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Micro–level stochastic loss reserving

Katrien Antonio ∗ Richard Plat †

June 4, 2010

Abstract

1 To meet future liabilities general insurance companies will set–up reserves. Predicting

future cash–flows is essential in this process. Actuarial loss reserving methods will help them
to do this in a sound way. The last decennium a vast literature about stochastic loss reserving

for the general insurance business has been developed. Apart from few exceptions, all of

these papers are based on data aggregated in run–off triangles. However, such an aggregate
data set is a summary of an underlying, much more detailed data base that is available to the

insurance company. We refer to this data set at individual claim level as ‘micro–level data’.
We investigate whether the use of such micro–level claim data can improve the reserving

process. A realistic micro–level data set on liability claims (material and injury) from a

European insurance company is modeled. Stochastic processes are specified for the various
aspects involved in the development of a claim: the time of occurrence, the delay between

occurrence and the time of reporting to the company, the occurrence of payments and their

size and the final settlement of the claim. These processes are calibrated to the historical
individual data of the portfolio and used for the projection of future claims. Through an out–

of–sample prediction exercise we show that the micro–level approach provides the actuary
with detailed and valuable reserve calculations. A comparison with results from traditional

actuarial reserving techniques is included. For our case–study reserve calculations based on

the micro–level model are to be preferred; compared to traditional methods, they reflect real
outcomes in a more realistic way.

1 Introduction

We develop a micro–level stochastic model for the run–off of general insurance (also called

‘non–life’ or ‘property and casualty’) claims. Figure 1 illustrates the run–off (or development)

process of a general insurance claim. It shows that a claim occurs at a certain point in time

(t1), consequently it is declared to the insurer (t2) (possibly after a period of delay) and one or

several payments follow until the settlement (or closing) of the claim. Depending on the nature

of the business and claim, the claim can re–open and payments can follow until the claim finally

settles.

At the present moment (say τ) the insurer needs to put reserves aside to fulfill his liabilities

in the future. This actuarial exercise will be denoted as ‘loss’ or ‘claims reserving’. Insurers, share

holders, regulators and tax authorities are interested in a rigorous picture of the distribution of

future payments corresponding with open (i.e. not settled) claims in a loss reserving exercise.

General insurers distinguish between RBNS and IBNR reserves. ‘RBNS’ claims are claims that are
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Figure 1: Development of a general insurance claim
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to the company. For an RBNS claim occurrence and declaration take place before the present

moment and settlement occurs afterwards (i.e. τ ≥ t2 and τ < t6 (or τ < t9) in Figure 1). An

IBNR claim has occurred before the present moment, but its declaration and settlement follow

afterwards (i.e. τ ∈ [t1, t2) in Figure 1). The interval [t1, t2] represents the so–called reporting

delay. The interval [t2, t6] (or [t2, t9]) is often referred to as the settlement delay. Data bases

within general insurance companies typically contain detailed information about the run–off

process of historical and current claims. The structure in Figure 1 is generic for the kind of

information that is available. In this paper we will use the label ‘micro–level’ data to denote this

sort of data structures.

With the introduction of Solvency 2 (in 2012) and IFRS 4 Phase 2 (in 2013) insurers face

major challenges. IFRS 4 Phase 2 will define a new accounting model for insurance contracts,

based on market values of liabilities. In the document “Preliminary Views on Insurance Con-

tracts” (May 2007, discussion paper) the IASB (‘International Accounting Standards Board’)2

states that an insurer should base the measurement of all its insurance liabilities (for reserving)

on ‘best estimates’ of the contractual cash flows, discounted with current market discount rates.

On top of this, a margin that market participants are expected to require for bearing risk should

be added to this.

Solvency 2 will lead to a change in the regulatory required solvency capital for insurers.

Depending on the type of business, at this moment this capital requirement is a fixed percentage

of the mathematical reserve, the risk capital, the premiums or the claims. Under Solvency 2 the

so–called Solvency Capital Requirement (‘SCR’) will be risk–based, and market values of assets

and liabilities will be the basis for these calculations.

The measurement of future cash flows and its uncertainty thus becomes more and more

important. That also gives rise to the question whether the currently used techniques can be

improved. In this paper we will address that question for general insurance. Currently, reserving

for general insurance is based on data aggregated in run–off triangles. In a run–off triangle

observable variables are summarized per arrival year and development year combination. The

term arrival year (‘AY’) or year of occurrence is used by general actuaries to indicate the year in

which the accident took place. For a claim from AY t its first development year will be year t
itself, the second development year is t + 1 and so on. An example of a run–off triangle is given

in Table 3 and 4. A vast literature exists about techniques for claims reserving, largely designed

2http://www.iasb.org/NR/rdonlyres/08C8BB09-61B7-4BE8-AA39-A1F71F665135/0/InsurancePart1.pdf
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for application to loss triangles. An overview of these techniques is given in England and Verrall

(2002), Wüthrich and Merz (2008) or Kaas et al. (2008). These techniques can be applied to

run–off triangles containing either ‘paid losses’ or ‘incurred losses’ (i.e. the sum of paid losses

and case reserves).

The most popular approach is the chain–ladder approach, largely because of is practicality.

However, the use of aggregated data in combination with the chain–ladder approach gives rise

to several issues. A whole literature on itself has evolved to solve these issues, which are (in

random order):

(1) Different results between projections based on paid losses or incurred losses, addressed by Quarg

and Mack (2008), Postuma et al. (2008) and Halliwell (2009).

(2) Lack of robustness and the treatment of outliers, see Verdonck et al. (2009).

(3) The existence of the chain–ladder bias, see Halliwell (2007) and Taylor et al. (2003).

(4) Instability in ultimate claims for recent arrival years, see Bornhuetter and Ferguson (1972).

(5) Modeling negative or zero cells in a stochastic setting, see Kunkler (2004).

(6) The inclusion of calendar year effects, see Verbeek (1972) and Zehnwirth (1994).

(7) The possibly different treatment of small and large claims, see Wuthrich and Alai (2009).

(8) The need for including a tail factor, see for example Mack (1999).

(9) Over parametrization of the chain–ladder method, see Wright (1990) and Renshaw (1994).

(10) Separate assessment of IBNR and RBNS claims, see Schnieper (1991) and Liu and Verrall (2009).

(11) The realism of the Poisson distribution underlying the chain–ladder method.

(12) When using aggregate data, lots of useful information about the claims data remains unused, as

noted by England and Verrall (2002) and Taylor and Campbell (2002).

