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An Affect-Responsive Interactive Photo Frame
Hamdi Dibeklioğlu, Ilkka Kosunen, Marcos Ortega Hortas, Albert Ali Salah, Petr Zuzánek

Abstract— We develop an interactive photo-frame system in which a
series of videos of a single person are automatically segmented and a
response logic is derived to interact with the user in real-time. The
system is composed of five modules. The first module analyzes the
uploaded videos and prepares segments for interactive play, in an offline
manner. The second module uses multi-modal input (activity levels, facial
expression, etc.) to generate a user state. These states are used by the
internal frame logic, the third module, to select segments from the offline-
generated segment dictionary, and they determine the response of the
system. A continuous video stream is synthesized from the prepared
segments in accordance with the modeled state of the user. The system
logic includes online/offline adaptation, which is based on stored input-
output pairs during real-time operation, and offline learning to improve
the system response. The fourth module is the application interface, which
deals with handling the input and output streams. Finally, a dual-frame
module is described to enhance the use of the system.

I. INTRODUCTION

In this paper we describe a dynamic responsive photo frame.

This system replaces a traditional static photograph with a video-

based frame, where short segments of the recorded person are shown

continuously, depending on the input received from the sensors

attached to the interactive frame.

The prototypical scenario we consider is the photograph of a baby,

set up in a different location, for instance in the living room of the

grandparents. While there is no one around, the baby is asleep in

the photo frame. Once a viewer arrives, the baby ‘wakes up’, and

responds to the multimodal input received from its viewer. To realize

such a system, we propose methods to automatically analyse and

segment a number of video sequences to create a response dictionary,

combined with a real-time affect- and activity-based analysis tool to

select appropriate responses to the user. We then propose a number

of system extensions and describe an evaluation methodology.

This system has a number of precursors. A responsive interactive

system was proposed in [1], called an Audiovisual Sensitive Artificial

Listener. It is a system in which virtual characters react to real users.

Facial images and voice information in the videos are used to extract

features, which are then submitted to analysers and interpreters that

understand the user’s state and determine the response of the virtual

character. Hidden Markov Models (HMMs) are used in sequential

recognition and synthesis problems. In [2], a dialogue model is

proposed that is able recognize the user’s emotional state, as well

as decide on related acts. A Partially Observable Markov Decision

Process approach is used with observed user’s emotional states and

actions.

A project which brought some interaction to photographs is the

Spotlight project of Orit Zuckerman and Sajid Sadi, developed at

MIT MediaLab1. In this project, 16 portraits are placed in a 4 × 4
layout. Each portrait has nine directional temporal gestures (i.e. one

of nine images of the same person can be displayed in the portrait at

any given time), which give the appearance of looking at one of the

other portraits, or to the interacting user. The user of the system can

select a portrait, at which point the remaining portraits will ‘look’ at

H. Dibeklioğlu and A.A. Salah are with the Informatics Institute, University
of Amsterdam, the Netherlands. I. Kosunen is with Helsinki Institute of
Technology, Finland. M. Ortega is with University of A Coruña, Spain. P.
Zuzánek is with Czech Technical University, Czech Republic.

1http://ambient.media.mit.edu/people/sajid/past/spotlight.html

it. This project demonstrates the concept of an interactive photograph

with static content. While the combination of portraits create novel

patterns all the time, the language of interaction is simple and crisply

defined.

Another interactive photo frame project is the “Portrait of Cati”

by Stefan Agamanolis, where the portrait in question can sense the

proximity of the spectator, and act accordingly [3]. When no one

is close to the portrait, Cati displays a neutral face. When someone

approaches, it selects a random emotion, and displays it in proportion

to the proximity of the spectator. If the selected expression is a

smile, for instance, the closer the spectator comes, the wider Cati

will smile. A similar project is the Morface installation, where an

image of Mona Lisa was animated based on the proximity of the

interacting person [4]. In this project camera-based tracking is used

to determine proximity and head orientation of the user.

The system described in here is different in several aspects from the

systems discussed in the literature. In our model the responses of the

system are not fixed, but grow in time as the user uploads new videos.

