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ABSTRACT
Background Holoprosencephaly (HPE), the most
common malformation of the human forebrain, may be
due to mutations in genes associated with
non-syndromic HPE. Mutations in ZIC2, located on
chromosome 13q32, are a common cause of
non-syndromic, non-chromosomal HPE.
Objective To characterise genetic and clinical findings in
patients with ZIC2 mutations.
Methods Through the National Institutes of Health and
collaborating centres, DNA from approximately 1200
individuals with HPE spectrum disorders was analysed
for sequence variations in ZIC2. Clinical details were
examined and all other known cases of mutations in ZIC2
were included through a literature search.
Results By direct sequencing of DNA samples of an
unselected group of unrelated patients with HPE in our
NIH laboratory, ZIC2 mutations were found in 8.4% (49/
582) of probands. A total of 157 individuals from 119
unrelated kindreds are described, including 141 patients
with intragenic sequence determined mutations in ZIC2.
Only 39/157 patients have previously been clinically
described. Unlike HPE due to mutations in other genes,
most mutations occur de novo and the distribution of
HPE types differs significantly from that of non-ZIC2
related HPE. Evidence is presented for the presence of
a novel facial phenotype which includes bitemporal
narrowing, upslanting palpebral fissures, a short nose
with anteverted nares, a broad and well demarcated
philtrum, and large ears.
Conclusions HPE due to ZIC2 mutations is distinct from
that due to mutations in other genes. This may shed light
on the mechanisms involved in formation of the forebrain
and face and will help direct genetic counselling and
diagnostic strategies.

INTRODUCTION
Holoprosencephaly (HPE) is the most common
malformation of the human forebrain, and results
from failed or incomplete forebrain cleavage early in

gestation. HPE occurs in 1 in 250 gestations,
though the vast majority of conceptions with HPE
do not survive to birth.1 2 HPE is categorised by the
degree of forebrain separation into alobar, semi-
lobar, and lobar types, from most to least severe.
More recently, middle interhemispheric variant
(MIHV) HPE has also been described, which
includes failed separation of only the posterior
frontal and parietal lobes.3e6 The distribution of
HPE types in both living patients and deceased
fetuses with non-chromosomal, non-syndromic
HPE has been estimated to be 10e40% alobar,
43e45% semilobar, and 17e33% lobar HPE
(Muenke Lab, unpublished data, 2010).7 8

Common clinical features among patients with
HPE include neurological impairment (often severe),
seizures, diabetes insipidus, and characteristic
dysmorphic facies. Traditionally, it is thought that in
HPE ‘the face predicts the brain’: in other words,
more severe craniofacial anomalies correlate with
more severe neuroanatomic findings.4 At the most
severe end of the spectrum, facial features in patients
with alobar HPE may include cyclopia and
a proboscis (a tubular nasal structure located above
the fused eyes). Other, more common facial
dysmorphisms in less severely affected patients
include microcephaly (though hydrocephalus can
lead to macrocephaly), hypotelorism, a flat nasal
bridge, and cleft lip and/or palate. At the least severe
end of the spectrum, termed microform HPE,
patients may have subtle features such as mild
microcephaly, hypotelorism, and a single maxillary
central incisor (SMCI) without appreciable central
nervous system (CNS) anomalies on conventional
neuroimaging. These individuals are often identified
due to the presence of a severely affected relative.6 9 10

HPE is aetiologically heterogeneous, and may be
caused by cytogenetic anomalies, teratogenic
influences, occur in the context of a syndrome, or
be due to mutations in one of over 10 HPE associ-
ated genes.6 7 9 11e13 In patients with HPE who
have a normal chromosome analysis, a typical
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initial diagnostic strategy is to screen for mutations in four
genes: SHH (MIM 600725), ZIC2 (MIM 603073), SIX3 (MIM
603714), and TGIF (MIM 602630). Mutations in these genes can
arise de novo or may be found in multiple members of large
families segregating HPE spectrum anomalies. In large kindreds,
family studies demonstrate the incomplete penetrance and
highly variable expressivity of these mutations.3 4 6 14

ZIC2, located at chromosome 13q32, was first identified as an
HPE candidate gene due to individuals with brain anomalies
who were found to have deletions involving the long arm of
chromosome 13. Subsequent analyses of patients with HPE
identified mutations in ZIC2.15e17 ZIC2 mutations have been
thought to be the second most common identified cause of
non-chromosomal non-syndromic HPE (after mutations in
SHH). In recent estimates, at least 3% of probands with HPE
have mutations in ZIC2, though a more accurate estimate is
likely to be at least double that.6 18

ZIC2 encodes a transcription factor that plays several roles in
neurological development. Early in development, ZIC2 is
predicted to play a role in axial midline establishment; later,
ZIC2 appears to affect the development of the dorsal telen-
cephalon.19 20 This latter role may explain the occurrence of
neural tube defects in individuals with mutations in ZIC2, as
well as the presence of MIHV type HPE, though this type can be
seen in HPE due to mutations in other genes as well.21 Mouse
models show that complete absence of Zic2 activity results in
HPE due to mid gastrulation failure of axial midline develop-
ment, homozygous hypomorphic alleles result in normal
gastrulation but dorsal forebrain malformations at later stages,
and heterozygotes for null alleles are phenotypically normal.
However, features in homozygous null mice recapitulate the
entire spectrum of HPE severity, suggesting that the phenotypic
consequences of mutations depend on the perturbed develop-
mental stage and may be affected by interacting genes.18 20 22 23

