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RESEARCH ARTICLE Open Access

The core genome of the anaerobic oral
pathogenic bacterium Porphyromonas gingivalis
Jorg Brunner1, Floyd RA Wittink2, Martijs J Jonker2, Mark de Jong2, Timo M Breit2, Marja L Laine1,
Johannes J de Soet1, Wim Crielaard1*

Abstract

Background: The Gram negative anaerobic bacterium Porphyromonas gingivalis has long been recognized as a
causative agent of periodontitis. Periodontitis is a chronic infectious disease of the tooth supporting tissues
eventually leading to tooth-loss. Capsular polysaccharide (CPS) of P. gingivalis has been shown to be an important
virulence determinant. Seven capsular serotypes have been described. Here, we used micro-array based
comparative genomic hybridization analysis (CGH) to analyze a representative of each of the capsular serotypes
and a non-encapsulated strain against the highly virulent and sequenced W83 strain. We defined absent calls using
Arabidopsis thaliana negative control probes, with the aim to distinguish between aberrations due to mutations
and gene gain/loss.

Results: Our analyses allowed us to call aberrant genes, absent genes and divergent regions in each of the test
strains. A conserved core P. gingivalis genome was described, which consists of 80% of the analyzed genes from
the sequenced W83 strain. The percentage of aberrant genes between the test strains and control strain W83 was
8.2% to 13.7%. Among the aberrant genes many CPS biosynthesis genes were found. Most other virulence related
genes could be found in the conserved core genome. Comparing highly virulent strains with less virulent strains
indicates that hmuS, a putative CobN/Mg chelatase involved in heme uptake, may be a more relevant virulence
determinant than previously expected. Furthermore, the description of the 39 W83-specific genes could give more
insight in why this strain is more virulent than others.

Conclusion: Analyses of the genetic content of the P. gingivalis capsular serotypes allowed the description of a P.
gingivalis core genome. The high resolution data from three types of analysis of triplicate hybridization experiments
may explain the higher divergence between P. gingivalis strains than previously recognized.

Background
Periodontitis is a chronic destructive infectious disease
of the tooth-supporting tissues. It is one of the most
prevalent infectious diseases in the world. With percen-
tages of moderate disease ranging from just below 20%
in an age group of 30 to 40 year-olds in Swedish and
Norwegian studies to even up to 38% of severe cases in
the United States in an on average 75 year-old male
population [1-3]. Besides high prevalence also links to
systemic diseases have been described. Periodontitis has
been associated with, amongst others, cardiovascular

diseases, diabetes mellitus and rheumatoid arthritis
[4-7].
Periodontitis leads to loss of sound teeth as supporting

bone and connective tissue are slowly degraded as a
result of an exaggerated host immune response triggered
against a polymicrobial biofilm [8].
In the oral cavity around 7000 species can be detected,

in subgingival and supragingival biofilm/plaque over 400
bacterial species are present [9-11]. Many disease-related
bacterial species in the subgingival plaque have been
shown to be Gram-negative anaerobes. Among them,
Porphyromonas gingivalis a black-pigmented bacterium
from the phylum Bacteroidetes is a major causative
agent in periodontal disease [12].
Interaction with other bacteria residing in the period-

ontal pocket is important to sustain the infectious
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biofilm. One of the structures involved in the inter-spe-
cies adherence is the capsular polysaccharide (CPS) of P.
gingivalis [13]. CPS has been described as a virulence
factor of various pathogenic bacteria, mainly as being
involved in evasion of the host immune system [14-16].
In P. gingivalis encapsulated strains have been shown to
be more resistant to serum killing and phagocytosis.
The explanation for this increased resistance compared
to the non-encapsulated strains may be the increased
hydrophilicity and the lower induction of the alternative
complement pathway [17].
Encapsulated P. gingivalis strains have also been shown

to be more virulent than non-encapsulated strains in the
mouse infection model [18]. To date, six capsular sero-
types (K1-K6) have been described [19,20] and a seventh
serotype (K7) has been suggested by R. E. Schifferle (per-
sonal communication). In a mouse subcutaneous infec-
tion model several strains of each of the serotypes have
been shown to be highly virulent [18]. The variation of
virulence within serotypes shows that besides CPS there
have to be more virulence factors of importance in P. gin-
givalis. Many of its virulence factors have been studied in
the last decades including fimbriae, hemagglutinins, lipo-
polysaccharide (LPS), outer membrane proteins (OMPs)
and an extremely wide variety of proteinases. High qual-
ity reviews have been published on the wide variety of P.
gingivalis virulence factors [21-23].
Using comparative whole-genome hybridization analy-

sis of the encapsulated W83 strain and the non-encap-
sulated ATCC33277 a CPS biosynthesis locus had been
found, after which a knock-out study has proven that
the CPS locus was functional [24,25]. K1 CPS from
W83 has been shown to induce a stronger chemokine
response than CPS from the other serotypes in murine
macrophages [26]. Recent work in our group, however,
has shown that an isogenic W83 mutant lacking CPS
triggers a higher pro-inflammatory immune response in
human gingival fibroblasts than strain W83 carrying K1
CPS [27]. The exact roles of CPS in P. gingivalis are still
unclear, but reducing the host immune response is cer-
tainly one of them.
In the latest years an increasing number of genomes

