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On the stability of an Optimal Coalition Structure
Stéphane Airiau 1 and Sandip Sen 2

Abstract. The two main questions in coalition games are 1) what
coalitions should form and 2) how to distribute the value of each
coalition between its members. When a game is not superadditive,
other coalition structures (CS) may be more attractive than the grand
coalition. For example, if the agents care about the total payoff gen-
erated by the entire society, CSs that maximize utilitarian social wel-
fare are of interest. The search for such optimal CSs has been a
very active area of research. Stability concepts have been defined for
games with coalition structure, under the assumption that the agents
agree first on a CS, and then the members of each coalition decide
on how to share the value of their coalition. An agent can refer to the
value of coalitions with agents outside of its coalition to make argu-
ments and counter arguments. Using this approach, one can think of
finding the CS s? with optimal value and use one of these stability
concepts for the game with CS s?. However, it may not be fair for
some agents to form s?, e.g., for those that form a singleton coali-
tion and cannot benefit from any cooperation. In this paper, we ex-
plore the idea of allowing side-payments across coalitions to improve
the stability of an optimal CS. We adapt some stability concepts and
prove that some of them are non-empty.

1 Introduction
Forming coalitions is an effective means for agents to cooperate: in
a coalition, agents may share resources, knowledge, or simply join
forces to improve their performance. Given such incentives for coali-
tion formation, the two pertinent questions are 1) what coalitions will
form in the society and 2) how to distribute the worth of a coalition.
Stability is a key criteria to answer both questions. Another key ques-
tion is the social objective, e.g. maximizing utilitarian social welfare.

For superadditive games, forming the grand coalition maximizes
utilitarian social welfare. Asking whether the grand coalition is sta-
ble amounts to asking whether the core [4] is non-empty. When the
core is empty, another stability concept is needed. For example, an
element of the kernel, or the nucleolus of the game, which are known
to always be non-empty. Also, the Shapley value can be used, it does
not provide stability, but is based on a certain idea of fairness.

For non-superadditive games, the grand coalition may not neces-
sarily form and instead, several coalitions may coexist in the popula-
tion, forming a coalition structure (CS). From the point of view of a
system designer, forming a CS that maximizes social welfare is also
desirable. The search of such optimal coalition structure has been an
active area of research in recent years [9]. For that line of research,
however, the stability problem is avoided, the agents are assumed to
be fully cooperative and as such, they have no incentive to deviate
from a coalition structure that optimizes the performance of the en-
tire society.
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Aumann and Drèze studied the stability of games with CS. They
assume that the agents agree on a CS first and then solve the issue
of the payoff distribution. For instance, the agents may first locate
a CS that maximizes utilitarian social welfare and then find a stable
payoff distribution for that CS. Another assumption is that members
of a coalition share the value of their own coalition, and they can use
agents outside of their coalition to negotiate their payoff, i.e., they
may refer to opportunities they have outside of their coalition to jus-
tify a side payment. Aumann and Drèze showed that one necessary
condition for non-emptiness of the core is that the CS formed is the
optimal CS. But this condition is not necessary, and the core of a
game with CS may be empty. Again, one can use other stability con-
cepts such as the kernel, the nucleolus or the Shapley value to agree
on a payoff distribution.

We are interested in non-superadditive games where the agents
are forming an optimal CS, and our goal is to have a payoff distribu-
tion that combines some elements of stability and some elements of
fairness. We want to allow side-payments between members of two
different coalitions so that all agents in the population are in equi-
librium. We believe that this will increase some form of fairness as
it will eliminate the effect of the structure in the payoff of an agent.
For example, it may be possible that in the optimal CS, some agents
are forming singletons, or are members of a small coalition. As such,
they may not benefit from the cooperation of other agents, even when
they have high marginal contributions to a large number of coalitions.
However, for the greater good of the population, they may be forced
to accept staying in that optimal CS. Aumann and Drèze suggested
that one reason to consider games with CS is to take into account
externalities that are not present in the valuation function. For exam-
ple, academics may prefer to stay in their own country, hence the CS
may represent coalition of academics by location. They may refer to
potential opportunities of working abroad to negotiate their salary.
However, if their country does not provide much budget, their salary
may be low. In this paper, if the researchers stay in their country,
not because of personal preference, but because they believe it will
bring a higher value for the entire community, we would like the
community to provide them additional funds, hence allowing pay-
ments across coalitions. We note that this is not the usual assumption
in game theory. However, we believe that in multiagent systems, al-
lowing such transfer of utility across coalitions may be a possible
solution to guarantee stability of an optimal CS.

