-negative bacteria is enhanced 141. Interaction of the C-type lectin dectin-1 with 

TLR2 results in the generation of pro-inflammatory responses to fungal pathogens 142,143.  

In CD patients, the expression of a subpopulation DC-SIGN+IL-12+IL18+ DCs is 

increased in colonic mucosa compared to healthy controls 78. In Chapter 5 we demonstrate 

that polymorphisms in the C-type lectins DC-SIGN, dendritic cell immuno receptor (DCIR) 

and macrophage galactose-like lectin (MGL) are not associated with IBD. However, 

polymorphisms in lectin-like transcript 1 (LLT1) seems to be associated with a slightly 

increased risk of CD. 
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Antigen presentation by DCs 

Upon antigen encounter, immature DCs are activated and undergo a differentiation process 

in which they fully mature into highly stimulatory antigen presenting cells. During this 

process they lose their endocytotic capacity that was necessary for the uptake and 

processing of antigens in the periphery. In addition, they upregulate the chemokine receptor 

CCR7 so that they are able to migrate to the draining lymph node where they encounter 

naïve populations of T cells. Moreover, mature DCs upregulate co-stimulatory molecules, 

including CD80 (B7.1), CD86 (B7.2) and CD40 and adhesion molecules such as ICAM-1 

and LFA-1 144. In the lymph node, mature DCs present the processed antigen in association 

with MHC class I and II molecules to naïve T cells so that these T cells become activated 

and differentiate into effector T cells. Naïve T cells that recognise the antigen, but that are 

not co-stimulated become anergic in which T cells become unresponsiveness. Depending 

on which PRRs are activated by the captured antigens, DCs will direct naïve T cells to 

differentiate into T helper (Th) 1, Th2, Th17 or regulatory T cells. In conclusion, to activate 

T cells, three signals of DCs are necessary: 1) a peptide/MHC complex that is recognised 

by the T cell receptor, 2) sufficient co-stimulation to prevent anergy and 3) T cell 

polarisation signals to adapt the effector phenotype. 

Depending on the interaction between DCs and different micro-organisms, DCs 

produce high or low concentrations of IL-12, which is an important determinant of the 

direction of the immune response. High concentrations of IL-12 will direct T cells to 

develop into Th1 cells, whereas low concentrations allow for the production of IL-4 by the 

T cell pool itself which, in turn, will accelerate the development of Th2 cells. IL-10 

production by (regulatory) DCs may facilitate the generation of regulatory T cells, which 

are important in the induction of tolerance to self and harmless foreign antigens. 

It has been demonstrated that an exaggerated immune response against the 

endogenous microflora by Th1 and Th17 lymphocytes plays an important role in the 

pathogenesis of CD. This immune response is characterised by an increase of pro-

inflammatory cytokines, including TNF-, IL-1, transforming growth factor (TGF)- 
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IFN- and IL-17 in the inflamed mucosa of CD patients.  High concentrations of TNF- 

can also be detected in the stool of CD patients 145,146. Overexpression of TNF- in mice 

results in the development of chronic inflammatory arthritis and Crohn’s like IBD 147.  

TNF- is present in two forms, namely as a transmembrane and as a soluble protein. Since 

TNF- seems to be a key player in the pathogenesis of CD, pharmaceutical industries 

developed TNF- inhibitors. However, these drugs have side-effects which include 

immunoreactivity. In chapter 3 we investigated TNF- inhibitors based on the light chains 

of camel antibodies in an acute and a chronic colitis model.  Unfortunately, these TNF- 

inhibitors did not ameliorate colitis, probably since only the soluble form of TNF- is 

blocked and not the transmembrane form. Blocking of only soluble TNF- may lead to an 

impaired apoptosis in IBD patients resulting in survival of reactive T cells which can 

maintenance inflammatory processes. Moreover, the transmembrane form of TNF- seems 

to be more involved in cell survival processes instead of cell death 148,149.  In chapter 2 we 

discuss apoptotic mechanisms and their association to IBD. In addition, we will review how 

specific therapeutic approaches interact at different levels with the apoptotic pathway. 