have been sequenced paving the path for genomics-
based approaches. For P. gingivalis genome sequences of
the virulent strain W83 and the less-virulent strain
ATCC33277 have become available [28,29]. Comparative
genomic hybridization (CGH) analysis using microarrays
of these well-described bacterial strains could yield new
insights in the virulence mechanisms of P. gingivalis. A
recent study reported on the CGH analysis of several P.
gingivalis strains to describe the genetic variety among
them [30].
In this study we analyzed the genetic contents of

representative strains of each of the seven capsular

serotypes (Table 1): W83 (K1), HG184 (K2),
ATCC53977 (K3), ATCC49417 (K4), HG1690 (K5),
HG1691 (K6), 34-4 (K7). We also included the non-
encapsulated strain FDC381 (K-) in the CGH analysis to
compare with each of the encapsulated strains. Strain
FDC381 does however express a non-CPS anionic extra-
cellular polysaccharide as do the other strains [31]. The
strains were classified into three virulence levels as
determined by using a subcutaneous mouse infection
model [18,32]. Although not an optimal measure for the
ability to cause periodontitis, this classification has long
been used [33] and proven useful in studying virulence
determinants [34-37].
Triplicate hybridization experiments and three types

of analysis, 1) aberrant gene calling, 2) breakpoint analy-
sis and 3) absent gene calling, have been performed for
optimal use of the new genetic information. The careful
design of the experiment and the thorough analysis of
the data lead to a high resolution data set, yielding more
detailed information on the genetic differences between
strains than has been shown before. In this study we
initiate the description of a core-gene set of P. gingivalis
allowing a more focused search for potential important
virulence factors.

Results and discussion
Microarray performance and data interpretation
The P. gingivalis version 1 microarray from the PFGRC
used in this study has been used in several studies
before [30,38] and consists of 1907 probes and 500
negative control probes (Arabidopsis thaliana) printed
in four replicates. The microarray was designed to cover
all non-redundant coding sequences (CDSs) of the P.
gingivalis W83 genome. Before our study all probes
were analyzed for their unique- and perfect matching
with the genome, as downloaded from the NCBI, using
BLAST. Twenty-nine of the 1907 probes of the microar-
ray gave non-specific hits, mostly related to transposases
(Table 2). These probes were excluded from further
analyses together with four probes that were not in use
anymore annotated “obsolete” by the manufacturer, so
that 1874 probes remained. The comparison of each test
strain to W83 using this array gives insights into
described virulence associated genes. A limitation of the
method, however, is that genes from the variable gene
pool from other strains will not be detected.
Data were normalized and technical and biological

replicates were collapsed as described in the Materials
and Methods. Detailed analysis of the probe intensities
indicated that 22 probes gave systematically low inten-
sity values for strain W83 as well as for all the other
strains. The intensity levels were at the same low levels
as the intensity levels of the negative control probes
(Figure 1). These probes were labeled as “dead probes”
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and excluded from the results (Table 3). Our data do
not explain why dead probes have occurred in our
experiments, but the consistent low signal for these
probes suggests that the sequencing information used
for designing these probes was imperfect.

In order to maximize the mining of the genomic
information, we subjected the data to three complemen-
tary analyses: 1) analysis for aberrations as detected by
individual probes, 2) analysis for breakpoints, and 3)
analysis for genomic loss. The rationale behind the three
analyses is as follows. The probed genomic sites are on
average 1250 bp apart from each other (median was
1018), which was not considered to be a high interroga-
tion density. We therefore decided to analyze each
probe individually for indication that the genomic site
interrogated is aberrant from W83. Deviations from
W83 that were detected with a false discovery rate cor-
rected p-value (FDR) < 0.05 were considered significant.
This aberrance could have occurred due to mutations or
loss (or due to W83 gain), and this was regarded as
point-variability between the strains. Nevertheless, if
several neighboring probes indicate aberrations, then
this may indicate highly variable regions due to muta-
tions or loss. Hence, a breakpoint analysis was executed
to quantitatively specify such regions. Finally, we used
the negative controls to define absent calls with the aim
to distinguish whether an aberration was found more
likely due to mutation or loss. If the probes that indi-
cated aberrations in the first analysis also showed the
same intensities as the negative controls with FDR cor-
rected p-value < 0.01 (see M&M), the genomic site was
considered as mutated, and otherwise it was considered
as lost. This last analysis enhanced our interpretation of
the data and the definition of the core genome.