Of note, it has been suggested that mutations in ZIC2 may
cause HPE brain findings, but often do not result in facial
features typical of HPE due to mutations in other genesdin
other words, the face would not ‘predict the brain’.17 24

Here we present clinical and genetic data on all known indi-
viduals with mutations in ZIC2, approximately half of whom
were identified through our laboratory at the National Institutes
of Health (NIH), and over three quarters of whom have not been
previously clinically described. We also present data on individ-
uals with deletions of the ZIC2 locus ascertained by multiplex
ligation dependent probe amplification (MLPA) and fluorescence
in situ hybridisation (FISH), chromosome analysis, or by oligo-
nucleotide array comparative genomic hybridisation (aCGH).
Through this comprehensive evaluation, we can identify specific
characteristics of these individuals that can differentiate patients
with HPE due to ZIC2mutations from patients with HPE due to
other genetic causes.

METHODS
Patient recruitment, mutation screening, and clinical
assessments
Blood samples from approximately 600 individuals with HPE
spectrum disorders and their relatives were collected over
18 years in our laboratory at the NIH. These samples were
analysed for potential sequence variations in the ZIC2 gene
under our National Human Genome Research Institute/NIH
Institutional Review Board (IRB) approved brain research
protocol (with appropriate consent). A strategy for screening the
ZIC2 gene has previously been described.18

Approximately 600 additional probands with HPE were
screened through collaborating centres, for a total of approxi-
mately 1200 probands with HPE spectrum anomalies. This total
cohort includes deceased fetuses (of note, the approximately 600
patients included in the NIH cohort does not include deceased
fetuses), live born infants, and currently living patients. After
mutation was identified in a proband, additional individuals
were identified through testing of relatives. The analysis of
clinical characteristics was performed retrospectively; the
quality of available clinical information was highly variable.
In terms of NIH patients, before 2006, referring clinicians

(which include geneticists, neurologists, obstetricians, and
pathologists) were asked to send samples with available clinical
data, including clinical summaries, photos, and neuroimaging.
Starting in 2006, referring clinicians additionally filled out
a standardised, brief clinical checklist describing clinical findings,
family history, and risk factors. In the process of reviewing
information for this analysis, many referring clinicians were
recontacted in order to request additional data. Four patients
were seen at the NIH for a comprehensive evaluation.
In terms of patients who were not part of the NIH cohort,

information was obtained through collaborators who sent
de-identified clinical and laboratory data: Laboratoire de Génét-
ique Moléculaire (Rennes, France); Center for and Department
of Human Genetics (Regensburg, Germany); GeneDx
(Gaithersburg, Maryland, USA); Maastricht University Medical
Centre (Maastricht, The Netherlands). Collaborating centres
shared (with appropriate consent) available clinical data, typi-
cally in the form of a narrative summary, photos and neuro-
imaging results.
All patients on whom craniofacial data are presented were

assessed in person by clinical dysmorphologists. Thirty probands
had photos available for review, while detailed physical exami-
nation assessments performed by clinical dysmorphologist were
available for 29 additional probands. All HPE types were iden-
tified by neuroimaging, performed by ultrasound (in the
majority of fetal cases), CT, MRI, or by pathological study. MRI
was available in approximately half of cases with identified HPE
type, with a bias for more recently ascertained cases.

Literature review of reported cases of holoprosencephaly
spectrum disorders due to mutations in ZIC2
A Medline search was conducted to find previously reported
cases of holoprosencephaly due to mutations in ZIC2. The key
words and search terms included ‘ZIC2’, ‘holoprosencephaly ’,
‘HPE’, ‘13q’, and ‘13q32’. References were also obtained from
articles found through the literature search. As loci near ZIC2
may contribute to brain malformations and there have been
numerous reported cases of deletions of 13q with unreported
clinical and genetic characterisations, only cases with clear HPE
and definitive deletion of the ZIC2 locus without involvement of
other chromosomes were considered. Cases were used from the
following papers and abstracts: Brown et al, 1993, Brown et al,
1995, Brown et al, 1998; Chen et al, 1998; Nanni et al, 1999;
Gutierrez et al, 2001; Orioli et al, 2001; Brown et al, 2001;
Marcorelles et al, 2002; Dubourg et al, 2004; Brown et al, 2005;
Júnior et al, 2006; Paulussen et al, 2008, Eur Soc of Hum Genet,
abstract; Roessler et al, 2009; Quélin et al, 2009.15e18 24e34

Statistical analysis
In the descriptions below, unless otherwise stated, results refer
only to individuals with intragenic sequence determined muta-
tions in ZIC2, not patients with large genomic imbalances.
Patients with large genomic imbalances were not included in
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most statistical analyses due to the relatively low numbers and
because the testing method differed among patients (including
traditional cytogenetic analysis, FISH testing, and aCGH),
potentially invalidating comparisons.