This work concentrates on a modification of the kernel. We will
introduce background results in Section 2. Then we will present our
stability concept in Section 3, we will start by providing the definition
and some properties, then we will describe an algorithm to compute
a stable payoff distribution. The proof that a set of stable payoff dis-
tributions is non-empty relies on this algorithm. We end that section
by suggesting that we could use the stability concept for the games
with externalities. Section 4 concludes.



2 Background

We consider games with transferable utility, also called TU games.
These games assume that interpersonal comparison of utility and
transfer of utility between agents are possible. A TU game is a pair
(N, v) where N is the set of n agents, and v : 2N → R is the worth,
or value of a coalition. A coalition structure (CS) is a partition of
the agents into coalitions, i.e., a CS S = {C1, . . . , Ck} where ∀l ∈
{1, . . . , k} Cl ⊆ N , ∪kl=1Cl = N , and (i 6= j) ⇒ Ci ∩ Cj = ∅.
We denote by SC the set of all partitions of C ⊆ N . In particular,
SN is the set of all CSs. We denote by x ∈ Rn a payoff distri-
bution, the payoff for agent i ∈ N is xi and we use the notation
x(C) =

P
i∈C xi for C ⊆ N .

A TU game with CS is a triplet (N, v,S) where (N, v) is a TU
game, and S ∈ SN . Such games have been introduced by Au-
mann and Drèze in [1]. The traditional assumption is that agents
first agree on the CS S, or S exists due to some externalities not
contained in the valuation function. Then, members of each coali-
tion C ∈ S negotiate the distribution of the worth of their coalition
C. The agents do not threaten to change coalitions during this ne-
gotiation, but they try to argue to obtain a greater share of the val-
uation of their coalition. Hence, for each coalition in S, the sum
of the members’ payoff cannot exceed the value of the coalition.
The set of feasible payoff vectors is then defined as X(N,v,S) =
{x ∈ Rn | ∀C ∈ S x(C) ≤ v(C)}. The core of a game with CS
(N, v,S) is defined by

˘
x ∈ X(N,v,S) | ∀C ⊆ N, x(C) ≥ v(C)

¯
.

Aumann and Drèze made a link from a game with CS to a special su-
peradditive game (N, v̂) called the superadditive cover [1]. The val-
uation function v̂ is defined as v̂(C) = maxP∈SC

˘P
T∈P v(T )

¯
for all coalitions C ⊆ N \ ∅, and v̂(∅) = 0. In other words,
v̂(C) is the maximal value that can be generated by any partition
of C. They showed that Core(N, v,S) 6= ∅ iff Core(N, v̂) 6=
∅ ∧ v̂(N) =

P
C∈S v(C) and that when Core(N, v,S) 6= ∅, then

Core(N, v,S) = Core(N, v̂). This means that a necessary condi-
tion for (N, v,S) to have a non empty core is that S is an optimal CS.
It is for the games with an empty core that this paper has an interest:
as agents cannot find an agreement, they need to relax their require-
ments for stability. One way to ensure stability is to relax the con-
straint of the core by allowing payoff distribution such that ∀C ⊆ N ,
x(C) ≥ v(C) + ε holds. This is the idea of the ε-core. Another idea
by Bachrach et al. is to add some external payments to stabilize the
CS [2]. Another possibility is to change stability concept, and in this
paper, we consider the kernel [4].

We now formally define the concept of the kernel. The excess re-
lated to coalition C for a payoff distribution x is defined as e(C, x) =
v(C)− x(C). We can interpret a positive excess (e(C, x) ≥ 0) as the
amount of dissatisfaction or complaint of the members of C from
the allocation x. For two agents k and l, the maximum surplus
sk,l(x) of agent k over agent l with respect to payoff distribution x
is sk,l(x) = maxC⊆N|k∈C, l/∈C e(C, x). This maximum surplus can
be used by agent k for showing its strength over agent l: assuming
it is positive and that the agent can claim all of it, agent k can argue
that it will be better off in a coalition that does not contain agent l and
hence should be compensated with more utility for staying in the cur-
rent coalition. Two agents k and l that are in the same coalition are in
equilibrium when we have either skl(x) ≥ slk(x) or xk = v({k}).
A payoff distribution is in the kernel of the game (N, v,S) when
all agent pairs belonging to the same coalition C in S are in equi-
librium. Note that a payoff distribution that is kernel-stable for the
game (N, v,S) may not be stable for a different game (N, v,S ′)
with S 6= S ′. Although they use the same valuation function v to

argue, the set of agents that are in equilibrium is different, which
will have an impact on the payoff distribution. An approximation of
the kernel is the ε-kernel where the inequality above is replaced by
sk,l(x) + ε ≥ sl,k(x), where ε is a small positive constant. The ker-
nel is always non-empty, it contains the nucleolus, and is included in
the bargaining set [7].