P. gingivalis core genome
Research on microbial pathogens is mostly performed to
unravel mechanisms of virulence in order to design
effective treatments. Virulence mechanisms present in
all strains of a species are especially attractive. The
description of a core set of genes present in a species is
thus a key step for better understanding. From an analy-
sis of eight P. gingivalis strains we found that 1476
genes were non-aberrantly present in each of the strains

Table 1 P. gingivalis strains used in this study

Strain Capsular serotype Origin Virulencec

W83a K1 Clinical specimen High

HG184 K2 Periodontitis patient Medium

HG1025 K3 Periodontitis patient with diabetes mellitus High

ATCC49417 K4 Advanced adult periodontitis patient High

HG1690 K5 37-year-old male periodontitis patient High

HG1691 K6 28-year-old female periodontitis patient Medium

34-4 K7 Severe periodontitis patient Low

FDC381b K- Adult periodontitis patient Low
a A kind gift of H. N. Shah (NCTC, London, UK)
b A kind gift of S. S. Socransky (The Forsyth Institute, Boston, MA, USA)
c As determined in a subcutaneous mouse infection model [18,32]

Table 2 Probes excluded from analysis due to
redundancy

GeneID Annotated function

PG2152 DNA-binding protein, histone-like family

PG0261 ISPg3, transposase

PG0943 ISPg5, transposase Orf2

PG1420 ISPg5, transposase Orf2

PG1444 hypothetical protein

PG1261 ISPg4, transposase

PG1276 DNA-binding protein, histone-like family

PG1670 hypothetical protein

PG1451 conserved hypothetical protein

PG2128 ISPg5, transposase Orf2

PG1449 conserved hypothetical protein

PG1453 Integrase

PG1267 hypothetical protein

PG1350 ISPg2, transposase

PG0827 MATE efflux family protein

PG1669 hypothetical protein

PG1448 ISPg1, transposase

PG1709 ISPg5, transposase Orf1

PG1454 Integrase

PG1332 NAD(P) transhydrogenase, beta subunit

PG1452 lipoprotein, putative

PG1384 ISPg1, transposase, authentic frameshift

PG1244 ISPg1, transposase

PG1447 transcriptional regulator, AraC family

PG1450 conserved hypothetical protein

PG1445 rteC protein, truncation

PG1671 hypothetical protein

PG0487 ISPg4, transposase

PG0760 ISPg1, transposase, authentic frameshift
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and 2 hypothetical genes were called absent but non-
aberrant (Additional file 1). The conserved core genes
make up 80% of all genes included in this study. Hence,
20% (374) of all genes of W83 were aberrant in at least

one of the strains. Core genomes from several bacterial
species have been described [39-45]. The fraction of a
bacterial genome that consists of core genes depends
highly on the amount of strains included to describe the
core genome [43]. The more strains are used, the smal-
ler the core genome will be. As such, the very well stu-
died Escherichia coli core genome makes up only 46% of
the average E. coli genome. Other bacterial species,
including Gram positives and Gram negatives, have
been found to have a core genome which covers 52% to
85% of a genome [39-45]. The 80% of W83 genes which
are part of the conserved core genome can therefore be
understood. It must be clear though that the core gen-
ome of P. gingivalis as described here must be seen as a
first step. The core genome will be found to be smaller
as more genetic information on different P. gingivalis
strains will become available.
We could distinguish two gene sets in the aberrant

set, namely the present and absent genes (Figure 2).
Using aberrance and absent call analysis we were thus
able to describe the P. gingivalis core genome in two
ways. Aberrance represents mutations within the probe
sequence, whereas absent calls represents the total
absence of the probe sequence interpreted as gene
absence. The fully conserved P. gingivalis core genome
is comprised of 1476 genes. The variable core genome is
comprised of a total of 1605 genes, which are aberrant,
but called present (Figure 2). In the further analyses the
conserved core genome was taken as the core genome.
Combining our findings on the core genome with a

study describing 1490 conserved CDSs when comparing

Figure 1 Hybridization signals of P. gingivalis strains - dead probes. A. The total intensity distribution of probe signals of W83 DNA hybridized
to the W83 array. The density peak around 7.5 contains the negative controls (empty spots and A. thaliana probes). The peak around 12 should
contain all present genes in strain W83. B Probe signal intensities of each P. gingivalis test strain are represented in light blue dots; medium blue
dots, slightly below that, symbolize A. thaliana negative control genes. Dark blue dots represent P gingivalis probes, which show the same low
intensity as the negative control probes. These 22 probes are called dead probes as they do not give any significant hybridization signal.

Table 3 Dead probes excluded from the results due to
low hybridization signals

GeneID Annotated function

PG0222 DNA-binding protein, histone-like family

PG0375 ribosomal protein L13

PG0498 autoinducer-2 production protein LuxS

PG0786 hypothetical protein

PG0809 hypothetical protein

PG0855 hypothetical protein

PG0880 bacterioferritin comigratory protein

PG0979 hypothetical protein

PG0994 hypothetical protein

PG1234 hypothetical protein

PG1257 hypothetical protein

PG1335 membrane protein, putative

PG1357 hypothetical protein

PG1412 ISPg2, transposase, truncation

PG1617 hypothetical protein

PG1660 RNA polymerase sigma-70 factor, ECF subfamily

PG1742 hypothetical protein

PG1866 hypothetical protein

PG1869 hypothetical protein

PG1987 CRISPR-associated protein, TM1794 family

PG2019 hypothetical protein

PG2087 conserved hypothetical protein
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the genome sequences of W83 and ATCC33277 [28],
makes it tempting to speculate that the core genome as
described here may already be close to its final size. An
analysis combining the conserved CDSs from that study
with our 1476 conserved core genes showed that when
strain ATCC33277 is included the core genome size
decreased to 1384 genes.
The conserved core gene set was analyzed for the pre-