Most references above present useful additions to or comments on the chain–ladder method,

but these additions cannot all be applied simultaneously. More importantly, the existence of

these issues and the substantial literature about it indicate that the use of aggregate data in

combination with the chain–ladder technique (or similar techniques) is not always adequate for

capturing the complexities of stochastic reserving for general insurance.

England and Verrall (2002) and Taylor and Campbell (2002) questioned the use of aggre-

gate loss data when the underlying extensive micro–level data base is available as well. With

aggregate data, lots of useful information about the claims data remain unused. Covariate in-

formation from policy, policy holder or the past development process cannot be used in the

traditional stochastic model, since each cell of the run–off triangle is an aggregate figure. Quot-

ing England and Verrall (2002) (page 507) “[. . . ] it has to be borne in mind that traditional

techniques were developed before the advent of desktop computers, using methods which could be

evaluated using pencil and paper. With the continuing increase in computer power, it has to be

questioned whether it would not be better to examine individual claims rather than use aggregate

data.”.

As a result of the observations mentioned above, a small stream of literature has emerged

about stochastic loss reserving on an individual claim level. Arjas (1989), Norberg (1993) and

Norberg (1999) formulated a mathematical framework for the development of individual claims.

Using ideas from martingale theory and point processes, these authors present a probabilistic,

rather than statistical, framework for individual claims reserving. Haastrup and Arjas (1996)

continue the work by Norberg and present a first detailed implementation of a micro–level
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stochastic model for loss reserving. They use non–parametric Bayesian techniques which may

complicate the accessibility of the paper. Furthermore, their case study is based on a small data

set with fixed claim amounts. Recently, Larsen (2007) revisited the work of Norberg, Haastrup

and Arjas with a small case–study. Zhao et al. (2009) and Zhao and Zhou (2010) present

a model for individual claims development using (semi–parametric) techniques from survival

analysis and copula methods. However, a case study is lacking in their work.

In this paper micro-level stochastic model is used to quantify the reserve and its uncertainty

for a realistic general liability insurance portfolio. Stochastic processes for the occurrence times,

the reporting delay, the development process and the payments are fit to the historical individual

data of the portfolio and used for projection of future claims and its (estimation and process)

uncertainty. Both the Incurred But Not Reported (IBNR) reserve as well as the Reported But Not

Settled (RBNS) reserve are quantified and the results are compared with those of traditional

actuarial techniques.

We investigate whether the quality of reserves and their uncertainty can be improved by

using more detailed claims data instead of the classical run–off triangles. Indeed, a micro–level

approach allows much closer modeling of the claims process. Lots of the above mentioned is-

sues will not exist when using a micro–level approach, because of the availability of lots of data

and the potential flexibility in modeling the future claims process. For example, covariate infor-

mation (e.g. deductibles, policy limits, calendar year) can be included in the projection of the

cash flows when claims are modeled at an individual level. The use of lots of (individual) data

avoids robustness problems and over parametrization. Also the problems with negative or zero

cells and setting the tail factor are circumvented, and small and large claims can be handled

simultaneously. Furthermore, individual claim modeling can provide a natural solution for the

dilemma within the traditional literature whether to use triangles with paid claims or incurred

claims. This dilemma is important because practicing actuaries put high value to their compa-

nies’ expert opinion which is expressed by setting an initial case reserve. Incurred payments are

the sum of paid losses and these case reserves. Using micro–level data we use the initial case

reserve as a covariate in the projection process of future cash flows.

The remainder of the paper is organized as follows. First, the data set is introduced in

Section 2. In Section 3 the statistical model is described. Results from estimating all components

of the model are in Section 4. Section 5 presents the prediction routine and in Section 6 we give

results and a comparison with traditional actuarial techniques. Section 7 concludes.

2 Data

The data set used in this paper contains information about a general liability insurance portfolio

(for private individuals) of a European insurance company. The available data consist of the

exposure per month from January 2000 till August 2009, as well as a claim file that provides a

record of each claim filed with the insurer from January 1997 till August 2009. Note that we are

missing exposure information for the period January 1997 till December 1999, but the impact

of this lack on our reserve calculations will be very small.

Exposure The exposure is not the number of policies, but the ‘earned’ exposure. That implies

that two policies which are both only insured for half of the period are counted as 1. Figure 2

shows the exposure per month. Note that the downward spikes correspond to the month Febru-

ary.
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Figure 2: Available exposure per month

from January 2000 till August 2009.
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Random development processes The claim file

consists of 1,525,376 records corresponding with

491,912 claims. Figure 3 shows the development

of three claims, taken at random from our data set.

It shows the timing of events as well as the cost of

the corresponding payments (if any). These are in-

dicated as jumps in the figure. Starting point of the

development process is the accident date. This is

indicated with a sub-title in each of the plots and

corresponds with the point x = 0. The x-axis is in

months since the accident date. The y-axis repre-

sents the cumulative amount paid for the claim.

Figure 3: Development of 3 random claims from the data set.
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Type and number of claims In this general liability portfolio, we have to deal with two types

of claims: material damage (‘material’) and bodily injury (‘injury’).

Figure 4: Number of open and closed claims of type material (left) and injury (right).
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Figure 4 shows the number of claims per arrival year, and whether they are closed or still open

(at the end of August 2009). The development pattern and loss distributions of these claim types

5



are usually very different. In practice they are therefore treated separately in separate run–off

triangles. Following this approach, we will treat them separately too.

Reporting and settlement delay Important drivers of the IBNR and RBNS reserves are the

reporting delays and settlement delays. Figure 5 shows the reporting delays for material and

injury claims. The reporting delay is the time that passes between the occurrence date of the

accident and the date it was reported to the insurance company. It is measured in months since

occurrence of the claim. Of course, the reporting delay is only available for claims that have been

reported to the insurer at the present moment. Figure 5 shows the settlement delay separately

for injury and material claims. The settlement delay is the time elapsed between the reporting

date of the claim and the date of final settlement by the company. It is measured in months and

only available for closed claims. These figures show that the observed reporting delays are of

similar length for material and injury losses. However, the settlement delay is very different.

The settlement delay is far more skewed to the right for the injury claims than for the material

claims.

Figure 5: Upper: reporting delay for material (left) and injury (right) claims. Lower: settlement

delay for material (left) and injury (right) claims.
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Events in the development In this paper we will distinguish three types of events which can

occur during the development of a claim. “Type 1” events imply settlement of the claim without

a payment. With a “type 2” event we will refer to a payment with settlement at the same time.

Intermediate payments (without settlement) are “type 3” events. Figure 6 gives the relative

frequency of the different types of events over development quarters. With micro–level data the

first development quarter is the period of 3 months following the reporting date of the claim,

the second quarter is the period of 3 months following the first development quarter, et cetera.