Denominators differ among findings, as the prevalence of each
phenotypic manifestation was calculated only where data were
available for that specific finding (table 1). c2 and Fisher ’s exact
tests were used to determine statistical differences between
patient groups.

RESULTS
Patients
We describe a total of 157 patients, including 141 patients from
103 unrelated kindreds with sequence determined mutations in
ZIC2, seven patients with deletions of ZIC2 ascertained by FISH
testing or MLPA, and nine patients with deletions of ZIC2
ascertained by chromosome analysis or by oligonucleotide
aCGH. While the majority of these mutations have been
reported, only 25% (39/157) have previously been clinically
described. Of the 157 patients, 77 patients were identified at the
NIH, 72 were identified through collaborating centres, and eight
patients were identified through a literature search (all eight of
whom were patients with deletions of the ZIC2 locus as part of
a larger genetic imbalance).15e17 24e34

By direct sequencing of DNA samples of an unselected group
of unrelated patients with HPE in our laboratory at the NIH,
8.4% (49/582) have mutations in ZIC2. Additional cases were
initially ascertained through screening methodology, including
screening methods involving single strand conformational
polymorphism (SSCP) analysis and denaturing high perfor-
mance liquid chromatography (dHPLC). Multiple international
testing centres additionally contributed cases as described above
(Methods). A summary of all patients is presented in table 2.

Inheritance
Among probands in whom parents were available for testing
(65/103 families), mutations were found to be de novo in 72%,
maternally inherited in 18%, and paternally inherited in 9% of
patients. There were no kindreds in which mutations or affected
individuals were identified in more than two generations.
However, in five cases, pedigree analysis showed that a mutation
appeared to be inherited from a parent who had multiple
affected children but for whom mutation testing was negative,
implying either allele dropout or, more likely, germline mosaicism.

HPE type
Prevalences of HPE types are presented in table 3. Examples of
characteristic findings on neuroimaging are shown in figure 1.

For patients with intragenic sequence determined mutations,
the distribution of HPE types is not equal, with alobar and
semilobar HPE significantly overrepresented (c2

(2)¼23.65,
p<0.0001). MIHV was not included in the analysis due to
paucity of cases. Due to the relatively few cases, the group of
patients with larger genomic imbalances, including deletion of
ZIC2, was not analysed.
We compared the distribution of HPE types in patients with

intragenic sequence determined mutations in ZIC2 to two
previous studies describing the prevalence of the major HPE
types, as well as to a group of HPE probands ascertained from
samples sent to the NIH for clinical testing in an approximately
3 year period after the establishment of a reference laboratory
(table 4).7 8 The groups described by Lazaro et al (2004) and the
NIH groups are likely most similar to our cohort by the fact that
all three groups had non-chromosomal, non-syndromic HPE.7

The cohort described by Orioli et al (2007), on the other hand,
may include some patients with chromosomal anomalies, and
also included only patients who survived to birth.8 There was
a significantly different distribution of HPE types in our cohort
of patients with intragenic ZIC2 mutations versus those
described by Lazaro et al (2004) and ascertained through our
general NIH HPE cohort.7 There was not a statistically signifi-
cant difference compared to the Orioli et al (2007) group, though
this latter cohort does not appear well matched with our ZIC2
cohort.8

Clinical features
Among all individuals with mutations (including both probands
and relatives of probands) for whom gender was known, 50%
were female and 50% were male. Among probands for whom
gender was known, 51% were female and 49% were male.
Patients with recognisable brain anomalies invariably had

some degree of neurological impairment. Of 65 families tested,
18 parents were identified as having mutations initially found in
their severely affected children; of the eight parents who had
mutations (not germline mutations) who were fully examined,
only two parents were not found to have mild features of
microform HPE. The overall penetrance of phenotypic mani-
festations (including alobar, semilobar, lobar, MIHV, and
microform HPE, as well as HPE of unknown type) due to
intragenic mutations in ZIC2 is estimated to be 93%; the
prevalence of structural brain anomalies consistent with
a diagnosis of frank HPE (by conventional neuroimaging or
pathology) is estimated to be 88% of patients with intragenic
mutations.
Among 59 patients for whom information was available, at

least 67% (40/59) did not display typical HPE facial features
such as the combination of hypotelorism, midface hypoplasia
with flat nasal bridge, cleft lip/palate, and SMCI, features
frequently seen in patients with mutations in genes such as
SHH and SIX3.21 While 33% of patients (19/59) were reported
as having facial characteristics commonly described in HPE (as
above), none of these latter patients had photographs available
for review, and were only described in clinical summaries
provided by referring clinicians. In other words, none of the 30
available photos show facial features in which patients with
mutations in ZIC2 have typical HPE craniofacial manifestations,
but some clinicians describe more typical HPE facial features in
written summaries. Additionally, no patients had facial findings
at the most severe end of the spectrum, such as cyclopia,
synophthalmia, or a proboscis. As anthropometric measure-
ments were not uniformly available, detailed calculations as to
the prevalence of certain features were not attempted.