sence of virulence genes. When it was analyzed for the
presence of the 153 potentially virulence associated gene
set originating from when the genome sequence of W83
became available (selected by presence of a signal pep-
tide, or transmembrane domains or by homology to pre-
viously described virulence agents) [29], it was found
that 128 genes were present in all strains (Figure 3A).
Only 25 genes were aberrant in at least one strain,
among which 9 usual suspects from the CPS locus, but
also four hemagglutinins.
Another virulence gene set was also tested for presence

in the conserved core gene set of P. gingivalis. The set was
composed of genes shown to be up-regulated in infection
experiments [46,47]. Genes up-regulated in an in vitro
human epithelial cell infection experiment were combined
with a gene set in vivo up-regulated on protein level in a
mouse subcutanuous chamber experiment to make a set
of 39 virulence genes. The former experiment was chosen
as an early response gene set, whereas the latter includes
genes involved in sustaining an infection in vivo. 37 of the
39 virulence genes were present among the core gene set
(Figure 3B). The two genes that were not in the core gene
set were a thiol protease (PG1055) [48] and tetR a tran-
scription regulator (PG1240). The thiol protease is

aberrant in each strain except for strain ATCC49417,
from the 16S-23S ISR heteroduplex type that together
with the type of strain W83 has the highest association
with disease [49]. This is another indication that this thiol
protease may be an important determinant in virulence of
P. gingivalis. Transcription regulator tetR was only found
to be aberrant in strain FDC381, which is the least virulent
and the only non-encapsulated strain [18,32].
The analysis of the core gene set shows the presence

of almost all virulence related genes. The genes that are
not present in the core genome may be determinants of
the differences in virulence found between the strains.

Strain divergence
The divergences of the test strains were determined by
the percentage of aberrant CDSs from the total number
of 1874 CDSs included in this study. We found 8.2% to
13.7% of aberrant genes per strain, with ATCC49417
having the lowest and FDC381 having the highest per-
centage of aberrant genes (Table 4). These percentages
of aberrant genes are higher than the 7% of aberrant
genes from a previous genomic hybridization study on
strain ATCC33277, a close relative of strain FDC381
[25]. From the 64 highly aberrant genes in ATCC33277
41 genes were included in our study from which 33
were in the aberrant gene list of strain FDC381. A
recent study reported even lower percentages 0-5.1% of
divergence between P. gingivalis strains [30]. Although
they used the same arrays and also used some identical
strains the differences between our data sets were sub-
stantial. We detect a much higher number of aberrant
genes probably because of higher resolution due to the

Figure 2 P. gingivalis core genome. Pie diagram representing all probes included in the results divided into pieces representing the conserved
core genome, aberrant core genome and the variable genes. The percentages show the proportions of the total of functional probes. 80% of
the strain W83 genes is present and conserved among the test strains. 6% of the W83 genes is present but aberrant and 13% of the genes is
absent in at least one of the test strains. Two probes with very low signals were found as non-aberrant but absent.
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use of three arrays per strain. We also excluded a set of
55 genes before the analyses (see above) which further
elevated the percentages found in this study.

Proteases
P. gingivalis is known to have a vast arsenal of proteases.
The main function of these enzymes is to provide pep-
tides for growth. These peptides can be derived from
host-proteins, involved in defence against pathogens,
thereby potentially disrupting the host immune
response. Other proteases degrade collagen, thereby
weakening the tooth-supporting tissues. Proteases have
therefore been regarded as important virulence factors.
A selection of 64 proteases/peptidases was made by text
searches in the P. gingivalis W83 genome annotation
combined with peptidases found in the MEROPS P. gin-
givalis peptidase database [50] (http://merops.sanger.ac.
uk/index.shtml). This selection was analyzed for pre-
sence in the test strains. From the analysis it was clear
that most proteases, 58 in total, belong to the core gene
set of P. gingivalis. From the 6 non-core protease genes
(Table 5) tpr was already mentioned earlier. The gene

prtC, a collagenase, was found to be aberrant only in
three strains with medium/low virulence in a subcuta-
neous mouse model. Interestingly, in early studies on
P. gingivalis virulence one of the discriminatory factors
between virulent and avirulent strains was described to
be collagenase activity, which was found to be low in
avirulent strains [51]. Another non-core protease gene is
the well-described rgpA, an arg-gingipain which has reg-
ularly been described as one of the most important viru-
lence factors of P. gingivalis [52,53]. RgpA is aberrant in
the highly virulent strain ATCC53977. This finding is
however in line with a murine periodontitis model study
in which rgpA was found to be not important in viru-
lence using P. gingivalis knockouts [34]. From the pre-
sent study, however, no hard conclusion should be
drawn as no functional changes have been explored.