Tolerance and regulatory T cells 

Tolerance is achieved by different mechanisms, both thymic and peripheral, to prevent 

accumulation and activation of auto-reactive T cells. In the thymus auto-reactive T cells are 

eliminated by negative selection, i.e. T cells with specificity for self antigens become 

apoptotic and are deleted 150. Nevertheless, a population of low-affinity self-reactive T cells 

will escape this thymic selection process and enter the circulation to the periphery. Here 

peripheral tolerance mechanisms take over to prevent auto-reactivity. Auto-reactive T cells 

are inhibited by regulatory (suppressor) T cells, a diverse subset of CD4+ T cells, including 

CD4+CD25+ cells, Tr1 and Th3 cells 151,152. Failure of one of these mechanisms may result 

in allergies, rejection of transplanted organs or autoimmune diseases, such as type I 

diabetes and multiple sclerosis, but also IBD is probably caused by impaired regulatory 

mechanisms, so that overwhelming Th1 responses can be developed. 
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Regulatory T cells can be distinguished in naturally occurring regulatory T cells 

and adaptive regulatory T cells 153. Naturally occurring T cells acquire their regulatory 

function in the thymus during early neonatal development and migrate into peripheral tissue 

were they suppress the proliferation and cytokine production of self-reactive T cells in a 

mainly contact dependent manner to maintain tolerance to especially auto-antigens 151. 

Since they express high levels of the IL-2 receptor (CD25) they are referred as CD4+CD25+ 

cells, although also activated CD4+ T cells express CD25. Moreover they are characterised 

by high membrane expression of CD38, CD62L, CD103 and glucocorticoid-induced TNF 

receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4 or CD152) and by the 

expression of FoxP3. 

On the contrary, adaptive regulatory T cells, including Tr1 and Th3, are dependent 

on antigen presentation of DCs and are mainly involved in the mucosal tolerance to 

widespread antigens and commensal microflora, predominantly by the production of anti-

inflammatory cytokines, including IL-10 and TGF- 154,155. Th3 cells produce high levels of 

TGF- and were first identified in oral tolerance studies 156,157, whereas Tr1 cells produce 

high levels of IL-10 158. Immature DCs were shown to induce the development of Tr1 cells 

through the production of TGF- and IL-10, both in vitro 159 and in vivo 160. However, also 

mature DCs can induce regulatory T cells 161, dependent on culture conditions and the 

priming antigen. 

Immature regulatory DCs can be induced by the hepatitis C virus and 

Mycobacterium tuberculosis. In contrast, schistosoma-derived lysophosphatidylserine, 

filamentous haemagglutinin of Bordetella pertussis, cholera toxin B and fungus-derived 

cordycepin induce mature regulatory DCs that produce variable amounts of IL-10, but all 

induce Tr1 cells 162-165. Filamentous haemagglutinin of Bordetella pertusssis has been 

shown to ameliorate the disease activity in a chronic T cell dependent colitis model by the 

induction of anti-inflammatory cytokines 166. Furthermore also commensal microbes such 

as lactobacilli, which act through DC-SIGN and Mycobacterium vaccae have been 

associated with the induction of mature regulatory DCs and the generation of regulatory T 

cells 161,167,168. Characteristically, mainly pathogens that induce chronic diseases are able to 
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suppress the immune response by the activation of (IL-10-producing) regulatory DCs, 

either immature or mature. 

Since several commensal bacteria (i.e. probiotics) and helminths like Trichuiris 

suis decrease the production of the Th1-associated cytokine IL-12 by DCs and increase the 

production of IL-10, resulting in an inhibition of the generation of Th1 cells 169,170, they 

could be a potential treatment of IBD. Oral intake of genetically modified probiotic 

Lactococcus lactis that produce IL-10 has been shown to decrease disease activity in CD 

patients in a phase I clinical trial 171. It is likely that in IBD patients the balance between 

regulatory T cells and Th1 cells is disturbed, so that mainly Th1 responses are activated. 

Probably by the generation of regulatory DCs, the fate of T cells can be changed in T cells 

that gain a regulatory function instead of T cells that induce inflammation. When we know 

more about responses of DCs and the fate of T cells reacting to probiotica, commensal 

bacteria and pathogens, we will understand more how DCs discriminate between different 

micro-organisms. This could be a rationale for DC immunotherapy, which is also one of the 

therapeutic approaches in other autoimmune diseases, such as diabetes and multiple 

sclerosis, cancer and allergies.  

Th17 cells 

A novel T helper cell lineage, Th17 that exclusively produces the pro-inflammatory 

cytokine Th17 has been reported to play an important role in many inflammatory diseases, 

including IBD.  The IL-12 family member IL-23 is produced by DCs and promotes the 

differentiation of CD4+ T cells that produce IL-17 and seems to play an important role in 

regulating the Th1/Th17 balance in IBD 172-174. A genome-wide association study showed 

that a polymorphism in the receptor for IL-23 confers strong protection against CD 175. 