Table 1 Denominators used to calculate prevalence of findings in
individuals with intragenic sequence determined mutations in ZIC2

Probands
All affected
individuals*

Total patients 103 141

Gender 90 127

Holoprosencephaly (HPE) type 86 105

Structural neurological findingsy 81 92

Inheritance 65 85

Extra-neurological findings 64 76

Facial phenotypez 59 59

*Including probands and relatives.
yIn addition to HPE.
z30 photos, 29 full facial descriptions.
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Table 2 All known patients with mutations affecting ZIC2

Patient* HPE type Gender Case Status Inheritance DNA Alteration
Predicted protein
alteration in ZIC2

Functional
activity Reference

1 U F P De novo c.21delG p.Q8SfsX33 Predicted null 18 24

2 S M P De novo c.81_86delGGCGGCinsTCGGT p.A28RfsX13 Predicted null 18

3a S F P Maternal c.107A/C (assumed) p.Q36P (assumed) 170% 18 29 31

3b Mic F Mother Unknown c.107A/C p.Q36P 170% 18 29 31

4a L F P Paternal c.109G/A p.D37N Unknown 18

4b N M Father Unknown c.109G/A p.D37N Unknown 18

5 S F P De novo c.129_184dup56 p.L62Rfs175 Predicted null 18

6 S F P De novo c.136C/T p.Q46X Predicted null 18 31

7 A F P De novo c.172G/T p.G58X Predicted null 18 31

8 S F P De novo c.177ins56 p.F60QfsX176 Predicted null 17 18

9a S F P Maternal c.191dupC p.A66RfsX301 Predicted null 18

9b L M Brother Maternal c.191dupC p.A66RfsX301 Predicted null 18

9c Mic F Mother Unknown c.191dupC p.A66RfsX301 Predicted null 18

10 L M P De novo c.217C/T p.Q73X Predicted null 18

11 A F P Unknown c.217delC p.Q73Rfs145 Predicted null 18

12 A M P De novo c.367delA p.S123AfsX95 Predicted null 18

13 A M P De novo c.382G/A p.D128N Unknown 18

14a A M P Paternal c.386_392delCGGCGCC p.S129WfsX87 Predicted null 18

14b S M Brother Paternal c.386_392delCGGCGCC
(assumed)

p.S129WfsX87
(assumed)

Predicted null 18

14c Mic M Father Unknown c.386_392delCGGCGCC
(assumed)

p.S129WfsX87
(assumed)

Predicted null 18

15 U U P Unknown C.392_398del7 p.G133SfsX83 Predicted null 18

16a L F P Maternal c.454_455delinsTT p.D152F 60% 18 24 31

16b N F Mother Unknown c.454_455delinsTT p.D152F 60% 18 24 31

17 L M P Germline c.479delC p.P160RfsX58 Predicted null 18

18 A M P De novo c.490G/T p.E164X Predicted null 18

19a S M P Unknown (assumed
germline mosaicism)

c.557_572dup16 p.E192GfsX180 Predicted null 18

19b S F Sister Unknown (assumed
germline mosaicism)

c.557_572dup16 p.E192GfsX180 Predicted null 18

20a U F P (triplet) Unknown c.577delC p.Q193NfsX25 Predicted null 18

20b U F Sister (triplet) Unknown c.577delC p.Q193NfsX25 Predicted null 18

21 A M P De novo c.582C/A p.Y194X Predicted null 18

22 S F P De novo c.612delC p.Y205TfsX13 Predicted null 18

23 S M P Unknown c.622GC/TT p.A208L Unknown This report

24 A M P Unknown c.659delA p.N220TfsX4 Predicted null 18

25a A F P Maternal c.665_676dup12 p.G222_M225dup Unknown 18

25b U F Mother Unknown c.665_676dup12 p.G222_M225dup Unknown 18

26 S F P De novo c.748C/T p.Q250X Predicted null 18

27 A M P De novo c.779G/A p.W260X Predicted null 18

28a S M P Unknown c.793C/T p.Q265X Predicted null 18

28b U F Sister Unknown c.793C/T p.Q265X Predicted null 18

29 A M P De novo c.797_801del p.L266QfsX99 Predicted null This report

30a MIHV F P Maternal (assumed
germline mosaicism)

c.808_809ins17 p.K270TfsX2 Predicted null 18 31

30b A M Brother Maternal (assumed
germline mosaicism)

c.808_809ins17 (assumed) p.K270TfsX2
(assumed)

Predicted null 18 31

30c U M Brother Maternal (assumed
germline mosaicism)

c.808_809ins17 (assumed) p.K270TfsX2
(assumed)

Predicted null 18 31

30d N F Mother Unknown c.808_809ins17 (assumed
germline mosaicism)

p.K270TfsX2 (assumed
germline mosaicism)

Predicted null 18 31

31 A M P Unknown c.815G/A and c. 974 G/T p.S272N
p.R325L

Predicted null (for
both mutations)