In this manner, the system maintains novelty. The two interactive

systems we just described are suitable for art installations, but we

target a home application, for which novelty plays an important

role. Another aspect is that we use real videos in the systems

output, with no manual annotation. This is much more challenging

than producing appropriate responses through a carefully engineered

synthesis framework, where the system has control over the output.

The bottleneck in our system is the real-time interaction, therefore

we need to work with lightweight features. We first inspect simple and

easy-to-recognize signals, and move to recognition of more complex

stimuli. The second aspect that makes our work novel is that the

response of the system is not manually (and precisely) defined. A

fully automatic segmentation procedure is proposed to create self-

contained response patterns, for which the precise semantics is not

known at the onset. Our goal is to create a consistent system, in

which certain user behaviour is used to produce a certain system

response in a consistent manner, and the user is the primary driver

of the interaction semantics.

The primary modality we use for real-time analysis is the facial

expression of the user. At the core of our real-time module is the

eMotion system, which recognizes six basic emotional expressions

in realtime [5], [6]. This system uses a Bézier volume-based tracker

for the face and a naı̈ve Bayes classifier for expression classification.

In a similar vein, Kaliouby et al. previously proposed a MindReader

API which models head and facial movements over time by Dynamic

Bayesian Networks, to infer a person’s affective-cognitive states in

real time [7]. In [8] a real-time emotion analysis system was proposed

that used an efficient facial feature detection library in conjunction

with a number of physiological signals. In the last few years, facial

expression and action recognition have seen great improvements. For

additional information on facial expression recognition, see [9], [10],

[11].

This report is structured as follows. In Section II we describe the

proposed system, its separate modules, and its use-cases. Section III

describes the algorithmic aspects for each of the modules of the

system. Section IV describes the experimental methodology and the

assessment of the proposed algorithms within the application context.

As the complete system implementation was not completed until
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Fig. 1. The overview of the operation of the system. In the dual-frame mode, each frame is used to record new videos that are automatically segmented and
added to the segment library of the other frame, establishing an asynchronous communication channel.

the end of the eNTERFACE Workshop, a usability study was not

performed. However, such a study was planned during the Workshop.

Finally, we conclude in Section V and summarize possible future

directions.

II. DESIGN OF THE AFFECT-RESPONSIVE PHOTO FRAME

In this section we describe the logic and the design choices for the

affect-responsive photo frame, and introduce the separate modules.

Our purpose is to create an emotional/personal digital artifact for

continued use. This artifact is designed to adapt to each of its users,

as well as prompt the user to adapt to its behavior by guiding the user.

We will describe the whole system through the prototypical baby-

grandmother scenario. This will help distinguishing the two analysis

modules that are similar in principle, but work in offline and online

modes, respectively.

A. Overview

The first part of the system is the offline segmentation module.

The purpose of this module is to create a response segment library,

composed of short video fragments. The input is any number of

uploaded videos. In the prototypical use-case, these are the videos

of the baby. These videos are analyzed in an offline fashion, and

the segments are stored in a segment library. During interaction, the

system will play these segments in a particular order.

The second module is the affect and activity analysis module. Here

the visual (and in the future audio) input from the user is analyzed in

real-time, and a feature vector is generated. This is the module that

processes the behaviour of the grandmother in the use-case.

The feature vector is used by the third module, which is the system

response logic. The features computed in the second module are used

to select an appropriate video segment from the segment library. This

module also incorporates learning, to fine-tune its response over time.

The system uses its offline period to execute an unsupervised learning

routine for this purpose.

The fourth module is the interface. The segments are displayed to

the user in the photo frame, depending on the user input. For instance,

a smile will trigger a response from the frame, but since we have no

mechanism to interrupt the response of the system as soon as new

input arrives, a faster feedback mechanism is integrated to the frame

in form of coloured glyphs, displayed under the image. Each system

response is associated with one glyph, and the brightness of the glyph

indicates the proximity of users behaviour to the activating input for

that particular response. Thus, if a response is triggered by a smile, a

wide smile will activate its glyph immediately, and the response will

be played once the current sequence ends playing.

Finally, the fifth module is implementation of the dual frame mode.