One method for computing a kernel-stable payoff distribution is
the Stearns method [13]. The idea is to build a sequence of side-
payments between agents to decrease the difference of surpluses. At
each step of the sequence, the two agents with the largest difference
of maximum surplus exchange utility: the agent with smaller maxi-
mum surplus makes a payment to the other agent, which decreases
their surplus difference. After each side-payment, the maximum sur-
plus over all agents decreases. In the limit, the process converges to
an element in the kernel, which may require an infinite number of
steps as the side payments may become arbitrarily small. The the use
of the ε-kernel can alleviate this issue. A criteria to terminate Stearns
method is proposed in [12], and we present the corresponding algo-
rithm in Algorithm 1.

Algorithm 1: Transfer scheme converging to a ε-kernel-stable
payoff distribution for the game with CS (N, v,S)

compute-ε-kernel(N, v,S, ε, x)
repeat

// compute the maximum surplus

for each coalition C ∈ S do
for each pair of members (i, j) ∈ C, i 6= j do

sij(x)← maxR⊆N | (i∈R, j /∈R) v(R)− x(R)
δ ← max(i,j)∈C2, C∈S |sij(x)− sji(x)|;
(i?, j?)← argmax(i,j)∈N2 sij(x)− sji(x);
if
`
xj? − v({j}) < δ

2

´
then

d← xj? − v({j?});
else

d← δ
2

;
// d ensures individually rational payoffs

xi? ← xi? + d;
xj? ← xj? − d;

until δ
v(S)

≤ ε ;

Algorithm 1 is of exponential complexity since all coalition values
need to be checked for computing the maximum surpluses. Note that
when a side-payment is performed, it is necessary to recompute the
maximum surpluses. The derivation of the complexity of the Stearns
method to compute a payoff in the ε-kernel can be found in [5, 12],
and the complexity for one side-payment isO(n ·2n). Of course, the
number of side-payments depends on the precision ε and on the ini-
tial payoff distribution. Converging to an element of the ε-kernel re-
quires n log2(

δ0
ε·v(S)

), where δ0 is the maximum surplus difference in
the initial payoff distribution. To derive a polynomial algorithm, the
number of coalitions must be bounded. The solution used in [5, 12]
is to only consider coalitions whose size is bounded in the interval
K1,K2. The complexity of the truncated algorithm is O(n2+K2).

The coalition formation protocol proposed by Shehory and
Kraus [12] combines a distributed search to find a Pareto optimal CS
with kernel-stable payoff distribution. The use of kernel-stable pay-
off ensures stability. The use of Pareto optimality ensures that chang-
ing CS cannot benefit all the agents at the same time. This approach
cannot scale up to large numbers of agents due to the complexity.
By bounding the coalition size in an interval [K1, K2], the compu-
tation of the kernel can be reduced to polynomial time in the number



of agents [5], though the order of this polynomial, K2, can be high.
One issue is that the CS formed may not be optimal. In our work, we
will assume that the agents first find a CS with optimal value, using
for example the algorithm by Rahwan et al. [9].

3 A new stability criterion
We will now motivate the need for extending the concept of the ker-
nel payoff distribution and then introduce the necessary terminology.

3.1 Motivations for an extension
We propose the following desirable properties of a stable payoff dis-
tribution for a coalition structure:

Efficiency: The payoff distribution should correspond to an efficient
agent society.

Global equilibrium: All agents in the population, and not just the
agents belonging to the same coalition in the current CS, must be
in equilibrium.

Value function fairness: The payoff distribution should reflect the
overall global properties of the valuation function and not just the
valuations of the coalitions present in any one particular CS.