In the last development quarter shown in the graph we collect the remainder development. The

graph shows that the proportions of each event type are stable over the development quarters for

injury claims. For material claims, the proportion of event type 2 decreases for later development

quarters, while the proportion of event type 3 increases.

Figure 6: Relative frequency of events over development quarters.
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Payments Events of type 2 and type 3 come with a payment. The distribution of these pay-

ments differs materially for the different types of claims. Figure 7 shows the distribution of the

payments, separately for material and injury claims. The payments are discounted to 1-1-1997

with the Dutch consumer price inflation, to exclude the impact of inflation on the distribution of

the payments. The figures suggest that a lognormal distribution would probably be reasonable

for describing the distribution of the payments. This will be discussed further in Section 4. Table

1 gives characteristics of the observed payments for both material and injury losses.

Table 1: Characteristics observed payments.
Mean Median Min. Max. 1% 5% 25% 75% 95% 99%

Material 277 129 8 × 10−4 198,931 12 25 69 334 890 1,768
Injury 1,395 361 0.4875 779,398 16 25 89 967 4,927 16,664

Initial case estimates As noted in Section 1, often the problem arises that the projection based

on paid losses is far different than the projection based on incurred losses. This problem is ad-

dressed recently by Quarg and Mack (2008), Postuma et al. (2008) and Halliwell (2009), who
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Figure 7: Distribution of payments for material (right) and injury (left) claims.
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simultaneously model paid and incurred losses. Disadvantage of those methods is that models

based on incurred losses can be instable because the methods for setting the case reserves are

often changed (for example, as a result of adequacy test results or profit policy of the company).

Reserving models that are directly based on these case reserves (as part of the incurred losses)

can therefore be instable. However, the case reserves may have added value as an explain-

ing variable when projecting future payments. We have defined different categories of initial

case reserves (separately for material claims and injury claims) that can be used as explanatory

variables. Table 2 shows the number of claims, the average settlement delay (in months) and

the average cumulative paid amount for these categories. The table clearly shows the differ-

ences in settlement delay and cumulative payments for the different initial reserve categories.

Therefore, it might be worthwhile to include these categories as explanatory variables in the

prediction routine.

Table 2: Initial reserve categories.
Material Injury

Initial Average Average Cum. Initial Average Average Cum.
Case Reserve # claims settl. delay payments Case Reserve # claims settl. delay payments

(months) (months)

≤ 10, 000 465,015 1.87 252 ≤ 1, 000 3,709 9.87 2,570
> 10, 000 385 10.88 7,950 (1,000 -15,000] 5,165 15.17 3,872

> 15, 000 360 35.2 33,840

3 The statistical model

By a claim i is understood a combination of an occurrence time Ti, a reporting delay Ui and a

development process Xi. Hereby Xi is short for (Ei(v), Pi(v))v∈[0,Vi]. Ei(vij) := Eij is the type

of the jth event in the development of claim i. This event occurs at time vij, expressed in time

units after notification of the claim. Vi is the total waiting time from notification to settlement

for claim i. If the event includes a payment, the corresponding severity is given by Pi(vij) := Pij .

The different types of events are specified in Section 2. The development process Xi is a jump
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process. It is modeled here with two separate building blocks: the timing and type of events and

their corresponding severities. The complete description of a claim is given by:

(Ti, Ui,Xi) with Xi := (Ei(v), Pi(v))v∈[0,Vi]. (1)

Assume that outstanding liabilities are to be predicted at calendar time τ . We distinguish

IBNR, RBNS and settled claims.

• for an IBNR claim: Ti + Ui > τ and Ti < τ ;

• for an RBNS claim: Ti+Ui ≤ τ and the development of the claim is censored at (τ−Ti−Ui),
i.e. only (Ei(v), Pi(v))v∈[0,τ−Ti−Ui] is observed;

• for a settled claim: Ti + Ui ≤ τ and (Ei(v), Pi(v))v∈[0,Vi] is observed.

3.1 Position dependent marked Poisson process

Following the approach in Arjas (1989) and Norberg (1993) we treat the claims process as

a Position Dependent Marked Poisson Process (PDMPP), see Karr (1991). In this application,

a point is an occurrence time and the associated mark is the combined reporting delay and

development of the claim. We denote the intensity measure of this Poisson process with λ
and the associated mark distribution with (PZ|t)t≥0. In the claims development framework

the distribution PZ|t is given by the distribution PU |t of the reporting delay, given occurrence

time t, and the distribution PX|t,u of the development, given occurrence time t and reporting

delay u. The complete development process then is a Poisson process on claim space C =
[0,∞) × [0,∞) × χ with intensity measure:

λ(dt) × PU |t(du) × PX|t,u(dx) with (t, u, x) ∈ C. (2)

The reported claims (which are not necessarily settled) belong to the set:

Cr = {(t, u, x) ∈ C|t + u ≤ τ}, (3)

whereas the IBNR claims belong to:

Ci = {(t, u, x) ∈ C|t ≤ τ, t + u > τ}. (4)

Since both sets are disjoint, both processes are independent (see Karr (1991)). The process of

reported claims is a Poisson process on C with measure

λ(dt) × PU |t(du) × PX|t,u(dx) × 1[(t,u,x)∈Cr ]

= λ(dt)PU |t(τ − t)1(t∈[0,τ ])
︸ ︷︷ ︸

(a)

×
PU |t(du)1(u≤τ−t)

PU |t(τ − t)
︸ ︷︷ ︸

(b)

×PX|t,u(dx)
︸ ︷︷ ︸

(c)

. (5)

Part (a) is the occurrence measure. The mark of this claim is composed by a reporting delay,

given the occurrence time (its conditional distribution is given by (b)), and the conditional

distribution (c) of the development, given the occurrence time and reporting delay. Similarly,

the process of IBNR claims is a Poisson process with measure:

λ(dt)
(
1 − PU |t(τ − t)

)
1(t∈[0,τ ])

︸ ︷︷ ︸

(a)

×
PU |t(du)1u>τ−t

1 − PU |t(τ − t)
︸ ︷︷ ︸

(b)

×PX|t,u(dx)
︸ ︷︷ ︸

(c)

, (6)

where similar components can be identified as in (5).
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3.2 The likelihood

The approach followed in this paper is parametric. Therefore, we will optimize the likelihood

expression for observed data over the unknown parameters used in this expression. The ob-

served part of the claims process consists of the development up to time τ of claims reported

before τ . We denote these observed claims as follows:

(T o
i , Uo

i ,Xo
i )i≥1, (7)

where the development of claim i is censored τ − T o
i − Uo

i time units after notification. The

likelihood of the observed claim development process can be written as (see Cook and Lawless

(2007)):

Λ(obs) ∝







∏

i≥1

λ(T o
i )PU |t(τ − T o

i )






exp

(

−

∫ τ

0
w(t)λ(t)PU |t(τ − t)dt

)

×







∏

i≥1

PU |t(dUo
i )

PU |t(τ − T o
i )






×
∏

i≥1

P
τ−T o

i −Uo
i

X|t,u (dXo
i ). (8)

The superscript in the last term of this likelihood indicates the censoring of the development of

this claim τ −T o
i −Uo

i time units after notification. The function w(t) gives the exposure at time

t.
For the reporting delay and the development process we will use techniques from survival

analysis. The reporting delay is a one–time single type event that can be modeled using standard

distributions from survival analysis. For the development process the statistical framework of

recurrent events will be used. Cook and Lawless (2007) provide a recent overview of statistical

techniques for the analysis of recurrent events. These techniques primarily address the modeling

of an event intensity (or hazard rate).

As mentioned in (1) for each claim i its development process consists of

Xi = (Ei(v), Pi(v))v∈[0,Vi]. (9)

Hereby Ei(vij) := Eij is the type of the jth event in the development of claim i, occurring at time

vij. Vi is the total waiting time from notification to settlement for claim i. If the event includes

a payment, the corresponding severity is given by Pi(vij) := Pij . To model the occurrence of

the different events a hazard rate is specified for each type. The hazard rates hse, hsep and hp

correspond to type 1 (settlement without payment), type 2 (settlement with a payment at the

same time) and type 3 (payment without settlement) events, respectively.

Events of type 2 and 3 come with a payment. We denote the density of a severity payment

with Pp. Using this notation the likelihood of the development process of claim i is given by:







Ni∏

j=1

(

h
δij1
se (Vij) × h

δij2
sep (Vij) × h

δij3
p (Vij)

)






× exp

(

−

∫ τi

0
(hse(u) + hsep(u) + hp(u))du

)

×
∏

j

Pp(dVij). (10)

Here δijk is an indicator variable that is 1 if the jth event in the development of claim i is of

type k. Ni is the total number of events, registered in the observation period for claim i. This

observation period is [0, τi] with τi = min (τ − Ti − Ui, Vi).
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Combining (8) and (10) gives the likelihood for the observed data:

Λ(obs) ∝







∏

i≥1

λ(T o
i )PU |t(τ − T o

i )






exp

(

−

∫ τ

0
w(t)λ(t)PU |t(τ − t)dt

)

×







∏

i≥1

PU |t(dUo
i )

PU |t(τ − T o
i )






×
∏

i≥1







Ni∏

j=1

(

h
δij1
se (Vij) × h

δij2
sep (Vij) × h

δij3
p (Vij)

)







× exp

(

−

∫ τi

0
(hse(u) + hsep(u) + hp(u))du

)

×
∏

i≥1

∏

j

Pp(dVij). (11)

3.3 Distributional assumptions

We discuss the likelihood in (11) in more detail. Distributional assumptions for the various

building blocks, being the reporting delay, the occurrence times –given the reporting delay

distribution– and the development process, are presented. At each stage it is possible to include

covariate information such as the initial case reserve classes. Our final choices and estimation

results will be covered in Section 4.

Reporting delay The notification of the claim is a one–time single type event that can be

modeled using standard distributions from survival analysis (such as the Exponential, Weibull

or Gompertz distribution). Figure 5 indicates that for a large part of the claims the claim will be

reported in the first few days after the occurrence. Therefore we use a mixture of one particular

standard distribution with one or more degenerate distributions for notification during the first

few days. For example, for a mixture of a survival distribution fU with n degenerate components

the density is given by:

n−1∑

k=0

pkI{k}(u) +

(

1 −
n−1∑

k=0

pk

)

fU |U>n−1(u), (12)

where I{k} = 1 for the kth day after occurrence time t and I{k} = 0 otherwise.

Occurrence process When optimizing the likelihood for the occurrence process the reporting

delay distribution and its parameters (as obtained in the previous step) are used. The likelihood

L ∝







∏

i≥1

λ(T o
i )PU |t(τ − T o

i )






exp

(

−

∫ τ

0
w(t)λ(t)PU |t(τ − t)dt

)

, (13)

needs to be optimized over λ(t). We use a piecewise constant specification for the occurrence

rate:

λ(t) =







λ1 0 ≤ t < d1

λ2 d1 ≤ t < d2

...

λm dm−1 ≤ t < dm,

(14)

with intervals such that τ ∈ [dm−1, dm) and w(t) := wl for dl−1 ≤ t < dl.
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Let the indicator variable δ1(l, ti) be 1 if dl−1 ≤ ti < dl, with ti the occurrence time of claim

i. The number of claims in interval [di−1, di) can be expressed as:

Noc(l) :=
∑

i

δ1(l, ti). (15)

The likelihood corresponding with the occurrence times is given by

L ∝ λ
Noc(1)
1 λ

Noc(2)
2 . . . λNoc(m)

m

∏

i≥1

PU |t(τ − ti)

× exp

(

−λ1w1

∫ d1

0
PU |t(τ − t)dt

)

exp

(

−λ2w2

∫ d2

d1

PU |t(τ − t)dt

)

× . . . exp

(

−λmwm

∫ dm

dm−1

PU |t(τ − t)dt

)

. (16)

Optimizing over λl (with l = 1, . . . ,m) leads to:

λ̂l =
Noc(l)

wl

∫ dl

dl−1
PU |t(τ − t)dt

. (17)

Development process A piecewise constant specification is used for the hazard rates. This

implies:

h{se,sep,p}(t) =







h{se,sep,p};1 for 0 ≤ t < a1

h{se,sep,p};2 for a1 ≤ t < a2

...

h{se,sep,p};d for ad−1 ≤ t < ad.

(18)

This piecewise specification can be integrated in a straightforward way in likelihood specifica-

tion (11), although the resulting expression is complex in notation. The optimization of the

likelihood expression can be done analytically (which results in very elegant and compact ex-

pressions) or numerically. It might be worthwhile to fit the distribution separately for ‘first

events’ in the development and ‘later events’. This will be investigated in Section 4.

Payments Events of type 2 and type 3 come with a payment. Section 2 showed that the

observed distribution of the payments has similarities with a lognormal distribution, but there

might be more flexible distributions that fit the historical payment data better. Therefore, next to

the lognormal distribution, we experimented with a generalized beta of the second kind (GB2),

Burr and Gamma distribution. Covariate information such as the initial reserve category and the

development year is taken into account.