Here there are two frames, in different locations. Each frame records

new segments when it is interacting with a user, analyses those

segments, and sends them over the Internet to the other frame system.

These segments are added to the segment library of the other frame.

They also come with some ground truth, we already know what kind

of input elicited these responses in the first place, so we can associate

their activation with similar input patterns. This design takes care of

content management, and provides constant novelty to the system.

Figure 1 shows the overall design of the system, complete with the

dual-frame mode.

B. Offline Segmentation Module

The task of the offline segmentation module is to automatically

generate meaningful and short segments from collected videos. These
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are stored with indicators of affective content and activity levels.

Segmentation errors here are not of great importance, as the synthesis

module will eventually use all footage material.

The segmentation module uses optical flow calculations to find

calm and active moments in the video. Each active moment of a

specific length, surrounded by calm moments, is considered as one

event and labeled as an active segment. Also, each calm period of

sufficient length is labeled as a calm segment. Due to the generic

nature of the optical flow calculation, the module is able to detect

not only changes in facial expressions, but also events such as hand

gestures (waving to the camera) and head movements.

Since we cannot assume a neutral initial pose, or an occlusion-free

face area for the duration of the video, assessing facial expressions

in these uncontrolled segments is really difficult. Furthermore, our

use-case involves a baby, for which the expression analysis requires

special training due to different facial morphology. Our experimental

results have shown that the optical flow based segmentation creates

segments similar to manual segmentation.

C. Real-time Feature Analysis Module

The real-time analysis module is motivated by the need of the

system to analyze and characterize user behaviour in order to provide

an appropriate response to any particular behaviour. Keeping this

in mind, this module can be considered as the data source of the

system, as it receives signals from the user and processes them

to determine affect- and activity-based content. Since the data are

gathered during real-time operation, the module must be able to

analyze and process data in a real-time fashion, within reasonable

computational assumptions.

The feature analysis module combines the input data into a single

feature vector aimed to characterize the current action taken by the

user of the system. Modelling the action as a feature vector has the

critical advantage that it allows to generate an action space covering

the possible feature vector values. This space can be further used to

improve system responses to a specific user using machine learning

techniques.

In our initial design of the system, we have focused on the

following aspects of the user behaviour to be able to model a

significant and complete set of different actions:

• Face: The location of the face is the first and most important

feature of the system. It allows us to detect the presence of a user

to initiate a session, and at the same time it offers information

during the session such as movement with respect to camera’s

frame of reference, and proximity of the user.

• Eyes: The location of the eyes gives us information about

the gaze direction of the user. In a system with synthesized

responses, matching gaze direction with the user (shared focus

of attention) or following the user’s location with the gaze are

both important for realistic interaction. Since we do not assume

any control over the stored segments, there is no meaningful way

we can match the gaze information with appropriate segments.

However, we do know where the strongest action takes place

in each segment, and the gaze information can potentially be

matched to such a cue.

• Motion: The activity level of the user is a lightweight feature

that can be usefully employed to characterize actions. We divide

the face area into a grid and measure the amount of activity in

each cell of the grid. This gives us a granular indication of facial

activity levels.

• Expression: Facial expression analysis is computationally costly.

In our prototype we detect the six prototypical facial expressions

(joy, sadness, anger, fear, surprise, disgust). Our system gives

soft membership values for each category (including neutral) at

15 fps.

In future, we plan to take more input channels into consideration,

like color information (in order to detect presence of some predomi-

nant color in the scene, possibly indicating an object) or audio cues

from the user.

1) Feature vector components: Fig. 2 shows the information that

the real-time analysis module extracts from the input data in a given

frame F in order to construct the feature vector. We also need to

consider the action of the user in some interval of time to model

the evolution of activity and movement. Therefore, we consider a

past frame F ′, typically two or three frames prior to F . The feature

vector computed at F ′ is used in conjunction with the feature vector

computed at F to determine the system response. In addition to these

location and activity based features, we use facial expression analysis

to provide us with the amount of expression present in each frame.

This additional information comes as a normalized vector containing

the amount for each one of the six basic facial expressions, plus the

neutral expression (represented as E1 . . . E7). Table I summarizes

the feature vector components related to the computations from the

frame data.