18

32 U U P Unknown c.825_826delAA p.K275NfsX91 Predicted null 18

33 U F P Unknown p.829_830dupTT p.T279AfsX7 Predicted null 18

34 A M P De novo c.856C/T p.H286Y Predicted null 18

35 U U P Unknown p.857A/T p.H286L Predicted null 18

36 A F P Unknown c.858C/G p.H286Q Predicted null 18

37 S U P De novo c.862_863delTC p.S288GfsX78 Predicted null 18 28

38a L M P Paternal c.871C/T p.H291Y Predicted null 18

38b Mic M Father Unknown c.871C/T p.H291Y Predicted null 18

Continued
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Table 2 Continued

Patient* HPE type Gender Case Status Inheritance DNA Alteration
Predicted protein
alteration in ZIC2

Functional
activity Reference

39 S M P Unknown c.910T/A (Also SIX3:
c.850G/C)

p.W304R (Also SIX3:
p.A284P)

Predicted null 18

40 A F P Unknown c.912G/A p.W304X Predicted null 18

41 U M P Unknown c.912G/A p.W304X Predicted null 18

42 L F P De novo c.928G/T p.E310X Predicted null 18

43 S F P De novo c.932delG p.G311AfsX102 Predicted null 18 24

44 A F P Unknown c.941T/G P.F314C Predicted null 18

45 S F P De novo c.973C/A p.R325S Predicted null 18

46 U U P Unknown c.974G/T p.R325L Predicted null 18

47 U M P De novo c.979C/T p.H327Y Predicted null 18

48 S M P De novo c.994_1005dup p.C335_P338dup Predicted loss-of-
function

This report

49 A F P De novo c.1004G/T p.C335F Predicted null 18

50 S F P De novo c.1025_1026delAA p.K342SfsX24 Predicted null 18 31

51 S U P De novo c. 1031_1032 delTC p.F344CfsX22 Predicted null 18 24

52 A F P De novo c.1040_1046del pE348SfsX63 Predicted null 17 18 24

53 S M P Unknown c.1051A/T p.K351X Predicted null 18

54 S F P De novo c.1052_1053insAA
AGGTTCACAC
AGAACCTCAA

p.K351_I352Ins7 Predicted null 18

55 A M P De novo c.1075+2T/A (IVS+1T/A) p.G359fsX62 Predicted null 18

56 U F P Unknown c.1076-1G/A (IVS1-1G/A) Alternative splicing Predicted null 18

57 U M P De novo c.1076-1G/A (IVS1-1G/A) Alternative splicing Predicted null 18

58 S M P Unknown c.1076-1G/A (IVS1-1G/A) Alternative splicing Predicted null 18

59 S M P Unknown c.1076-1G/A (IVS1-1G/A) Alternative splicing Predicted null 18

60 S F P De novo c.1090C/T p.Q364X Predicted null 18

61a S M P (twin) De novo c.1091_1092delAG p.Q364LfsX2 Predicted null 18 24 31

61b U M Twin De novo c.1091_1092delAG p.Q364LfsX2 Predicted null 18 24 31

62 S M P Unknown c.1095_1096delTG p.C365X Predicted null 18

63a S F P Maternal c.1095_1096delTG p.C365X Predicted null 18

63b U M Half-sibling Maternal (assumed) c.1095_1096delTG (assumed) p.C365X (assumed) Predicted null 18

63c U F Mother Unknown c.1095_1096delTG p.C365X Predicted null 18

64 S M P De novo c.1097_1098delAG p.E366Vfs2 Predicted null 18 24 31

65 U U P Unknown c.1118G/C p.R373P Predicted null 18

66 S M P Unknown c.1119_1120delCT p.F374RfsX17 Predicted null 18

67 U U P Unknown c.1204T/A p.Y402N Predicted null 18

68a S F P Maternal c.1206C/G p.Y402X Predicted null 18

68b U M Brother Maternal c.1206C/G p.Y402X* Predicted null 18

68c Mic F Mother Unknown c.1206C/G p.Y402X Predicted null 18

69a S F P Maternal c.1208C/A p.T403K Predicted null 18

69b U F Half-sister Maternal c.1208C/A (assumed) p.T403K (assumed) Predicted null 18

69c U F Half-sister Maternal c.1208C/A (assumed) p.T403K (assumed) Predicted null 18

69d U F Mother Unknown c.1208C/A (assumed) p.T403K (assumed) Predicted null 18

70 S M P Unknown c.1211A/G p.H404R Predicted null 18

71 S F P Unknown c.1225C/T p.R409W Predicted null 18

72 U U P Unknown c.1239+1G/C (IVS1-1G/A) Possible inclusion of
intron 2 codons or
alternative splicing

Predicted null 18

73 U U P Unknown c.1240-2A/G (IVS2-2A/G) Alternative splicing Predicted null 18

74 L M P Unknown c.1245T/G p.H415Q Predicted null 18

75 S F P Unknown c.1277delC p.P426RfsX129 Predicted null 18

76 A M P De novo c.1313dupC p.L440AfsX90 Predicted null 17 18

77 L F P De novo c.1323dupG p.S442Vfs88 2% 18 24 29

78 A M P Unknown c.1329delC p.S444AfsX111 Predicted null This report

79 MIHV M P De novo c.1330_1365del p.444_455del 60% 18 24 29

80 S M P Unknown c.1366_1395dup30 p.A456_465dup Unknown This report

81 MIHV M P Unknown c.1366_1395dup30 p.A456_465dup Unknown This report

82a A M P Paternal (assumed
germline mosaicism)

c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

17 18 24

82b A F Sister Paternal (assumed
germline mosaicism)

c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

17 18 24

82c U M Paternal
half-sister

Paternal (assumed
germline mosaicism)

c.1377_1406dup30 (assumed) p.A461_470dup
(assumed)