As the kernel computation takes any CS as input, it has no control
over societal efficiency. The kernel satisfies value function fairness
as the maximum surplus is a maximization over a set of coalitions,
hence, in that respect, the kernel satisfies the value function fairness.
However, the size of the set of coalitions analyzed depends on the
coalition currently formed by the agents: the more members in the
coalition, the larger the set of coalitions to be analyzed. If the CS
formed is the CS containing the grand coalition, all the other coali-
tions are taken into account to compute the maximum surplus. If the
agent is forming a singleton coalition, however, there is no need to
compute a maximum surplus. The kernel does not satisfy, however,
the global equilibrium property.

To provide a more concrete definition of global equilibrium, i.e.,
to extend the concept of equilibrium from two members of the same
coalition to an equilibrium between two agents in the population, we
may try to use the maximum surplus. This idea, however, does not
work. Given a CS and a payoff distribution u, let us consider two
agents i and j that have different maximum surplus, e.g., sij(u) >
sji(u). If agents i and j are in different coalitions, agent i cannot
use this surplus advantage to claim that it would be better off without
agent j in a different CS, as its coalition already does not include j!

We believe that the strength of each agent, as in the case of the ker-
nel, should be the value of the excess of a coalition, but that coalition
should be chosen differently. To represent a true, resilient equilib-
rium between two agents in the population, the strength for an agent
could be the maximum excess of a coalition containing that agent.
More formally, the strength of agent i in the payoff distribution u is
σi(u) = maxC⊆N\{i} e(C∪{i}, u). If agent i is stronger than agent
j, agent i can argue that it deserves more payoff as it is a member of
a coalition that can create higher excess. This argument is quite simi-
lar to the one for the kernel, except it applies between any two agents
including those that are not in the same coalition. When all agents
are in equilibrium, no agent wants to change coalition and as a result
the CS is stable. More precisely, for all agents to be in equilibrium,
the strengths of all agents have to be equal (except for some agent
i such that ui = v({i})). Hence, no agent can claim more payoff
and the payoff distribution is stable. As a result, there is equilibrium
between all agents in the population, not only between members of

each coalition. The kernel+is not dependent on the current CS, but
is the property of only the valuation function and the current payoff
distribution.

3.2 Definition and Properties

We now formally define our new stability criterion, the kernel+. As
for the kernel, we start by defining a notion of strength, which will be
used to justify a side payment from a weak agent to a strong agent.

Definition 1 (Strength). The strength of agent i for a payoff distri-
bution u is σi(u) = maxC⊆N\{i} v(C ∪ {i})−

P
k∈C∪{i} uk

Note that the strength does not depend on the current CS but is
only a property of the valuation function and the current payoff dis-
tribution. Computing the strength requires evaluating all coalitions
where agent i is present. For a population of n agents, this means
that each agent has to evaluate 2n−1 coalitions.

Definition 2 (Global Equilibrium). Given a valuation function v and
a payoff distribution u, two agents i and j are in global equilibrium
when σi(u) ≥ σj(u) or xi = v({i}).

The above definition is the same as the corresponding one for the
kernel, except that the maximum surplus sij(u) between two agents
i and j is replaced by the strength σi(u) of agent i.

Definition 3 (kernel+). For a CS S, a payoff distribution u is in the
kernel+when

P
i∈N ui =

P
C∈S v(C) and any two agents in the

population are in equilibrium.

As the global equilibrium involves all agents in the population, and
not only the members of the same coalition, all agents will be sharing
the valuation of the CS. In particular, the payoff to a coalition is not
necessarily distributed only among its members. Though this is not
the usual assumption in traditional coalition formation research, as
we are seeking a global measure of stability, it is only fair that the
entire worth produced by the CS be shared among all agents in the
population according to a global property of the valuation function.

Let us now present an example using the following five-player
game ({1, 2, 3, 4, 5}, v) with v defined as follows: v({1}) = 4,
v({j}) = 0, v({1, j}) = 10.5, v({j, k}) = 4, for (j, k) ∈
{2, 3, 4, 5}, j 6= k, v({2, 3}) = 8, v({4, 5}) = 10, v(C) = 11
for |C| ≥ 3. The optimal CS is S = {{1}, {2, 3}, {4, 5}} with a
value of 22. With the kernel, the payoff of agent 1 is v({1}) since no
side payments across coalitions are possible. Agents 2 and 3 share
the value of v({2, 3}), similarly agents 4 and 5 share v({4, 5}). Be-
cause of the symmetric role they play, an equal share will guarantee
equilibrium, hence x = 〈4, 4, 4, 5, 5〉 ∈ Kernel(N, v,S). In addi-
tion, it is not possible to further decrease any excess, hence x is also
the nucleolus of the game (N, v,S). However, this payoff distribu-
tion may not be tolerable for player 1: it has the largest value for a
singleton coalition, it is present in the coalitions of size 2 that pro-
duce the highest value. Agent 1 could be considered at least as good
as any other agent, however, two agents have a strictly higher pay-
off. If the agents were to use the kernel+, then agents 4 and 5 should
make a side payment to agent 1 since the strength of agent 1 is 2.5
(e({1, 2}, x) = 10.5 − 4 − 4), and the strength of agent 4 or 5 is
1.5 (e({1, 4}, x) = 10.5− 4− 5). This would help agent 1 to accept
being in a singleton coalition.