Moreover, anti-IL-23 therapy was effective in the prevention as well as the treatment of 

active experimental colitis 176. IL-17 expression and Th17 differentiation is downregulated 

by IFN- in experimental colitis and UC patients that receive IFN- therapy 177. Besides 

the production of IL-17, Th17 cells produce other pro-inflammatory cytokines including 

IL-21, IL-22, TNF- and IL-6 174,178.  IL17 and IL-21 are overexpressed in colonic samples 
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from IBD patients and neutralisation of IL-21 reduces the secretion of IL-17 by LP T 

lymphocytes derived from CD patients 179. Moreover, both TNBS- and DSS-induced colitis 

are ameliorated in IL-21-deficient mice, probably since naïve T cells from these mice failed 

to differentiate into Th17 cells 179. In experimental colitis, IL-21 prevents TGF--dependent 

expression of FoxP3 resulting in a reduction of regulatory T cells 180. TGF-1 is able to 

differentiate naïve T cells into regulatory T cells, which prevent autoimmunity 180. 

However, in the presence of IL-6, TGF-1 has been shown to converts naïve T cells into 

Th17 cells 180. It seems that the vitamin A metabolite retinoic acid plays an important role 

in the regulation of TGF-1-dependent immune responses in which retinoic acid inhibits 

the IL-6- and IL-23-driven induction of Th17 cells and promotes FoxP3+ regulatory T cells 

differentiation by enhancing TGF--driven Smad-3 signalling 181,182. In chapter 4 we show 

that polymorphisms in LLT1 are slightly associated with CD. Interestingly, LLT1 is a 

ligand for CD161, which is a new surface marker for human IL-17 producing Th17 cells 
183,184. It has been shown that CD161+CD4+ T cells are a resting Th17 pool that can be 

activated by IL-23 and mediate destructive tissue inflammation in the intestines of CD 

patients 184. 
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The cholinergic pathway in immune regulation and intestinal epithelial 

barrier function 

Besides the intestinal epithelial barrier function and the intestinal immune system, the 

nervous system plays an important role in the homeostasis of the gut. The intestinal tract is 

innervated by the vagus nerve, which is part of the parasympathetic nervous system known 

to regulate heart rate, hormone secretion, gut motility, respiratory rate, blood pressure and 

other vital processes of the body. The two vagus nerves originate in the medulla oblongata 

and preganglionic fibres travel uninterrupted to the organs they innervate. There the 

preganglionic fibres synapse with short postsynaptic fibres that are distributed throughout 

the organ. Ach is the principal neurotransmitter of the vagus nerve and plays a key role in 

the anti-inflammatory pathway. 

The enteric nervous system (ENS) is an integrated network of neurons and enteric 

glial cells (EGCs) and is organised in a submucosal plexus or Meissner’s plexus located 

between the mucosa and the circular muscle layer, and a myenteric plexus or Auerbach’s 

plexus located between the circular and longitudinal muscle layers. The ENS is regulated 

by the central nervous system, but is in contrast to other organs also able to function 

independently. In general, the Meissner’s plexus regulates secretory responses of the 

mucosa, whereas the Auerbach’s plexus is involved in the regulation of gastrointestinal 

motility. It has been shown that besides neurones also EGCs modulate gastrointestinal 

functions indirect or directly 185,186. 

Interactions between the nervous system and the immune system 

It has been described that cholinergic activation has anti-inflammatory effects in several 

diseases 187-193. Vagotomy and cholinergic antagonists have been shown to worsen 

inflammation in animal colitis models, whereas stimulation of the vagus nerve results in an 

amelioration of postoperative ileus in part through its anti-inflammatory effects 187,188,194. 