5% with reduced
DNA binding

17 18 24

Continued
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Table 2 Continued

Patient* HPE type Gender Case Status Inheritance DNA Alteration
Predicted protein
alteration in ZIC2

Functional
activity Reference

82d U F Paternal
half-sister

Paternal (assumed
germline mosaicism)

c.1377_1406dup30 (assumed) p.A461_470dup
(assumed)

5% with reduced
DNA binding

17 18 24

82e Mic M Brother Paternal (assumed
germline mosaicism)

c.1377_1406dup30
(assumed)

p.A461_470dup
(assumed)

5% with reduced
DNA binding

17 18 24

82f S F Sister Paternal (assumed
germline mosaicism)

c.1377_1406dup30
(assumed)

p.A461_470dup
(assumed)

5% with reduced
DNA binding

17 18 24

82g N M Father De novo c.1377_1406dup30
(assumed germline
mosacisim)

p.A461_470dup
(assumed germline
mosaicism)

5% with reduced
DNA binding

17 18 24

83 U F P Unknown c.1377_1406dup30
(also SHH: c. 869G/A)

p.A461_470dup (also
SHH: p.G290D)

5% with reduced
DNA binding

18 26

84 S F P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

This report

85a S U P Maternal c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18

85b U F Mother Unknown c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18

86a MIHV F P Paternal c.1377_1406dup30;
Also sib with FOXH1:
c.1062delT

p.A461_470dup; Also
sib with FOXH1: FS in
COOH terminus

5% with reduced
DNA binding

18 24

86b U M Brother Paternal c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18 24

86c N M Father “Mosaic carrier” c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18 24

87 S F P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18 34

88 A F P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18

89 S M P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18 24

90 L M P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

18

91 S F P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

This report

92 A F P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

This report

93 MIHV M P De novo c.1377_1406dup30 p.A461_470dup 5% with reduced
DNA binding

This report

94a L F P Paternal c.1377_1406del p.A456_465del Predicted null 18

94b U M Father Unknown c.1377_1406del p.A456_465del Predicted null 18

95a A M P Maternal c.1392_1406del p.A461_465del Predicted null 18

95b N F Mother Unknown c.1392_1406del p.A461_465del Predicted null 18

96a S M P Maternal c.1401_1406dup p.A469_470dup Unknown This report

96b U U Sibling Maternal c.1401_1406dup p.A469_470dup Unknown This report

96c N M Mother Unknown c.1401_1406dup p.A469_470dup Unknown This report

97 S M P De novo c.1420_1427dup;
c.1428_1433delinsCG

p.G477CfsX54 Predicted null 18

98 S F P De novo c.1437_1441del p.S480QfsX48 Predicted null This report

99 S F P De novo c.1445_1461del17 p.S482RfsX42 Predicted null 18

100 A U P Unknown c.1452_1456delCGCGG p.A485RfsX43 Predicted null 18

101 S M P Unknown c.1455_1461delinsCG p.G487LfsX41 Predicted null 18

102 S M P De novo c.1508_1520delGCGGC
GGGGGCGG

p.G503AfsX48 Predicted null 18

103a U U P Maternal c.1559delA p.H520PfsX35 Predicted null 18

103b U M Brother Maternal c.1559delA p.H520PfsX35 Predicted null 18

103c U F Mother Unknown c.1559delA p.H520PfsX35 Predicted null 18

104 S F P Unknown Gene deletion N/A Predicted null 34

105 S M P De novo Gene deletion N/A Predicted null This report

106 L F P De novo Gene deletion N/A Predicted null This report

107 S M P De novo Gene deletion N/A Predicted null This report

108 A F P De novo Gene deletion N/A Predicted null This report

109 A F P De novo Gene deletion N/A Predicted null This report

110 U M P De novo Gene deletion N/A Predicted null This report

111 U F P U del13(q31.1-13qter) N/A Predicted null 33

112 U M P U del13(q31.1-13qter) N/A Predicted null 33

113 U M P U del13(q31.3 -13q33.1) N/A Predicted null 33

Continued

518 J Med Genet 2010;47:513e524. doi:10.1136/jmg.2009.073049

Original article

 group.bmj.com on October 19, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


Independent reviews (by KR, BS, MM) of photos of available
probands with mutations in ZIC2 revealed a common pheno-
type consisting of bitemporal narrowing (53%), upslanting
palpebral fissures (97%), a flat nasal bridge (33%), a short nose
with anteverted nares (73%), a broad and deep philtrum (43%),
and the subjective appearance of relatively large ears (37%)
(figure 2, table 5). All photos reviewed showed evidence of this
common facial phenotype, and none had facial features notably
similar to those of patients with HPE due to mutations in other
genes. Prevalences of facial findings with data sufficient for
comparison are presented in table 6 compared to a cohort with
mutations in SIX3.