The capsular polysaccharide biosynthesis locus
Analysis of the CPS biosynthesis locus [24] of the test
strains revealed a high variation as seen in Figure 4A
showing the hybridization log-ratios against W83. Our
interpretation of the log-ratios depicted as a heat map
showing presence, aberrance and absence of each of the
CPS-locus genes is shown in Figure 4B. Only PG0106
and PG0108 show no divergence in any strain and are
thus among the core gene set as described earlier. The
other genes in the locus show at least some aberrance.
PG0117 and PG0118 are called absent in each test strain
as concluded from our hybridization experiments. This
supports the choice of these genes to design a K1-speci-
fic PCR for serotyping in our group [54]. All test strains
are found to be aberrant for at least 8 genes, except
strain 34-4 (K7) which only shows aberrance in 5 genes.

Figure 3 Virulence associated genes in the conserved core genome of P. gingivalis. A. 153 potential virulence genes from the genome
annotation of W83 combined with the conserved core genome of P. gingivalis [29]. B 39 genes known to be up-regulated during infection
combined with the conserved core genome of P. gingivalis [46,47]. The number in the overlapping part of the circles is the number of potential
virulence associated genes that was found in the conserved core genome of P. gingivalis.

Table 4 Aberrant and absent CDSs of P. gingivalis strains

Strain Aberrant CDSs % aberrant Absent CDSs % absent

HG184 213 11,4 133 7,8

HG1025 214 11,4 135 7,8

ATCC49417 153 8,2 88 4,7

HG1690 187 10,0 107 5,7

HG1691 227 12,1 158 8,5

34-4 207 11,0 126 6,8

FDC381 256 13,7 195 10,5
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These findings may suggest that the different capsular
serotypes can be highly variable in structure and that K7
CPS may share more common elements with the K1
type of CPS than the other test strains.

Highly variable regions
An analysis was performed to calculate the chance that
certain genetic regions of the W83 genome are missing
in the test strains included in the hybridization

experiments. This was done using breakpoint analysis,
which takes the divergence of neighbouring genes into
account. In this analysis 10 highly variable regions were
found (Figure 5). Three regions, regions 1, 2 and 3, have
already been reported earlier based on aberrance in
strain ATCC33277 [25] (Table 6), but only a function
for the CPS biosynthesis locus has been described. The
function of the other two may be pathogenicity islands,
although no prove has been reported yet. Region 4

Table 5 Non-core protease genes of P. gingivalis

GeneID Annotation Remark

PG0317 peptidase, M49 family Aberrant only in 34-4

PG1055 thiol protease Non-aberrant only in W83 and ATCC49417 (absent in FDC381)

PG1542 collagenase Aberrant in HG1691, 34-4 and FDC381

PG2024 hemagglutinin protein HagE Aberrant and absent only in HG1025

PG2115 protease PrtT, degenerate Non-aberrant only in W83

PG2185 transporter, putative Aberrant in HG184, HG1025 and FDC381

Figure 4 CPS biosynthesis locus diversity. A. Heat map showing presence (green), aberrance (orange) and absence (red) of each gene in each
test strain, showing the variation within the CPS biosynthesis locus. The CPS locus of the serotype K7 strain 34-4 shows the highest similarity
with the K1 serotype strain W83. B. For each probe in the CPS biosynthesis locus and for each test strain a log-ratio value compared to strain
W83 is depicted by a data point, supporting the heat map results as shown in figure 4A.

Brunner et al. BMC Microbiology 2010, 10:252
http://www.biomedcentral.com/1471-2180/10/252

Page 7 of 13



which includes ragA and ragB is in addition to W83
only present in strain ATCC49417. Both strains are
representatives of the 16S-23S ISR heteroduplex types
that have the strongest association with disease. The
other strains lack this region. This region has also been
described as disease related directly by PCR of subgingi-
val samples [55]. Region 5 includes pgaA, which also
has been described as a virulence determinant [56]. The

other highly variable regions may be involved in viru-
lence, but too little is known to speculate on the
functions.
Another region that was found to be interesting in

this analysis is region PG1981-PG1986 which is com-
prised of clustered regularly interspaced short palindro-
mic repeat (CRISPR) associated genes (CAS) [57].
Together with CRISPRs, located directly downstream of

Figure 5 Highly variable regions of P. gingivalis. Breakpoint analysis of test strains describing potential lacking genomic regions as positioned
on the W83 genome sequence. Black lines depict breakpoint data. As long as the line is flat there is low variability of the test strain compared to
W83. Dips in the line indicate variability. Blue lines/rectangles below depict potential absent regions. At the top the probe positions are given as
described in the W83 genome [29]. The numbers at the bottom label the 10 highly variable regions in each strain which are explained in the
text. CRISPR represents a region of interest with CRISPR associated genes as described in the text.

Table 6 Highly variable P. gingivalis genomic regions

Variable region Location Gene content of the region

Region 1 PG0109-PG0118 Capsular polysaccharide biosynthesis locus [27,28]

Region 2 PG0814-PG0875 Potential pathogenicity island [28]. Many DNA mobilization proteins

Region 3 PG1435-PG1533 Potential pathogenicity island [28]. Many transposon related genes.