This example shows that the kernel and the nucleolus is not in-
cluded in the kernel+in general. Of course, for games (N, v, {N})



(i.e. where the CS is the CS containing the grand coalition), the ker-
nel and the kernel+coincide. The following lemma shows that the
core is contained in the kernel+.

Lemma 1. Core(N, v,S) ⊆ Kernel+(N, v,S)

Proof. Let x ∈ Core(N, v,S), for all C ⊆ N , x(C) ≥ v(C),
hence no agent has any positive excess, and the maximum excess
is bounded by 0 for each agent. Since the x is in the core, it is a feasi-
ble payoff for each coalition in the CS S, i.e., ∀C ∈ S, v(C) = x(C).
Hence, the maximum excess for each agent is at most 0. It follows
that the maximum excess of each agent, i.e., the strength of each
agent, is 0 and the agents are in equilibrium.

As in the case of the kernel, we can here define an ε-kernel+where
the global equilibrium is obtained when the difference between the
strength of any two agents is less than ε.

One possible choice for the CS is an optimal CS, i.e., one that
maximizes utilitarian social welfare. By choosing an optimal CS, the
agents share the largest payoff they can produce. The values of all
CSs are considered when deciding the payoff distribution, and the
CS formed then corresponds to the most efficient outcome that the
society can generate. The corresponding payoff distribution is then
Pareto optimal. Since the entire value of the CS is shared, it is not
possible to increase an agent’s payoff without decreasing the payoff
of at least another agent. Hence, the combination of an optimal CS
with an kernel+-stable payoff distribution is attractive.

3.3 Algorithm for Computing an kernel+-Stable
Payoff Distribution

We now present an algorithm that returns an kernel+-stable payoff
distribution. We start with some arbitrary payoff distribution which
is likely to not be at global equilibrium. Because of the similarity
with the kernel, the algorithm for computing kernel+-stable payoff
distribution is based on a sequence of side payments which reduces
the difference in strength between pairs of agents as in [13]. As for
the kernel, this algorithm requires to read multiple times the entire
set of coalitions, which limits its usability. However, the algorithm
helps us to prove that the kernel+is non-empty.

First, we present two properties about the dynamics of the strength
during a side payment. We will then present the transfer scheme and
prove that it returns a kernel+-stable payoff distribution. The first
property provides bounds of the strength for the two agents that are
involved in the side payments before and after such a transaction.

Property 3.1. After a side payment δ from agent j to agent i with
the highest strength, the strength of i strictly decreases and that of j
increases.

Proof. Let δ be a side payment from agent j to agent i with largest
strength and let u (respectively w) be the payoff distribution before
(respectively after) the side payment: wi = ui+ δ, wj = uj − δ and
∀k 6= i, k 6= j, wk = uk. Let σl(x) denote the strength of agent
l for payoff distribution x. Let Cl(x) be the coalition containing l
such that σl(x) = e(C, x). We now consider two possible situations
depending on whether j and i are members of Ci(w).

1. if j ∈ Ci(w): then

σi(w) = v(Ci(w))−
X

l∈Ci(w)

wl

= v(Ci(w))−
X

l∈Ci(w),l/∈{i,j}

ul + ui + δ + uj − δ

= v(Ci(w))−
X

l∈Ci(w)

ul

By definition, σi(u) ≥ v(Ci(w)) −
P
l∈Ci(w) ul. If σi(u) =

v(Ci(w)) −
P
l∈Ci(w) ul, then σi(u) ≤ σj(u) as j ∈ Ci(w).

In that case, there should be no side payment from j to i, which
would contradict the premise of the proposition. Hence, we must
have σi(u) > v(Ci(w))−

P
l∈Ci(w) ul = σi(w).