Most effects of the vagus nerve have been based on the effects of Ach, which signals 

through either muscarinic receptors or nicotinic receptors. Macrophages and also other 
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immune cells like DCs express several subunits of the nicotinic acetylcholine receptors 

(nAchRs) such as the 4, 2 and 7 subunit 195,196,own data. Selective 7 nAchR agonists 

have been shown to ameliorate pancreatitis, DSS-induced colitis and postoperative ileus 
188,191,193,194. Nicotine, which acts through the 7 homopentamer, inhibits the production of 

pro-inflammatory cytokines and chemokines in macrophages and inhibits the NF-B 

pathway and HMGB1 secretion 187,197. Interestingly, nicotine has also beneficial effects in 

several subgroups of patients with UC, but not in CD patients 194,198,199. Also Ach itself 

inhibits the release of pro-inflammatory cytokines such as TNF-, IL-1, IL-6 and IL-18 

by macrophages, but stimulated with endotoxin the production of the anti-inflammatory 

cytokine IL-10 is not affected 195. In chapter 7 we tested two new selective 7 nAchR 

agonists in two different mouse models. Although earlier research demonstrated that 

activation of the vagus nerve ameliorate intestinal inflammation, we show that both 7 

nAchR agonists worsen colitis or are ineffective. 

 Besides Ach also other neuropeptides have been implicated to be anti-

inflammatory. Cholecystokinin (CCK) is responsible for the activation of digestion of 

dietary fat and it is indicated that CCK reduces TNF- and IL-6 release in haemorrhagic 

shock by the intake of high-fat nutrition 189. Vagotomy abrogates this anti-inflammatory 

effect of both high-fat intake and CKK, indicating that the vagus nerve is responsible for 

CCK-reduced inflammation. Vasoactive intestinal peptide (VIP) regulates the secretion of 

water and electrolytes and the dilation of the smooth muscles of the gut to increase gut 

motility. In TNBS-induced colitis, VIP ameliorates clinical symptoms and microscopic 

inflammation by regulating the balance between Th1, Th2 and Th17 differentiation 200. 

Interactions between the nervous system and the epithelial barrier 

Although in general activation of the cholinergic anti-inflammatory pathway and the release 

of VIP and Ach leads to decreased inflammation in several diseases, it also results in an 

increase of intestinal permeability 201. Both VIP and Ach increase paracellular permeability 

in the gut 202,203. Moreover, it has been demonstrated that the release of VIP inhibits 
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proliferation of epithelial cells and that it is necessary to maintain intestinal epithelial 

barrier integrity 203,204. Besides paracellular transport, Ach is also able to increase 

transcellular transport via muscarinic Ach receptor activation 205. These results seem to be 

contradictory since an increased intestinal epithelial barrier leads to an increased influx of 

antigens into the intestinal mucosa where they can induce an immune reaction.  

In contrast to the cholinergic pathway, EGCs seem to decrease intestinal 

permeability since ablation of EGCs in transgenic mice causes an increase of intestinal 

permeability and causes intestinal inflammation 206. Furthermore, in vitro co-culture models 

of EGCs and intestinal epithelial cell lines demonstrate that EGCs decrease the 

permeability, probably via the release of S-nitrosoglutathione and the regulation of ZO-1 

and occludin expression 206. S-nitrosoglutathione is able to restore mucosal barrier function 

in colonic biopsies from CD patients 206. Moreover, EGCs inhibit proliferation of intestinal 

epithelial cells which is partly TGF-1 dependent 207. Mice that are deficient for EGCs 

show an increased uptake of thymidine in intestinal ECs and crypt hyperplasia 207. Probably 

an interaction between enteric neurones and EGCs is necessary to maintain epithelial 

barrier function homeostasis, since in general the cholinergic pathway increases intestinal 

permeability, whereas EGCs do the opposite. In chapter 6 we give an overview of how 

neurotransmitters influences epithelial barrier function. In chapter 8 we show that 

intestinal permeability is mainly decreased through the activation of muscarinic receptors 

under inflamed conditions. 
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Thesis outline 

Since many components are involved in the pathogenesis of IBD, it is important to 

understand how the environment (gut flora and food antigens), epithelial barrier, immune 

system, nervous system and genetic make-up interact with each other. In this thesis we have 

investigated different parts of the pathogenesis of IBD. The first part of this thesis describes 

how apoptosis plays a role IBD (Chapter 2) and how we investigated a new TNF- 

inhibitor in two different colitis models (Chapter 3). In the second part of this thesis we 

investigated which DC populations are present in the colon and MLNs of CD patients 

(Chapter 4) and whether mutations in genes that encodes several C-type lectins are 

associated with IBD (Chapter 5). The last section of this thesis describes how the ENS 

influences barrier function of the intestine (Chapter 6 and 8) and how we investigated two 

new 7 nAchR agonists in two different experimental mouse models (Chapter 7).  
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