Region 4 PG0185-PG0187 Virulence associated ragA-ragB locus [46] highly variable in strains other than W83 and ATCC49417

Region 5 PG0456-PG0461 PHP domain protein, transposases

Region 6 PG0542-PG0546 transcriptional regulator, type 1 restriction modification gene

Region 7 PG0741-PG0742 PgaA and hypothetical protein

Region 8 PG1107-PG1113 Integrase/mobilization, hypothetical proteins

Region 9 PG1200-PG1206 Transcriptional regulator, DNA binding protein, hypothetical proteins

Region 10 PG2134-PG2136 Lipoproteins, hypothetical proteins
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PG1981, these types of genes have been described as the
immune system of bacteria against foreign DNA, e.g.
plasmids and viruses. Recently they also have been
described as a useful tool in epidemiology [58]. Varia-
tion is expected to be high in these regions as they
encompass exogenous DNA sequence fragments from
infection events that happened to the strain or its ances-
tors. Here variation within the CAS genes is evident, but
not as high as the other regions mentioned in this
section.

W83-specific genes
Strain W83 has been described as a highly virulent strain.
What makes this strain special is however not specifically
known. The purified CPS of W83 has been shown to
induce a higher immune response than other types of
CPS [26]. Removal of the capsular structure, by genetic
interruption of CPS-biosynthesis, however resulted in a
much higher immune response when infecting fibroblasts
with viable P. gingivalis [27]. What this means for viru-
lence in a mouse model has not yet been addressed. With
the data presented here a more detailed study is possible
to find specific traits that make W83 different. A list of
all genes that are aberrant in each of the test strains and
absent in each of the test strains is presented (see Addi-
tional file 2). Among the 65 genes that were aberrant in
all test strains there were 10 DNA mobilization genes, 5
DNA modification genes, 3 CPS biosynthesis genes, 2
carbohydrate metabolism genes, 2 transcriptional regula-
tor genes, 2 lipoprotein genes and 36 (conserved)
hypothetical protein genes. From this gene set 39 genes
were W83-specific as they were absent in each of the test
strains. In this way the prtT protease gene and a fimbril-
lin gene (fimA) were found to be aberrant in all test
strains, but not W83-specific as they were present in one
or more test strains. The results for fimA support the
findings that the gene is widely distributed, but variable
at the probe locus among P. gingivalis strains. Many of
the genes found in this analysis are located within the
highly variable regions described in earlier publications
using whole-genome analysis. The existence of those
regions were supported by data comparing the genome
sequences of P. gingivalis strains W83 and ATCC33277
[28]. Also in this study we found these regions back in
the analysis as described above

Genes only aberrant in FDC381
FDC381 is the only strain included in this study that does
not produce CPS. It is also the least virulent strain in
mouse studies. Here, an analysis was performed to find
genes that are specifically aberrant in FDC381 and not in
all the other test strains (Table 7). Alongside many genes
encoding hypothetical proteins several genes of special
interest were found. The genes PG1711 encoding an

alpha-1,2-mannosidase family protein, and PG1972 encod-
ing the hemagglutinin hagB, all thought to be involved in
virulence either by a role in evasion of the immune system
or by a role in adhesion to host cells [29,59].
Although these data do not directly show any CPS

biosynthesis specific genes aberrant only in the non-
encapsulated FDC381 it does give hints towards other
virulence associated traits that are missing in FDC381.

High versus lower virulence strains
When comparing the core gene set of only the highly
virulent strains W83, HG1025, ATCC49417 and
HG1690 with the genes aberrant in each of the less
virulent strains HG184, HG1691, 34-4 and FDC381 an
interesting result was seen. There is only a single gene,
hmuS, that is present in all highly virulent strains but
aberrant in each of the less virulent strains. HmuS is
part of the hmuYRSTUV haemin uptake system [60].
Haemin acquisition is vital for P. gingivalis which makes
the haemin uptake and storage system relevant study
objects. Lacking part of an important uptake mechanism
could have consequences for infection and survival.
However, in these experiments no functional differences
have been shown.

Conclusions
In this study we analyzed the genetic contents of repre-
sentative strains of each of the seven capsular serotypes.
Comparative genomic hybridization shows that gene

Table 7 Genes only aberrant in strain FDC381

GeneID Annotated function

PG0183 lipoprotein, putative

PG0204 hypothetical protein

PG0300 TPR domain protein

PG0492 hypothetical protein

PG1119 flavodoxin, putative

PG1199 hypothetical protein

PG1200 hypothetical protein

PG1373 hypothetical protein

PG1466 hypothetical protein

PG1467 methlytransferase, UbiE-COQ5 family

PG1473 conjugative transposon protein TraQ

PG1685 hypothetical protein

PG1711 alpha-1,2-mannosidase family protein

PG1777 conserved hypothetical protein

PG1786 hypothetical protein

PG1814 DNA primase

PG1969 hypothetical protein

PG1970 hypothetical protein

PG1972 hemagglutinin protein HagB

PG1977 hypothetical protein

PG1978 hypothetical protein
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aberrance among P. gingivalis strains can be up to
13.7%, which is higher than previously reported. The P.
gingivalis genome is variable with 20% of the W83 gene
content being aberrant in at least one of the seven test
strains. Analysis of virulence-related genes conservation
was performed; only a few virulence-related genes were
shown to be aberrant among test strains. As could be
expected due to the choice of strains it was found that
among the most aberrant virulence genes were the CPS
biosynthesis genes.
In this study we initiated the description of a core

genome of the anaerobic bacterium P. gingivalis, one of
the most important causative agents of periodontitis
allowing a more focused search for potential important
virulence factors of which several were identified