Although additional photos were not available for review,
a similar facial phenotype was independently described by
collaborators (SM, SO, personal communication). On review,
this facial phenotype also occurs in previously published
patients with mutations in ZIC2.17 24 Facial clefts, ranging from
cleft lip and palate to a small unilateral nostril cleft, were
described in 10%, while 17% did not have clefts, but had high
palates. Facial clefts in patients with intragenic ZIC2 mutations
are approximately a third as common as in other cohorts with
non-ZIC2 related HPE.8 21

In terms of neurological defects, in addition to HPE in patients
with intragenic sequence determinedmutations (ie, not including
patients with whole gene deletions or large cytogenetic imbal-
ances), 12% of individuals had hydrocephalus, and 4% were
reported as having neural tube defects. Finally, in terms of non-
neurological manifestations, 14% had skeletal anomalies, 9% had
cardiac anomalies, 7% had renal anomalies, 7% had genital
anomalies, 4% had gastrointestinal anomalies, and 4% had
pulmonary anomalies. Five per cent had more than three
congenital anomalies in these systems, including complex
congenital cardiac, renal, and skeletal abnormalities. We present
comparisons to the only other large cohort of patients with HPE
due tomutations in a single gene (SIX3) and to a cohort of patients
with non-syndromic HPE (table 6). In this latter comparison, the
category of non-syndromic HPE includes patients in whom HPE
does not occur in the context of a broader syndrome, but it is

important to realise that patients with non-syndromic HPE may
present with findings that extend beyond the traditional cranio-
facial and structural brain anomalies most often recognised as the
classic manifestations of autosomal dominant monogenic HPE.21

While not all features were described in the three cohorts, the
comparisons do show statistical support that patients with
mutations in ZIC2 appear to have a unique facial phenotype.
Additionally, this comparison shows that patients with muta-
tions in ZIC2 have overall similar rates of extra-neuronal mani-
festations to patients with SIX3mutations in contrast to a cohort
of patients with non-syndromic HPE, although skeletal manifes-
tations appear more frequent in patients with mutations in ZIC2
than in SIX3 related HPE.8 21

Genotypic and functional analysis
The molecular findings among patients with mutations in ZIC2
have been recently and extensively analysed.18 Among kindreds
with intragenic sequence determined mutations, 81% were
unique. One mutation, which resulted in an alanine expansion
and which has been shown to result in greatly reduced function,
occurred in 12 apparently unrelated kindreds.
Among the 103 unrelated kindreds with intragenic sequence

determined mutations, 37% had frameshift mutations, 21% had
missense mutations, 17% were in-frame duplications or inser-
tions, 16% had nonsense mutations, 6% were predicted to result
in alternative splicing, and 3% were in-frame deletions; 89% of
the in-frame deletions and duplications occurred in the poly-
alanine segment of the gene.
The vast majority (98%) of family specific mutations were

predicted or proven significant loss-of-function. Interestingly,
among the very few patients (kindreds 3, 16, and 79) whose
mutations were shown by functional analysis not to be null,
alobar HPE was not observed and 66% (2/3) were inherited, in
contrast to the overall estimation that 72% of mutations in
probands occur de novo. Due to the low number of kindreds
with mutations not shown to be null and the fact that equiv-
alent functional analyses have not been performed for most
mutations, statistical calculations involving the latter observa-
tion were not attempted. The overall rate of de novo mutations
in ZIC2 is in stark contrast to patients with HPE due to
mutations in SHH or SIX3, in which the de novo mutation rate
is estimated to be 10e30%, and 14%, respectively (Muenke lab,
unpublished data, 2010).21

In our analysis, we did not include previously reported variants
in ZIC2 resulting in different numbers of histidine repeats, which
had been thought to be pathogenic, but on later pedigree analysis,
are now thought to be polymorphisms that may be common in
ethnicities not originally part of control populations.18 35 36

DISCUSSION
Mutations in ZIC2 are one of the two most common single gene
causes of non-syndromic HPE. We show that patients with ZIC2

Table 2 Continued

Patient* HPE type Gender Case Status Inheritance DNA Alteration
Predicted protein
alteration in ZIC2

Functional
activity Reference

114 U M P U del13(q32.3) N/A Predicted null 33

115 A F P U del13(q32q34) N/A Predicted null 32

116 A F P Maternal i(13)(q10) N/A Predicted null 25

117 U U P U del(13)(q22qter) N/A Predicted null 16

118 A M P U del(13)(q22qter) N/A Predicted null 27

119 U M P U del(13)(q31qter) N/A Predicted null 30

*Each kindred is listed by a separate number; individuals within a kindred are each assigned a separate letter.
A, alobar; F, female; L, lobar; M, male; Mic: microform; MIHV, middle interhemispheric variant; N, none; P, proband; S, semilobar; U, unknown.