Fig. 2. Features gathered from the visual input of the user for a particular
frame. (Fx, Fy) represents the coordinates of the left corner of the face
region with respect to the image borders, W is its width and H is its height.
L = (Lx, Ly) and R = (Rx, Ry) represent the left and right eye locations,
respectively. A1 . . . A9 quantify the motion activity in each of the nine regions
around the face. These nine parameters are measured as vectors, the magnitude
(|A|) being the amount of average activity in the region and the direction (Aρ

being the mean direction for each region).

D. System Response Module

The system response determines the quality of interaction. If the

automatic segmentation is successful, we have a number of short

segments that can be played in any sequence. This forms a baseline

for the operation of the system. The purpose of the system response

module is to improve on this baseline by evaluating the user input in

real-time, and by producing consistent and meaningful responses.

We have selected a finite state machine as the abstract represen-

tation of the system’s operation in this module. This is the simplest

possible model for interaction, where input and output relations are

clearly (but probabilistically) indicated.

1) Simple prototype: As a simple first prototype, we have devel-

oped a simple, two-state finite state machine. The transition between

the states were made to depend on the results of the Viola-Jones face

detector (i.e. the input consisted of a Boolean variable representing
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TABLE I

DESCRIPTION OF THE 41 FEATURES USED TO BUILD THE FEATURE VECTOR FOR FRAME F . FEATURES ARE DEFINED IN TERMS OF THE COMPUTATIONS

OF FRAME F AND REFERENCE FRAME F ′ . THESE COMPUTATIONS CORRESPOND TO THE ONES EXPRESSED IN FIG. 2.

Index Calculation Definition

F1, F2 Fx, Fy Face region left corner coordinates

F3, F4 W , H Width and height of face region

F5, F6 Cx − C′

x, Cy − C′

y Translation of the face region from F ′ to F
F7, F8

W
W ′ , H

H′ Scale factor of the face region from F ′ to F
F9, F10 Lx, Ly Left eye center coordinates

F11, F12 Lx − L′

x, Ly − L′

y Left eye center translation from F ′ to F
F13, F14 Rx, Ry Right eye center coordinates

F15, F16 Rx −R′

x, Ry −R′

y Right eye center translation from F ′ to F
F17 . . . F25 |A1| . . . |A9| Magnitude of motion vectors in regions A1 to A9

F26 . . . F34 A1ρ . . . A9ρ Motion vector directions for regions A1 to A9

F35 . . . F41 E1 . . . E7 Amount of basic expressions present in the current frame

“face detected’ and ‘face not detected’). Fig. 3 depicts this two-state

machine. We have used two expressive face action sequences (‘Sad’

and ‘Smile’, respectively) from the Cohn-Kanade database [12]. The

advantages of using these sequences are that they are normalized with

respect to face location and size, well-illuminated, and the expressions

start from a neutral face and evolve into the full manifestation of the

expression.

Sad Smile

non-detect

detect

non-detect detect

Fig. 3. Scheme of the two-state machine that changes the response of the
system according to the results of the Viola-Jones face detector.

This prototype helped us to inspect the behaviour of the system

under very simple operating principles, and led to the following

observations:

• Neutral state: It is unnatural to repeat a video segment multiple

times, as the jump from the last frame to the first frame induces

an abrupt motion. In the prototype, we ensured the smooth

transition between segments by playing them forwards and

backwards in a single output cycle. Thus, any transition from

the ‘Sad’ state to the ‘Smile’ state occurred when the face was

displaying a neutral expression. We have decided to use such a

‘neutral state’ in all our state transitions. We define the neutral

state as a frame with very low activity, so that the switch from a

forward play to the backward play of the segment has minimum

unnatural motion. We have also experimented with morphing

between segments to have a smooth transition, but it is difficult

to ensure a proper registration of anchor points between frames

automatically to have a natural and smooth morphing sequence.

• Uninterrupted play: While the response logic requires the

system to change behaviour as soon as a new user input is

registered, it is unnatural to interrupt a sequence in progress

and switch to another sequence. We decided to switch the

segments (make a state transition) after the current segment is

played completely. For the acknowledgement of the user input,

a supplementary indicator is designed. This will be described

shortly.