Methods
Bacterial strains and maintenance
P. gingivalis strains used in this study are listed in Table
1, including serotype, origin and virulence level. P. gingi-
valis strains were first grown on 5% horse blood agar
plates (Oxoid no. 2, Basingstoke, UK) supplemented
with hemin (5 μg/ml) and menadione (1 μg/ml) (BA+H/
M plates) at 37°C in an anaerobic atmosphere of 80%
N2, 10% H2, and 10% CO2. From these plates 10 ml of
liquid brain heart infusion broth supplemented with
hemin (5 μg/ml) and menadione (1 μg/ml) (BHI+H/M)
was inoculated and grown overnight as a pre-culture at
37°C in an anaerobic atmosphere. From the pre-culture
a 300 ml 1:100 dilution in BHI+H/M was made, which
was grown overnight at 37°C in an anaerobic atmo-
sphere. The bacteria were washed 3 times in phosphate-
buffered saline (PBS) and then pelleted and stored at
-80°C until DNA isolation was performed.

Microarray design
Whole-genome microarrays made for P. gingivalis strain
W83 kindly provided by the Pathogen Functional Geno-
mics Resource Center (The Institute for Genomic
Research (TIGR), Rockville, MD) were used in this
study. The aminosilane-coated microarrays contain
1,907 70-mer oligonucleotide probes designed on the
1,990 annotated W83 ORFs as found by TIGR. Each
probe was designed to be unique for an ORF, so ORFs
that were not unique were excluded. The arrays also
included 500 Arabidopsis thaliana control probes. Each
probe was printed four times on an array. Specific infor-
mation about the microarrays can be found at http://
pfgrc.jcvi.org/index.php/microarray/array_description/
porphyromonas_gingivalis/version1.html

DNA isolation
P. gingivalis pellets were frozen at -80°C until DNA iso-
lation. Frozen pellets were ground in liquid nitrogen

with a mortar and pestle until a fine powder was
obtained. 500 μl of this powder was transferred to a
liquid nitrogen pre-chilled 15 ml tube. DNA was
extracted by addition of 1500 μl 65°C CTAB extraction
buffer made to 2% (v/v) 2-mercaptoethanol before use
(100 mM Tris-Cl (pH 8.0), 2.0 M NaCl, 20 mM EDTA,
3% (w/v) CTAB (H6269, Sigma-Aldrich), 2% (w/v) PVP-
40 (PVP40, Sigma-Aldrich); Filter sterilized and stored
at room temperature). After incubation for 30 min at
65°C with occasional mixing, DNA was extracted with
1500 μl phenol/chloroform/isoamylalcohol (25:24:1) (pH
7.9) (AM9730, Ambion). After centrifugation at 6,000 ×
g for 15 min, the aqueous phase was transferred to a
clean 15 ml tube and DNA was precipitated with an
equal volume of ice-cold isopropanol. DNA was pelleted
at 6,000 × g for 15 min. The DNA pellet was washed
twice with ice-cold 70% ethanol and centrifugation at
6,000 × g for 5 min. The remaining liquid was removed
by decanting and the pellet was air dried. This pellet
was resuspended in 600 μl TE and 1 μl RNAse A (10
mg/ml, R6513, Sigma-Aldrich) was added. Residual
RNA was removed by overnight incubation at 37°C and
DNA was re-extracted with an equal volume of phenol/
chloroform/isoamylalcohol (25:24:1) pH 7.9. The aqu-
eous phase was recovered by centrifugation at 6,000 × g
for 15 min. The aqueous layer was treated with an equal
volume of chloroform/IAA (96:4) and centrifuged at
6,000 × g for 10 min at room temperature. The final
aqueous phase was treated with an equal volume of
100% ethanol and 1/10 volume of 3 M sodium acetate
(pH 5.2) and incubated for 30 min @ -20°C. DNA was
pelleted for 15 min at 6,000 × g. Residual liquid was
removed and the pellet was washed once with ice-cold
70% ethanol. DNA was pelleted for 5 min at 6,000 × g
and the pellet was air-dried. The DNA pellet was resus-
pended in an appropriate volume of TE. DNA quality
was verified with gel electrophoresis (0.5% agarose in
TAE).