4 Estimation results

The outcomes of calibrating these distributions to the historical data are given. Given the very

different characteristics of material claims and injury claims, the processes described in Sec-

tion 3 are fitted (and projected) separately for both types of claims. This is line with actuarial

practice, where usually separate run–off triangles are constructed for material and injury claims.

Optimization of all likelihood specifications was done with the Proc NLMixed routine in SAS.
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Reporting delay We will use a mixture of a Weibull distribution and 9 degenerate components

corresponding with settlement after 0, . . . , 8 days. Figure 8 illustrates the fit of this mixture of

distributions to the actually observed reporting delays.

Figure 8: Reporting delay for material (left) and injury (right) claims plus degenerate components

and truncated Weibull distribution.
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Occurrence process Given the above specified distribution for the reporting delay, the like-

lihood (16) for the occurrence times can be optimized. Monthly intervals are used for this,

ranging from January 2000 till August 2009. Point estimates and a corresponding 95% confi-

dence interval are shown in Figure 9.

Figure 9: Estimates of piecewise specification for λ(t): (left) material and (right) injury claims.
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Development process For the different events that may occur during the development of a

claim, the use of a constant, Weibull as well as a piecewise constant hazard rate was investigated.
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In the piecewise constant hazard rate specification for the development of material claims, the

hazard rate was assumed to be continuous on four month intervals: [0 − 4) months, [4 − 8)
months, . . ., [8 − 12) months and ≥ 12 months. For injury claims, the hazard rate was assumed

continuous on intervals of six months: [0 − 6) months, [6 − 12) months, . . ., [36 − 42) months

and ≥ 42 months. Figure 10 shows estimates for Weibull and piecewise constant hazard rates.

All models are estimated separately for ‘first events’ and ‘later events’.

Figure 10: Estimates for Weibull and piecewise constant hazard rates: (upper) injury claims and

(lower) material claims.
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The piecewise constant specification reflects the actual data. The figure shows that the Weibull

distribution is reasonably close to the piecewise constant specification. In the rest of this paper

we will use the piecewise constant specification. Because the Weibull distribution is a good

alternative, we explain how to use both specifications in the prediction routine (see Section 5).

Payments Several distributions have been fitted to the historical payments (which were dis-

counted to 1-1-1997 with Dutch price inflation). We examined the fit of the Burr, gamma and

lognormal distribution, combined with covariate information. Distributions for the payments

are truncated at the coverage limit of 2.5 million euro per claim. A comparison based on BIC

showed that the lognormal distribution achieves a better fit than the Burr and gamma distribu-

tions. When including the initial reserve category as covariate or both the initial reserve category

and the development year, the fit further improves. Given these results, the lognormal distribu-

tion with the initial reserve category and the development year as covariates will be used in the

prediction. The covariate information is included in both the mean (µi) and standard deviation
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(σi) of the lognormal distribution for observation i:

µi =
∑

r

∑

s

µr,sIDYi=sIi∈r

σi =
∑

r

∑

s

σr,sIDYi=sIi∈r. (19)

Hereby r is the initial reserve category and DYi is the development year corresponding with ob-

servation i. IDYi=s and Ii∈r are indicator variables denoting whether observation i corresponds

with DY s and reserve category r. Figure 11 shows corresponding qqplots.

Figure 11: Normal qqplots corresponding with the fit of log(payments) including initial reserve and

development year as covariate information.
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5 Predicting future cash–flows

5.1 Prediction routine

To predict the outstanding liabilities with respect to this portfolio of liability claims, we distin-

guish between IBNR and RBNS claims. The following step by step approach allows to obtain

random draws from the distribution of both IBNR and RBNS claims.

Predicting IBNR claims As noted in Section 3, an IBNR claim occurred already but has not

yet been reported to the insurer. Therefore, Ti + Ui > τ and Ti < τ with Ti the occurrence time

of the claim and Ui its reporting delay. The Tis are missing data: they are determined in the

development process but unknown to the actuary at time τ . The prediction process for the IBNR

claims requires the following steps:

(a) Simulate the number of IBNR claims in [0, τ ] and their corresponding occurrence

times.

According to the discussion in Section 3 the IBNR claims are governed by a Poisson process

with non–homogeneous intensity or occurrence rate:

w(t)λ(t)(1 − PU |t(τ − t)), (20)
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where λ(t) is piecewise constant according to specification (14). The following property

follows from the definition of non–homogeneous Poisson processes:

NIBNR(l) ∼ Poisson

(

λlwl

∫ dl

dl−1

(1 − PU |t(τ − t))dt

)

, (21)

where NIBNR(l) is the number of IBNR claims in time interval [dl−1, dl). Note that the inte-

gral expression has already been evaluated (numerically) in the fitting procedure. Given

the simulated number of IBNR claims nIBNR(l) for each interval [dl−1, dl), the occurrence

times of the claims are uniformly distributed in [dl−1, dl).

(b) Simulate the reporting delay for each IBNR claim

Given the simulated occurrence time ti of an IBNR claim, its reporting delay is simulated

by inverting the distribution:

P (U ≤ u|U > τ − ti) =
P (τ − ti < U ≤ u)

1 − P (U ≤ τ − ti)
. (22)

In case of our assumed mixture of a Weibull distribution and 9 degenerate distributions

this expression has to be evaluated numerically.

(c) Simulate the initial reserve category

For each IBNR claim an initial reserve category has to be simulated for use in the develop-

ment process. Given m initial reserve categories, the probability density for initial reserve

category c is:

f(c) =

{

pc for c = 1, 2, . . . ,m − 1

1 −
∑m−1

k=1 pk for c = m.
(23)

The probabilities used in (23) are the empirically observed percentages of policies in a

particular initial reserve category.

(d) Simulate the payment process for each IBNR claims

This step is common with the procedure for RBNS claims and will be explained in the next

paragraph.

Predicting RBNS claims Given the RBNS claims and the simulated IBNR claims, the process

proceeds as below. Note that we use the piecewise hazard specification for the development

process. As an alternative for the analytical specifications given below, numerical routines could

be used. Using the alternative Weibull specification would require numerical operations as well.