2. if j /∈ Ci(w):

σi(w) = v(Ci(w),S)−
X

l∈Ci(w)

wl

= v(Ci(w),S)−
X

l∈Ci(w)

ul − δ

as i ∈ Ci(w) and j /∈ Ci(w)

≤ σi(u)− δ < σi(u) as δ > 0

Hence, σi(w) < σi(u), i.e., the strength of i strictly decreases. We
will now prove σj(w) ≥ σj(u).

1. If i ∈ Cj(u), then
P
l∈Cj(u) ul =

P
l∈Cj(u) wl + δ − δ =P

l∈Cj(u) wl. Hence, σj(u) = v(Cj(u)) −
P
l∈Cj(u) wl ≤

σj(w).
2. If i /∈ Cj(u). We have by definition of σi(w): σj(w) ≥
v(Cj(u)) −

P
l∈Cj(u) wl. But

P
l∈Cj(u) wl =

P
l∈Cj(u) ul − δ,

and hence, σj(w) ≥ Cj(u) −
P
l∈Cj(u) ul + δ. As Cj(u) −P

l∈Cj(u) ul = σj(u), we have σj(w) ≥ σj(u) + δ. As δ > 0,
we have σj(u) + δ ≥ σj(w).

Hence, for both cases, we have σj(w) ≥ σj(u), i.e. the strength of j
increases.

This property ensures that a side payment does reduce the dif-
ference in strength between two agents, more precisely, it decreases
the largest difference in strength. Because of the change in payoff,
the value of the strength may have changed for other agents, and we
need to ensure that the new largest difference in strength smaller than
the old one. The next property ensures that, when agent i receives a
payment from agent j, if the strength of any other agent was lower
than the one of agent i before the side payment, the strength of that
agent in the new payoff distribution remains lower than the one of
agent i with the old payoff distribution.

Property 3.2. Given an initial payoff distribution u and a side pay-
ment δ = 1

2
(σi(u) − σj(u)) > 0 from agent i to agent j that pro-

duces a new payoff distribution w , for all agents k /∈ {i, j} such
that σk(u) ≤ σi(u) we have σk(w) ≤ σi(u).

Proof. Case 1:
`
(i, j) ∈ Ck(w)2

´
or (i /∈ Ck(w) and j /∈ Ck(w))

σk(w) = v(Ck(w))−
X

l∈Ck(w)

wl

= v(Ck(w))−
X

l∈Ck(w)

ul

If v(Ck(w)) −
P
l∈Ck(w) ul > σi(u), then as σ is the strength

and k ∈ Ck(u), σk(u) > σi(u) and then i would not be an agent
with the largest strength, which contradicts our hypothesis. Hence
σk(w) ≤ σi(u).



Case 2: i ∈ Ck(w) and j /∈ Ck(w) Let us assume σi(u) < σk(w).

σi(u) < σk(w)

< v(Ck(w))−
X

l∈Ck(w)

wl

< v(Ck(w))−
X

l∈Ck(w)

ul − δ

< σi(u)− δ < σi(u) , a contradiction

Hence, σi(u) ≥ σk(w).
Case 3: i /∈ Ck(w) and j ∈ Ck(w) Let us assume σi(u) < σk(w),

then

σi(u) < σk(w)

σi(u) < v(Ck(w))−
X

l∈Ck(w)

wl

σi(u) < v(Ck(w))−
X

l∈Ck(w)

ul + δ

σi(u) < σj(u) + δ as j ∈ Ck(w)

σi(u)− σj(u) < δ

2 · δ < δ , a contradiction

Hence, σi(u) ≥ σk(w).
Finally, from cases 1, 2, and 3, we have showed that σi(u) ≥

σk(w).

Then, if the side payment is received by the agent with the high-
est strength, the first property ensures that the strength of this agent
strictly decreases, and the second property ensures that after the side
payment, the value of the highest strength cannot increase. Hence,
the value of the highest strength is strictly decreasing. Because the
value of the strength is bounded by 0, we are guaranteed that a se-
quence of side payments between the agents with the largest differ-
ence in strength will converge to a payoff distribution where agents
have equal strength in the limit. This is the idea used by the trans-
fer scheme in Algorithm 2 to compute a payoff distribution in the
kernel+.