• System responsivity: With uninterrupted play, there is a related

issue of the length of the video segments. Longer video segments

means that the system response is delayed, while the segment is

run to its end. A solution might be to eliminate longer sequences

from the segment library, or to make them rare events in the

operation of the system.

• Video transitions: When we have a transition between segments

that naturally follow each other, the state transition is very

smooth, as expected. However, switching to a distant segment of

the same video session, and even more prominently, switching to

a segment of another video session can be sharp and unnatural.

These transition artifacts should be eliminated using a smoothing

or blur function during the transitions. In [13] a subspace method

is proposed to control real-time motion of an object or a person

in a video sequence. The low-dimensional manifold where the

images are projected can be used to define a trajectory, which

is then back-projected to the original image space for a smooth

transition. While this method is promising for controlling tran-

sitions between segments, the subspace projection will not be

very successful with the dynamic and changing backgrounds

we deal with. Subsequently, we use a much simpler scheme. If

we have a transition from frame F1 to frame F2, we use an

exponential forgetting function to synthesize transition frames,

given by equation:

F3 = α · F1 + (1− α) · F2 (1)

where α ∈ (0; 1).

2) Design of the finite state machine: According to the observa-

tions we made following the prototype experiment, we have devel-

oped a more extensive finite state machine for the affect-responsive

photo frame, depicted in Fig. 4.

Stand by

Wake up Neutral Bye bye

non-detect

detect

detect | 

non-detect non-detect

detect | 

non-detect

Basic

Segment

Segment

     01

Segment

     02

Segment

      N

Fig. 4. Scheme of the finite state machine for system response. The two
kinds of states are distinguished by the dotted line separator.



ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS. 62

In this current implementation, we distinguish between Basic states

and Segment states, respectively.

• Basic states are used to provide a general and consistent outlook

to the system. When the system is not in use, a default state

of low activity is played in loop. In the prototypical use-case,

this state would depict the baby asleep in the frame. When a

person is present, the baby wakes up, and normal operation is

resumed. When the interacting user is absent for a long period,

the system returns to the sleep mode. The basic states make

sure that this skeleton response is properly displayed. They

are assigned manually, although their segmentation need not be

manual. The transition from one basic state to another basic state

depends solely on the input from the face detector.

• Segment states constitute the dynamic part of the finite state

machine. Each segment state Si is associated with one video

segment Vi from the segment library, as well as an expected

feature vector Fi that will guide the activation of the segment.

In the first working prototype of the system, implemented during

the eNTERFACE, we have assigned the expected feature vectors

randomly, by setting the activity and location based values to

zero and setting one or two of the facial expression dimensions

to larger values. Thus, basic expressions were used to elicit

responses from the system. The segment Vi is activated when

the feature vector describing the user’s activity is close to the

expected feature vector Fi. The ‘closeness’ here is described

statistically, by specifying a Gaussian distribution around each

expected feature vector, and admitting activation if the feature

vector computed from the user’s activity is close to the mean

by one standard deviation.

To better understand and remember the user’s response for each

segment, a game-like strategy is used, where the responses of the

system are ‘unlocked’ one by one. This means that the user has to

discover the correct response expected by the system for each new

video segment that is shown on the frame. At the beginning, all

segments are locked. Once the correct response for the segment in

line is found, the particular segment becomes active, and it can always

be re-activated by producing the same response.

E. Interface

The interface of the affect-responsive photo frame contains a

feedback mechanism to allow the user to see the immediate effect of

its actions. This was necessary, as we treat each video segment as

an integral entity, and play them in their entirety. Longer segments

reduce the responsiveness of the system. In this section we describe

our solution based on coloured glyphs, displayed under the photo

frame. We also describe the external software packages we made use

of to run the system on a stand-alone computer system.