(e) Simulate the next event’s exact time

In case of RBNS claims, the time of censoring ci of claim i is known. For IBNR claims

this censoring time ci := 0. The next event – at time vi,next – can take place at any time

vi,next > ci. To simulate its exact time we need to invert: (with p randomly drawn from a

Unif(0, 1) distribution)

P (V < vi,next|V > ci) = p

m

P (ci < V ≤ vi,next)

1 − P (V ≤ ci)
= p. (24)
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From the relation between a hazard rate and cdf, we know

P (V ≤ vi,next) = 1 − exp

(

−

∫ vi,next

0

∑

e

he(t)dt

)

, (25)

with e ∈ {se, sep, p}. For instance with a Weibull specification for the hazard rates this

equation will be inverted numerically. With a piecewise constant specification for the

hazard rates numerical routines can be used as well. However, as an alternative closed–

form expressions can be derived. Step (e) should then be replaced by (e1) − (e2):

(e1) Simulate the next event’s time interval

In case of RBNS claims, the time of censoring ci of claim i belongs to a certain interval

[ak−1, ak). The next event – at time vi,next > ci – can take place in any interval from

[ak−1, ak) on. The probability that vi,next belongs to a certain interval [ak−1, ak) is

given by:

P (ak−1 ≤ V < ak|V > ci) =

{
P (ci<V <ak)
1−P (V ≤ci)

if ci ∈ [ak−1, ak)
P (ak−1≤V <ak)

1−P (V ≤ci)
if ci 6∈ [ak−1, ak).

(26)

Using the notation introduced above the involved probabilities can be expressed as

(for instance):

P (ci < V < ak)

1 − P (V < ci)
=

P (V < ak) − P (V ≤ ci)

1 − P (V ≤ ci)

=
1 − exp

{
−
∫ ak

0

∑

e he(t)dt
}
− 1 + exp

{
−
∫ ci

0

∑

e h2(t)dt
}

exp
{
−
∫ ci

0

∑

e he(t)dt
} ,

=
exp{−

∑

e
∑d

l=1 hel[(al−al−1)δ2(l,ci)+(ci−al−1)δ1(l,ci)]}−exp{−
∑

e
∑d

l=1 hel[(al−al−1)δ2(l,ak)+(ak−al−1)δ1(l,ak)]}
exp{−

∑

e
∑d

l=1
hel[(al−al−1)δ2(l,ci)+(ci−al−1)δ1(l,ci)]}

,

(27)

with e ∈ {se, sep, p}, δ2(l, t) is 1 if t > al and 0 otherwise and δ1(l, t) is 1 if al−1 ≤
t < al and 0 otherwise.

(e2) Simulate the exact time of the next event

Given the time interval of the next event, [ak−1, ak), we simulate its exact time by

inverting the following equation for vi,next

P (V < vi,next|ci < V < ak) = p if ci ∈ [ak−1, ak);

P (V < vi,next|ak−1 ≤ V < ak) = p otherwise, (28)

where p is randomly drawn from a Unif(0, 1) distribution. For instance, for P (V <
vi,next|ak−1 ≤ V < ak) = p this inverting operation goes as follows:

P (V < vi,next) = pP (ak−1 ≤ V < ak) + P (V < ak−1)

m

1 − exp

{

−

∫ vi,next

0

∑

e

he(t)dt

}

= pP (ak−1 ≤ V < ak) + P (V < ak−1)

m

− log [1−pP (ak−1≤V <ak)−P (V <ak−1)]=
∑

e

∑k−1
l=1 hel(al−al−1)+

∑

e hek(vi,next−ak−1)

m

vi,next=
− log [1−pP (ak−1≤V <ak)−P (V <ak−1)]−

∑

e
∑k−1

l=1
hel(al−al−1)

∑

e hek
+ak−1, (29)

with e ∈ {se, sep, p}.
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(f) Simulate the event type Given the exact time of the next event, its type is simulated using

the following argument

lim
△v→0

P (E = e|v ≤ V < v + △v) = lim
△v→0

P (v≤V <v+△v∩E=e)
△v

P (v≤V <v+△v)
△v

=
he(v)

∑

e he(v)
, (30)

where e ∈ {se, sep, p}.

(g) Simulate the corresponding payment Given the covariate information for claim i, the

payment can be drawn from the appropriate lognormal distribution. Note that the cumu-

lative payment cannot exceed the coverage limit of 2.5 million per claim.

(h) Stop or continue Depending on the simulated event type in step (f), the prediction stops

(in case of settlement) or continues.

In the next section, this prediction process will be applied separately for the material claims and

the injury claims.

5.2 Comment on parameter uncertainty

With respect to the uncertainty of predictions a distinction has to be made between process

uncertainty and estimation or parameter uncertainty (see England and Verrall (2002)). The

process uncertainty will be taken care of by sampling from the distributions proposed in Sec-

tion 3. To include parameter uncertainty the bootstrap technique or concepts from Bayesian

statistics can be used. While a formal Bayesian approach is very elegant, it generally leads to

significantly more complexity, which is not contributing to the accessibility and transparency of

the techniques towards practicing actuaries. Applying a bootstrap procedure would be possible,

but is very computer intensive, since our sample size is very large and several stochastic pro-

cesses are used. To avoid computational problems when dealing with parameter uncertainty,

we will use the asymptotic normal distribution of our maximum likelihood estimators. At each

iteration of the prediction routine we sample each parameter from its corresponding asymptotic

normal distribution. Note that –due to our large sample size– confidence intervals are narrow.

This is in contrast with run–off triangles where sample sizes are typically very small and param-

eter uncertainty is an important point of concern.

6 Numerical results

The prediction process described in Section 5 is applied separately for the material and injury

claims. In this Section results obtained with the micro–level reserving model are shown. Our

results are compared with those from traditional techniques based on aggregate data. We show

results for an out–of–sample exercise, so that the estimated reserves can be compared with

actual payments. This out–of–sample test is done by estimating the reserves per 1-1-2005. The

data set that is available at 1-1-2005 can be summarized using run-off triangles, displaying data

from arrival years 1999 – 2004. Table 3 (material) and 4 (injury) show the run–off triangles

that are the basis for this out–of–sample exercise. The lower triangle is known up to 3 cells. The

actual observations are given in bold. Of course, these were not known at 1-1-2005 so cannot

be used as input for calibration of the models.
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Table 3: Run–off triangle material claims (displayed in thousands), arrival years 1997-2004.

Arrival Development Year

Year 1 2 3 4 5 6 7 8

1997 4,380 972 82 9 36 27 34 11

1998 4,334 976 56 35 76 24 0.572 17

1999 5,225 1,218 59 108 108 12 0.390 0

2000 5,366 1,119 161 14 6 4 0.36 10

2001 5,535 1,620 118 119 13 3 0.350 2

2002 6,539 1,547 67 65 17 5 9 8.8

2003 6,535 1,601 90 21 31 7 1.7

2004 7,109 1,347 99 76 20 13

Table 4: Run–off triangle injury claims (displayed in thousands), arrival years 1997-2004.