Genomic DNA labelling, microarray hybridization,
scanning and data extraction
1 μg of genomic DNA was labeled with Cy3 or Cy5
using the CGH labeling kit for oligo arrays (ENZO Life
Sciences). Labeled genomic DNA was purified with the
QiaQuick PCR purification kit (Qiagen). P. gingivalis
(W83) version 1 arrays were obtained from the Patho-
gen Functional Genomics Resource Center (PFGRC).
Individual arrays were hybridized with 5 μg Cy3- and 5
μg Cy5-labeled material (test strains versus FDC381,
which served as common reference), without dye swap,
according to the Oligonucleotide Array-Based CGH for
Genomic DNA Analysis manual (Agilent Technologies
version 5.0). Briefly, labeled DNA was combined
with 52 μl 10 × Blocking Agent and 260 μl 2 × Gex
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Hybridization Buffer Hi-RPM (Gene Expression Hybridi-
zation Kit, Agilent Technologies) in a total volume of
520 μl. Hybridization samples were incubated at 95°C
for 3 min, spun down and hybridized at 37°C for 30
min. Samples were spun down and 490 μl of each sam-
ple was loaded onto a 1 × 244 k backing in a SureHyb
hybridization chamber (Agilent Technologies) and a
P. gingivalis version 1 array was placed on top. Hybridi-
zation was performed at 65°C for 24 h and 10 RPM in a
hybridization oven (G2545A, Agilent Technologies).
After the hybridization the backings were removed in
LSW (2 × SSC, 0.1% Sarkosyl (L9150, Sigma-Aldrich) at
room temperature, washed for 5 min at 42°C in LSW,
washed for 10 min at room temperature in HSW (0.1 ×
SSC, 0.1% Sarkosyl) and finally washed for 1 min at
room temperature in FW (0.1 × SSC). Each array was
dipped 5 times in H2O and quickly submerged in iso-
propanol. Microarrays were spun dry for 1 min at 232 ×
g and scanned on an Agilent G2505B scanner at 5 μm
resolution and data was extracted with Feature Extrac-
tion version 9.5.3.1. (Protocol GE2-NonAT_95_Feb07).

Experimental design and Microarray data analysis
Each strain was cultured in triplicate, in three experi-
mental batches. DNA isolations and hybridizations were
therefore performed three times for each strain, each
being a biological replicate analyzed in one experimental
block. On each array four technical replicate spots were
spotted.
After log2 transformation, the data was normalized by

a global Lowess smoothing procedure, omitting the
probes with highly divergent intensities because of the
bias they induced. A mixed ANOVA model (as
described in [61]) with group-means-parameterization
was used to normalize the data and collapse the techni-
cal and biological replicates. The gene specific model
was:

y S A Biklmn i k l m iklmn= + + + + + +    (1)

yijklmn represents log2 expression intensities, μ is the
gene specific mean, τ represents fixed strain effects
(i = 1, ..., 8), r is an indicator variable indicating the
common reference, S represents random spot effects
(j = 1, ..., 96), A represents random array effects (i = 1,
..., 24), and B represents experimental batch effects (m =
1, ..., 3). Normalized average (Cy5) intensities for each
strain were calculated as yi* = μ + τi and normalized
average log2-ratio’s with respect to W83 were calculated
as Yi* = τi - τ1, for each i ≠ 1 (which represents W83).
Hence, each strain was compared with W83, and

deviations in log2-ratio’s were interpreted as aberrations.
Given j genes divergence from zero were modelled as
posterior probabilities of change under a mixture model,

where non-divergent Yij* ~ N(0,si
2) and divergent Yij*

follows a uniform distribution [62].
Highly variable regions due to mutations or loss were

quantified according to [63], using their GLAD (Gain
and Loss Analysis of DNA) package with default para-
meter settings. Finally, we used the negative control
probes from Arabidopsis thaliana to define absent calls
with the aim to quantify whether an aberration was
found more likely due to mutation or loss. The distribu-
tions of intensities suggested a distinguishable mixed
distribution of intensities from probes interrogating pre-
sent genes (high) and probes interrogating absent genes
(low; Figure 1). Given j probes, probe intensities were
modelled using a standard Gaussian mixture model
where probes interrogating present genes yij* ~ N1(μ1i,
s1i

2) and probes interrogating absent genes yij* ~ N2(μ2i,
s2i

2). The probe specific membership probabilities of N1

(μ1i,s1i
2) represents the null-hypothesis of “not absent”,

which is the hypothesis under test. False discovery rate
correction as described by [64] was applied to both the
test for quantifying aberrations as well as to the test for
quantifying genomic losses. The data was visualized
using the Integrated Genome Browser [65]. The final
data set including dead probes and conserved, aberrant
and absent genes is shown in additional file 3.

Additional material

Additional file 1: Conserved core gene set of P. gingivalis. The
conserved core genes of P. gingivalis consisting of 1476 genes and two
ambiguous genes, which are called non-aberrant but absent.

Additional file 2: W83-specific genes 65 genes. aberrant in each test
strain of which 39 W83-specific genes (marked in red)

Additional file 3: P. gingivalis CGH data set. Table listing each P.
gingivalis probe included in the results of this study in the order of
geneID, including annotation. Low adjP-values (<0.05) depicted in yellow
indicate aberrance in a test strain. High adj Pvals. absent (>0.99) depicted
in red indicate absence in the test strain. Black rows indicate the dead
probes as found on the W83 array in this study. Zooming out gives an
overview of the whole genomic diversity along the test strains.
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