Algorithm 2: Transfer scheme for converging to an ε-
kernel+-stable payoff distribution, the agents are sharing the
valuation of the CS S.

compute-ε-kernel+(ε, u, S)
repeat

for each agent i ∈ N do
σi ← max{C∈C |i∈C} v(C)−

P
k∈C uk

δ ← max(i,j)∈N2,ui>v({i}) σi − σj;
(i?, j?)← argmax(i,j)∈N2,i 6=j,ui>v({i}) σi − σj;
if (uj? − v({j})) < δ

2
then

d← uj? − v({j})
else

d← δ
2

// d ensures individually rational payoffs

ui? ← ui? + d;
uj? ← uj? − d;

until δ
v(S)
≤ ε ;

Theorem 1 (Convergence). Algorithm 2 converges to a payoff dis-
tribution in the kernel+.

Proof. At each side payment, the strength of the agent that previ-
ously had the largest strength strictly decreases (property 3.1). Af-

ter the side payment, the value of the largest strength does not in-
crease (property 3.2). By repeating payment from an agent with a low
strength to the agent with the highest strength, the largest strength de-
creases. The process produces a sequence of monotonically decreas-
ing maximum strengths. Since it is bounded below by zero the bound
is reached in the limit. When the difference in strength between the
agents is about to become zero, the side payments stop. Hence, the
algorithm converges to a payoff distribution where all agents have
the same strength (or cannot pay any agent as their payoff is equal to
the value obtained when they form a singleton coalition) and hence,
the corresponding payoff distribution is in the kernel+.

This theorem proves the existence of one payoff distribution to be
in kernel+. Hence, it is guaranteed that if the agents adopt kernel+as
stability criterion, they will find an agreement, which was our ini-
tial goal. In addition, the fact that any two agents are in equilibrium
provides a level of fairness.

3.4 Extension for games with externalities

It is also interesting to consider games with externalities, i.e., co-
operative games where the value of a coalition depends on the CS.
Sandholm and Lesser attribute these externalities to the presence of
shared resources (if a coalition uses some resources, they will not be
available to other coalitions), or when there are conflicting goals:
non-members can move the world farther from a coalition’s goal
state [11]. Ray and Vohra in [10] state that a “recipe for generating
characteristic functions is a minimax argument”: the value of a coali-
tion C is the value C gets when the non-members respond optimally
so as to minimize the payoff of C. This formulation acknowledges
that the presence of other coalitions in the population may affect
the payoff of the coalition C. One example is a bargaining situation
where agents need to negotiate over the same issues: when agents
form a coalition, they can have a better bargaining position, as they
have more leverage, and because the other party needs to convince all
the members of the coalition. If the other parties also form a coali-
tion, the bargaining power of the first coalition may decrease. Re-
cently the topic has raised interest in AI. Rahwan et al. in [8] consider
the problem of CS generation. Michalak et al. [6] tackle the problem
of representing such games (they use a more compact description,
still allowing efficient computation). Elkind et al. [3] consider CSs in
weighted voting games.

To compute the excess of a coalition, one can take the maximum
excess of that coalition in each CS containing it, and we can modify
the definition of the kernel to take the externalities into account. The
computation of such a kernel-stable payoff distribution would then
require much more resources since there are a lot more coalition val-
ues to check. Since all the agents in the population are concerned
with such a computation, the agents should cooperate to compute in
a distributed fashion such a payoff distribution. Because of lack of
space, we do not provide the details here. In the following we show
an example showing how we could consider the idea of the kernel+to
compute a stable payoff distribution.

In Table 1, we provide an example of computation of a payoff dis-
tribution in the kernel+for a game with externalities. We start with a
payoff distribution where the valuation of the optimal CS (CS high-
lighted in Table 1) is shared equally between all agents. The strength
of agent 2 is zero as there is no coalition where agent 2 is present
which would have a positive marginal payoff. For agents 0, 1 and 3,
the coalition they form in the optimal CS generates a marginal pay-
off of 3.392 − 3 · 0.848 = 0.041, and that is their strength. Hence,



agent 2 must make a side payment to either agent 0, 1, or 3. In the
example, the payment is made to agent 3. As a result, the strength
of agent 3 decreases, and the strength of agent 2 increases, but agent
2 still has the lowest strength. Agent 1 now has the largest strength
and hence a side payment from agent 2 to agent 1 occurs next. The
process iterates until the difference in strength is within ε

3.392
. Note

that in the final outcome, agent 2 receives a payoff of 0.785, which
is different from its payoff of 0.766 in the Kernel distribution, as 2 is
forming a singleton coalition that generates 0.766. In this particular
example, some of the valuation of the coalition {0, 1, 3} is shared
with another agent.