Arrival Development Year

Year 1 2 3 4 5 6 7 8

1997 308 635 366 530 549 137 132 339

1998 257 481 312 336 269 56 179 78

1999 292 589 410 273 254 287 132 97

2000 316 601 439 498 407 371 247 275

2001 465 846 566 566 446 375 147 240

2002 314 615 540 449 133 131 332 1,082

2003 304 802 617 268 223 216 173

2004 333 864 412 245 273 100

Output from the micro–level model The distribution of the reserve per 1-1-2005 is deter-

mined for the individual (micro–level) model proposed in this paper. We will first look at the

output that becomes available when using the micro–level model. Figure 12 shows results for

injury payments done in calendar year 2006, based on 10,000 simulations. In Table 4 this is

the diagonal going from 412, 268, . . . , up to 97. The first row in Figure 12 shows (from left to

right): the number of IBNR claims reported in 2006, the total amount of payments done in this

calendar year and the total number of events occurring in 2006. The IBNR claims are claims

that occurred before 1-1-2005, but were reported to the insurer during calendar year 2006. The

total amount paid in 2006 is the sum of payments for RBNS claims and IBNR claims, which are

separately available from the micro–model. In the second row of plots we take a closer look

at the events registered in 2006 by splitting into type 1–type 3 events. In each of the plots

the black solid line indicates what was actually observed. This figure shows that the predictive

distributions from the micro–level model are realistic, given the actual observations. Only the

actual number of IBNR claims is far in the tail of the distribution. However, note that this relates

to a relatively low number of IBNR claims.

Comparing reserves The results from the micro–level model are now compared with results

from two standard actuarial models developed for aggregate data. To the data in Tables 3

and 4, a stochastic chain–ladder model is applied which is based on the overdispersed Poisson

distribution and the lognormal distribution, respectively. With Yij denoting cell (i, j) from a run–

off triangle, corresponding with arrival year i and development year j, the model specifications

for overdispersed Poisson ((31)) and lognormal ((32)) are given below. Both aggregate models
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Figure 12: Out–of–sample exercise per 1-1-2005, injury claims. Results are for calendar year 2006,

based on 10,000 simulations from the micro–level model. The black solid line indicates actually

observed quantities.
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are implemented in a Bayesian framework 3

Yij = φMij

Mij ∼ Poi(µij/φ)

µij = αi + βj ; (31)

log (Yij) ∼ µij + ǫij

µij = αi + βj

ǫij ∼ N(0, σ2). (32)

Figure 13 shows the reserves (in thousands euro) for material claims, as obtained with the

different methods. The results are shown for calendar years 2005 (top left) - 2007 (bottom

left), and for 2008 (top right), 2009 and the total reserve (bottom right). The total reserve

predicts the complete lower triangle (all bold numbers + three missing cells in Tables 3 and

4). In each row of 3 plots we show (in this order) the results from the micro–level model, the

aggregate overdispersed Poisson model and the aggregate lognormal. The solid black line in

each plot indicates what has really been observed. In the plots of the total reserve the dashed

line is the sum of all observed payments in the lower triangle. This is –up to three unknown

cells– the total reserve. Corresponding numerical results are in Table 5.

In Figure 13 we use the same scale for plots showing reserves obtained with the micro–level

and the overdispersed Poisson model. However, for the lognormal model a different scale on the

3The implementation of the overdispersed Poisson is in fact empirically Bayesian. φ is estimated beforehand and

held fixed. We use vague normal priors for the regression parameters in both models and a gamma prior for σ−1 in

the lognormal model.
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x–axis is necessary because of the long right tail of the frequency histogram obtained for this

model. These unrealistically high reserves (see Table 5) are a disadvantage of the lognormal

model for the portfolio of material claims. Concerning the Poisson model for aggregate data,

we conclude from Figure 13 that the overdispersed Poisson model overstates the reserve; the

actually observed amount is always in the left tail of the histogram. For instance, in the plots

with the total reserve, the median of the simulations from overdispersed Poisson is at 2,785,000

euro, the median of the simulations from the micro–level model is 2,054,430 euro, whereas the

total amount registered for the lower triangle is 1,861,000 euro. Recall that the latter is the

total reserve up to the three unknown cells in Triangle 3. The best estimates (see the ‘Mean’

or ‘Median’ columns) obtained with the micro–level model are realistic and closer to the true

realizations than the best estimates from aggregate techniques.

Figure 14 shows the distributions of the reserve (in thousands of euro) for the different

methods for injury claims. Once again the actual payments are indicated with a solid black

line. The results of the lognormal model are now presented on the same scale as the other

two models. Corresponding numerical results are in Table 6. All models do well for calendar

year 2005, the individual model does the best job for calendar years 2006 and 2007. For these

calendar years the actual amount paid is –again– in the very left tail of the distributions obtained

with aggregate techniques. The overdispersed Poisson and the lognormal model perform better

in calendar years 2008 and 2009. Note however that calendar years 2008 and 2009 were

extraordinary years, when looking at injury payments. In 2009 the two highest claims of the

whole data set settled with a payment in 2009. The highest (the 779,383 euro payment shown

in Table 4) is extremely far from all other payments in the data set. The observed outcome from

calendar year 2009 should be considered as a very pessimistic scenario. Indeed, this realized

outcome is in the very right tail of the distribution obtained with the individual model. The

year 2008 was less extreme, but had an unusual number of very large claims (of the 15 highest

claims in the data set, 4 of them occurred in 2008).

Note Although we only present the results obtained for the out–of–sample test that calculates

reserves per 1-1-2005, we also calculated reserves per 1-1-2006/2007/2008/2009. Our conclu-

sions for these tests were similar to those reported above. Full details are available on the home

page of the first author.

Table 5: Out–of–sample exercise per 1-1-2005: numerical results for material claims (in thou-

sands), 6,000 simulations for the micro–level model..