1) Glyphs responses: The developed system aims to provide

two-sided adaptation between the user and the machine. Two-sided

adaptation means that it is not only the machine that learns the

patterns of the user, but also that the user learns the reactions of the

machine for different patterns. For this purpose, our system shows

glyph responses in real time for patterns derived from the actions

of the user at a specific moment. Each segment is pre-assigned

to a glyph, which shows the relation between the user’s behaviour

and the system response, which is encoded by the intensity of the

glyph. Higher intensity means that the user activity comes close to

the activity that is associated with the particular segment. When the

intensity reaches its maximum, the segment is activated. It is shown

to the user once, and the user response that elicited the activation of

the segment can be repeated for re-activation of the segment at later

times.

(a)

(b)

Fig. 5. (a) The stand-by mode and (b) the interaction mode of the system.
The lower left corner shows the current camera input to the photo frame as
a diagnostic tool.

Fig. 6 shows the system with the glyph responses for each segment.

The order of the glyphs (from left to right) reflects the order of

segments in the unlock queue. The third glyph glows bright in the

example, which means that the current activity of the user is very

close to the activity pattern that activated the third segment. The

green bounding box around the fourth glyph shows that this is the

next segment to be activated, and if the user wants to unlock this

segment, he or she should watch this glyph for intensity changes,

and adjust its behaviour to increase this intensity. The glyphs on the

left side of the green bounding box are already unlocked, and at any

given moment, the user can elicit these responses from the system

by the same behaviour that was used to unlock the segment initially.

Responses for segments to the right of the green bounding box are

not known to the user yet.

2) External software: To enable facial expression analysis in

our system, we have used the approach proposed in [6]. There

is an existing software implementation of this method, packaged

into the commercial eMotion application2. This program analyses a

face image, and classifies the facial expression into basic emotional

categories. We have modified some output channels of this expression

analysis system and prepared a separate executable to avoid running

face detection twice. In the prototype we have prepared, the modified

eMotion software runs in addition to the main program, and feeds the

facial analysis results to our system over a Telnet connection. Since

both interaction and eMotion systems need camera input, we have

used a third party camera splitter driver (SplitCam software) which

clones the camera input for both applications.

2http://www.visual-recognition.nl/
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Fig. 6. The output window displays the segment and the glyphs below it.
The red circle in the center of the third glyph shows the currently playing
segment. In the top-left corner, the name of the currently playing segment
is displayed. This is a prototype where each segment is named with basic
expression categories. This information is normally not available to the system,
as the segmentation is automatic.

F. Dual Frame Mode

The principle behind the dual-frame mode resembles that of the

PhotoMirror appliance [14]. In PhotoMirror, a camera is hidden

behind a mirror in a home setting, which can record segments of

the inhabitants life, and play them back on the surface of the mirror

(or another mirror). Similarly, the dual-frame mode of our system

implies an asynchronous communication between two persons.

Consider our example scenario with the baby and the grandmother,

and add to it a time-differential, where the baby lives in another

continent. While the grandmother uses the interactive photo frame

in her house, the system will record short segments of her activity

(where the face detector is active) and create a segmented behavior

library for the grandmother. These segments will be played on a

second frame, placed in the baby’s room. Through this symmetrical

setup, we will also have a kind of action-response ground truth; the

segments recorded from the grandmother’s frame will be associated

to particular segments of the baby. Then, these associations can be

used to weakly guide the response patterns. Furthermore, each usage

of the frame will send a sequence of new segments to the other frame,

taking care of automatic content update for improved novelty.

III. ALGORITHMIC ASPECTS

A. Offline Segmentation Module

The optical flow algorithm can be controlled in various ways

depending on the type of segmentation that is desired. First there is

the question of whether the optical flow should be calculated between

two consequent frames, or a longer period, which might be necessary

if the video footage is very static. Secondly, the number of tracked

features can be adjusted: in videos with lots of small, uninteresting

motion, the algorithm could be set to track only the most important

features. Furthermore, the distance between two unique features can

be scaled, and the maximum effect of a given feature can thereby

be made greater or smaller. This provides robustness against outliers,

so that a single large deviation in a given feature, which may be the

result of an outlier or noise, does not overly affect the result. With

all these options, the module can be used to segment a wide variety

of video content. We now discuss several aspects of this module.

1) Optical flow and motion energy: The optical flow calculations

were performed with standard routines of the OpenCV library3.