(a) Valuation Function
CS value coalition value

[{0}{1}{2}{3}] 2.114 {0} 0.272 {1} 0.123 {2} 0.805 {3} 0.915
[{03}{1}{2}] 1.403 {03} 1.147 {1} 0.041 {2} 0.215
[{0}{13}{2}] 1.054 {0} 0.363 {13} 0.667 {2} 0.023
[{0}{1}{23}] 2.503 {0} 0.108 {1} 0.874 {23} 1.521
[{02}{1}{3}] 1.445 {02} 0.141 {1} 0.857 {3} 0.448
[{023}{1}] 0.957 {023} 0.089 {1} 0.869
[{02}{13}] 1.730 {02} 1.087 {13} 0.642
[{0}{12}{3}] 2.018 {0} 0.144 {12} 0.984 {3} 0.890
[{03}{12}] 1.923 {03} 1.590 {12} 0.333
[{0}{123}] 1.363 {0} 0.769 {123} 0.594
[{01}{2}{3}] 0.646 {01} 0.142 {2} 0.019 {3} 0.485
[{013}{2}] 3.392 {013} 2.626 {2} 0.766
[{01}{23}] 1.256 {01} 0.326 {23} 0.930
[{012}{3}] 1.678 {012} 1.623 {3} 0.055
[{0123}] 1.786 {0123} 1.786

(b) History of side payments

ag
en

t

0 1 2 3 0 1 2 3

tim
e

Pa
yo

ff

ex
ce

ss

pa
ym

en
t

fr
om

to

0 0.848 0.848 0.848 0.848 .082 .082 .000 .082 0.041 2 3
1 0.848 0.848 0.807 0.889 .041 .041 .000 .041 0.021 2 3
2 0.848 0.848 0.786 0.910 0.021 0.027 0.019 0.021 0.004 2 1
3 0.848 0.852 0.782 0.910 0.017 0.023 0.023 0.017 0.003 0 2
4 0.845 0.852 0.785 0.910 0.020 0.023 0.020 0.020 0.001 0 1
5 0.844 0.853 0.785 0.910 0.020 0.021 0.020 0.020

Table 1. Example side payments to reach a payoff distribution in the EK.

4 Conclusion
The traditional assumption in game theory is that the members of a
coalition share the value of that coalition. In multiagent systems, it
may be desirable to form a CS that maximizes social welfare. How-
ever, in the work that considers forming such optimal CS, the stabil-
ity of the CS is not considered. One could use the nucleolus or the
kernel for that optimal CS. However, this may not be fair for some
agents.

In this paper, we discuss a solution that involves side-payment
across coalitions. This is not the traditional assumption. We believe
it could be a good way to add some fairness into the payoff distribu-
tion, and hence, improve the stability of the optimal CS. We use the
maximum excess of a coalition to represent the strength of an agent,
and the payoff is stable when all agents have the same strength. We
proved that the new stability concept is non empty since an algorithm
always converge towards one stable payoff vector.

In future work, we would like to explore additional properties of
the kernel+. For example, it would be interesting to study classes of

games where the kernel+and the kernel differ. It would also be inter-
esting to study the computational complexity of finding a kernel+-
stable payoff distribution for some specific representation. We are
currently working on approximation schemes where the agents an-
alyze only a subset of all CSs. Given the set of CSs analyzed, the
agents are in equilibrium, which makes our approximation accept-
able from a practical point of view.

In addition, we notice that there is a potential to further promote
fairness by modifying Algorithm 2. As of now, the side-payment are
bilateral and when multiple agents are candidates for a side payment,
one is randomly chosen. In the example, for the first two side pay-
ments, agent 3 receives a side payments, but agents 0 and 1 could
have received it as well, but in the end, agent 3 has a larger payoff
than agents 0 and 1, which may be considered unfair. We are work-
ing to modify the payment scheme by considering payments between
more than one agents. For example, in the current example, we would
like agents 0, 1, and 3 to receive an equal payment from agent 2 in the
first time step. Such modified payment schemes may restore parity to
final payoffs to these agents and hence further enhance the fairness
of our proposed scheme. As the convergence proof would remain
unchanged, we are guaranteed that a fairer payoff distribution exists.
We are working on finding a formal characterization of such payoff
distribution.
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