Table 3 Prevalences of holoprosencephaly (HPE) types

HPE type

Patients with
mutations in
ZIC2, n (%)

Probands with
mutations in
ZIC2, n (%)

Patients with
deletions of
ZIC2, n (%)

Alobar 28 (20) 26 (25) 5 (31)

Semilobar 48 (34) 45 (44) 3 (19)

Lobar 11 (8) 10 (10) 1 (6)

MIHV 5 (4) 5 (5) 0 (0)

Microform 6 (4) 0 0 (0)

None 7 (5) 0 0 (0)

Unknown 36 (26) 17 (17) 7 (44)

Total 141 103 16

MIHV, middle interhemispheric variant.
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mutations do not typically have facial dysmorphisms standardly
associated with HPE. HPE due to ZIC2 mutations could be
underappreciated, as HPE is not diagnosed in some patients with
ZIC2 mutations due to the absence of facial dysmorphisms
leading to a diagnosis of HPE.

Further, our analysis of this large cohort reveals several unique
features which distinguishes ZIC2 related HPE from HPE due to

other causes. First, the recognition that many patients with
mutations inZIC2have a subtle but distinct facial phenotypemay
help aid diagnosis. This facial appearance has not been described in
patients with HPE resulting from other genetic aetiologies. The
data in our cohort may be biased because only some patients
survived long enough for photographs to be taken. However, the
fact that no photographs demonstrated a combination of features

Figure 1 Characteristic findings on
neuroimaging. (A) Alobar
holoprosencephaly (HPE), with shunt in
place. (B, C) Semilobar HPE with large
dorsal cyst. (D) Semilobar HPE without
dorsal cyst. (E, F) Middle
interhemispheric variant (MIHV) type
HPE.
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Table 4 Comparison of holoprosencephaly (HPE) type distribution among the three ‘classic’ HPE types for the patients with intragenic ZIC2
mutations, as well as two sources from the literature and a source obtained from our database: Lazaro et al (2004) described a cohort of both living
patients and deceased fetuses with non-chromosomal, non-syndromic HPE, while Orioli et al (2007) describes a cohort of patients born with HPE.7 8

We also compare our cohort of patients with mutations in ZIC2 with a cohort of prospectively ascertained probands with non-chromosomal,
non-syndromic HPE whose samples were sent to the National Institutes of Health (NIH) over approximately a 3 year period. Due to low prevalence,
middle interhemispheric variant (MIHV) was not considered

Intragenic ZIC2
mutations n (%) Lazaro et al7 n (%)

Orioli and Castilla8

n (%) NIH n (%)

Alobar 28 (32) 15 (22) 33 (40) 10 (13)

Semilobar 48 (55) 31 (45) 36 (43) 45 (6)

Lobar 11 (13) 23 (33) 14 (17) 20 (27)

Total 87 69 83 75

Comparison vs ZIC2 cohort c2
(2)¼9.88, p¼0.0077 c2

(2)¼2.39, p¼0.30 c2
(2)¼10.4, p¼0.0055

Figure 2 Patients with mutations in ZIC2, arranged by holoprosencephaly (HPE) type. Letters link to patients described in tables 2 and 5. Note the
pattern of facial findings in patients with mutations in ZIC2, consisting of bitemporal narrowing, upslanting palpebral fissures, flat nasal bridge, a short
nose with upturned nares, a broad and/or deep philtrum, and the appearance of large ears. MIHV, middle interhemispheric variant.
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more commonly associated with HPE, such as severe hypo-
telorism, flat nasal bridge, cleft lip/palate, or SMCI, is striking.
Although the retrospective data do not allow certain comparisons
to be made, available statistical calculations show evidence that
the facial phenotype in patients with ZIC2mutations is different
than that of other cohorts of patients with HPE.

Second, unlike other genes associated with HPE, the majority
of mutations in ZIC2 occur de novo. Our data suggest the
presence of at least five families in which germline mosaicism
appears to be causative of HPE in a child, which has important
implications for genetic counselling. Parents who test negative
for ZIC2 mutations through analysis of peripheral blood may
still be at risk for having other affected children.

Third, along these lines, we did not identify any large pedi-
grees in which numerous individuals from multiple generations
were found to have a mutation, which is strikingly different
from what has been observed with other common HPE associ-
ated genes such as SHH or SIX3. This could imply that muta-
tions in ZIC2 are less likely to result in mildly affected
individuals than mutations in other HPE associated genes, and
again is important for genetic counselling.

Finally, our findings show that non-chromosomal,
non-syndromic HPE is not simply an ‘above-the-neck’ diagnosis.
Patients with mutations in ZIC2 frequently have other organ
systems involved, and clinicians must look beyond craniofacial
and structural brain anomalies in their clinical assessment.

While skeletal anomalies may be more frequent in patients with
ZIC2 than in other types of non-chromosomal, non-syndromic
HPE, no clear overall pattern emerges except that it is important
to be aware that congenital anomalies may be found in other
major organ systems.
One shortcoming of this report is that the available retro-

spective collection of clinical data was not uniform. For this
reason, it is likely that we underestimate the prevalence of many
of the findings (such as neural tube defects and other congenital
anomalies). Despite the challenges in synthesising the data, the
availability of a large cohort of patients with mutations
affecting the same gene greatly enriches our understanding of
HPE in general and ZIC2 in particular. This analysis reveals
a previously unnoticed ZIC2 specific phenotype and highlights
the importance of a comprehensive and collaborative approach
in studying HPE and other complex genetic disorders.
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