Method Outcome Year Mean Median Min. Max. 5% 25% 75% 90% 95% 99.5%

Micro–level 1,537 CY 2005 1,404 1,342 1,093 5,574 1,204 1,272 1,449 1,627 1,783 3,143
139 06 307 248 76 2,738 138 191 346 498 630 1,779
123 07 246 183 30 2,740 72 123 286 444 618 1,688

39 08 146 98 7 2,426 30 61 164 283 402 1,225
23 09 52 26 0 2,216 4 12 53 104 167 639

> 1,861 Total 2,208 2,054 1,374 7,875 1,622 1,831 2,401 2,871 3,305 5,074

Aggregate ODP 1,537 CY 2005 2,000 1,989 1,194 3,028 1,591 1,834 2,166 2,321 2,431 2,674
139 06 324 309 44 774 177 265 376 442 486 597
123 07 214 199 0 619 88 155 265 332 354 464

39 08 144 133 0 553 44 88 177 243 265 354
23 09 66 66 0 376 0 22 88 133 155 243

> 1,861 Total 2,803 2,785 1,613 4,354 2,232 2,564 3,028 3,271 3,426 3,846

Aggregate LogN. 1,537 CY 2005 5,340 2,253 70 587,500 497 1,146 4,896 10,790 17,985 77,671
139 06 699 410 32 164,200 135 254 710 1,231 1,818 6,522
123 07 380 228 8 23,720 67 137 403 734 1,110 3,731

39 08 326 167 2 48,850 41 93 317 627 998 4,053
23 09 163 71 1 33,660 14 36 146 304 499 2,051

> 1,861 Total 7,071 3,645 201 645,500 1,110 2,135 6,936 13,692 21,931 84,712
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Table 6: Out–of–sample exercise per 1-1-2005: numerical results for injury claims (in thousands),

10,000 simulations for the micro–level model.

Method Outcome Year Mean Median Min. Max. 5% 25% 75% 90% 95% 99.5%

Micro–level 2,957 CY 2005 2,548 2,453 1,569 6,587 1,951 2,212 2,764 3,154 3,499 4,567
1,532 06 1,798 1,699 909 6,790 1,246 1,477 2,001 2,393 2,703 3,752
1,020 07 1,254 1,159 453 4,945 774 968 1,420 1,778 2,088 3,125
1,060 08 884 776 267 4,381 458 613 1,024 1,393 1,694 2,743
1,354 09 390 313 63 3,745 149 226 448 678 908 1,875

> 7, 923 Total 7,386 7,209 4,209 14,850 5,666 6,489 8,092 9,035 9,721 11,725

Aggregate ODP 2,957 CY 2005 2,798 2,774 1,727 8,247 2,259 2,553 2,994 3,233 3,380 4,298
1,532 06 2,134 2,112 1,065 6,723 1,670 1,929 2,314 2,498 2,627 3,472
1,020 07 1,721 1,708 845 6,172 1,286 1,525 1,892 2,076 2,186 3,049
1,060 08 1,286 1,249 551 5,933 882 1,102 1,433 1,616 1,727 2,627
1,354 09 759 735 220 4,114 478 625 863 992 1,084 1,543

> 7, 923 Total 9,639 9,478 5,474 40,670 7,660 8,688 10,360 11,200 11,770 17,360

Aggregate LogN. 2,957 CY 2005 2,948 2,882 1,175 6,729 2,181 2,570 3,254 3,648 3,944 4,944
1,532 06 2,251 2,196 957 6,898 1,623 1,940 2,500 2,825 3,050 3,934
1,020 07 1,817 1,759 567 5,313 1,244 1,526 2,040 2,355 2,583 3,426
1,060 08 1,377 1,315 374 5,768 864 1,110 1,571 1,861 2,087 2,944
1,354 09 815 768 195 4,054 472 632 941 1,151 1,313 1,867

> 7, 923 Total 10,277 10,040 4,459 26,010 7,661 8,954 11,310 12,680 13,730 17,590

7 Conclusions

The measurement of future cash flows and their uncertainty becomes more and more impor-

tant, also for general insurance portfolios. Currently, reserving for general insurance is based on

data aggregated in run–off triangles. A vast literature on techniques for claims reserving exists,

largely designed for application to loss triangles. The most popular approach is the chain–ladder

approach, largely because of is practicality. However, the use of aggregate data in combination

with the chain–ladder approach gives rise to several issues, implying that the use of aggregate

data in combination with the chain–ladder technique (or similar techniques) is not fully ade-

quate for capturing the complexities of stochastic reserving for general insurance.

In this paper micro–level stochastic modeling is used to quantify the reserve and its uncer-

tainty for a realistic general liability insurance portfolio. Stochastic processes for the occurrence

times, the reporting delay, the development process and the payments are fit to the historical

individual data of the portfolio and used for projection of future claims and its (estimation and

process) uncertainty. A micro–level approach allows much closer modeling of the claims pro-

cess. Lots of issues mentioned in our discussion of the chain–ladder approach will not exist

when using a micro–level approach, because of the availability of lots of data and the potential

flexibility in modeling the future claims process.

The paper shows that micro–level stochastic modeling is feasible for real life portfolios with

over a million data records, and that it gives the flexibility to model the future payments re-

alistically, not restricted by limitations that exist when using aggregate data. The prediction

results of the individual (micro–level) model are compared with models applied to aggregate

data, being an overdispersed Poisson and a lognormal model. We present our results through

an out–of–sample exercise, so that the estimated reserves can be compared with actual pay-

ments. Conclusion of the out–of–sample test is that –for the case–study under consideration–

traditional techniques tend to overestimate the real payments. Predictive distributions obtained

with the micro–model reflect reality in a more realistic way: ‘regular’ outcomes are close to the

median of the predictive distribution whereas pessimistic outcomes are in the very right tail. As

such, reserve calculations based on the micro-level model are to be preferred; they reflect real

outcomes in a more realistic way.
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The results obtained in this paper make it worthwhile to further investigate the use of micro–

level data for reserving purposes. Several directions for future research can be mentioned. One

could try to refine the performance of the individual model with respect to very pessimistic

scenarios by using a combination of e.g. a lognormal distribution for losses below and a gen-

eralized Pareto distribution for losses above a certain threshold. Analyzing the performance of

both the micro–level model and techniques for aggregate data on simulated data sets will bring

more insight in their performance. In that respect it is our intention to collect and study new

case–studies.
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Figure 13: Out–of–sample results per 1-1-2005, material claims. Top left to bottom left: calendar years 2005-2006-2007. Top right to bottom right:

calendar years 2008-2009-total reserve. In each graph the black vertical line indicates the amount that was actually paid in that calendar year. The

dashed black line in the graph of the total reserve corresponds with the sum of all payments done in calendar years 2005 up to 2009. Up to three

missing cells (see Table 3) this is the total reserve.
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Figure 14: Out–of–sample results per 1-1-2005, injury claims. Top left to bottom left: calendar years 2005-2006-2007. Top right to bottom right:

calendar years 2008-2009-total reserve. In each graph the black vertical line indicates the amount that was actually paid in that calendar year. The

dashed black line in the graph of the total reserve corresponds with the sum of all payments done in calendar years 2005 up to 2009. Up to three

missing cells (see Table 4) this is the total reserve.
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