Optical flow is calculated by selecting the number of points or

3See David Staven’s excellent tutorial “The OpenCV Library: Computing
Optical Flow” for more information.

features in one frame image, and tracking the distance these points

have moved in another frame. The tracked features can be selected in

a variety of ways [15], but we used the Shi-Tomasi corner detection

algorithm [16]. Once the features are selected, they are used using the

Lucas-Kanade method for optical flow estimation [17]. The resulting

optical flow for each feature in the frame (up to a pre-specified

number of features) is then summed to produce a total amount of

optical flow for each frame. Because we are interested in events

that last for several seconds, the optical flow data are then smoothed

using a moving average window to get rid of noise, as well as large

fluctuations. This procedure is illustrated in Fig. 7.

After the smoothed optical flow data are generated, the algorithm

goes through the data and finds extended periods of activity and

calm, and generates both calm and active segments based on this

information. The main problem is automatically selecting reasonable

thresholds for what is considered an activity and what is not. This

is done by defining the average activity as the amount of total

optical flow in a frame, and then by taking a certain percentage

of this amount to be the threshold for activity segmentation. This

allows the algorithm to work with both very active videos, as well

as comparatively static ones.

(a)

(b)

Fig. 7. (a) The original optical flow curve and (b) its smoothed version.

2) Frontal face detection: Apart from activity analysis, we rely

on face information for both offline and online processing. The first

step for this purpose is face detection. While it is possible to do

a pass over the video segments that are processed offline to find

the best (frontal) face, and combine this with tracking to provide

robust face localization, this approach was not implemented. The

ideal combination of frame-by-frame face detection and tracking is

a possible extension left for the future work.

Because of its proven reliability, we have selected the well-known

Viola & Jones algorithm for face detection [18]. For better accuracy

we have used the improved version of Viola & Jones algorithm as

proposed by Lienthart and Maydt [19]. In this improved version, 45◦

rotated Haar-like features (see Fig. 8) are used in addition to the

original set of Haar features, and a post optimization of boosted

classifiers is performed. While rotated Haar-like features increase

the discrimination power of the framework, post optimization of the

boosted classifiers provides for reduced false alarms.

The Viola & Jones method can be used to detect rotated faces with

a cascade trained for this purpose. In general, frontal face images

are easier to analyse, and the expression analysis module used in

this study needs a frontal face at the initialization step. Therefore,

we have used only frontal face cascades to recognize nearly frontal

faces.

B. Real-time Feature Analysis Module

In this section we describe the techniques employed in the real-

time feature analysis module in order to compute the feature vectors
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(a)

(b)

Fig. 8. (a) Haar-like edge, line, and center-surround features, respectively,
and (b) their rotations [19].

representing the user actions to the system. For fast online analysis

of the camera input we process the location and extent of the face,

the locations of the eyes, the content of facial expressions, and

the distribution of motion activity. Face detection was discussed in

the previous section, the computation of the rest of the features is

discussed next.

1) Face analysis: As discussed previously, face analysis starts with

face detection. The presence of a face in the field of view of the

camera is the main cue we use to arouse the system from its sleep

mode. Future work can extend this easily by incorporating sound,

such that a loud noise, or the utterance of a particular word can be

used as triggers for activating the system.

The detection of eye locations and facial expression analysis both

depend the detected face area. For the eye center localization, we used

a technique based on isophote curvature, proposed by Valenti and

Gevers [20]. The proposed method makes use of isophote properties

to gain invariance to linear lighting changes (contrast and brightness)

and rotational invariance. For every pixel, the center of the osculating

circle of the isophote is computed from smoothed derivatives of the

image brightness, so that each pixel can provide a vote for its own

center. The eye center is surrounded by pixels whose curvature point

in the eye-center direction, so it becomes very salient when these

votes are pooled. The use of isophotes yields low computational cost

(which allows for real-time processing) and robustness to rotation

and linear illumination changes. Fig. 9 illustrates an example of the

face and eye location on the feature analysis module.

The features extracted from the face allows for quantification of

changes in different aspects. For instance the change in the scale of

the facial area is indicative of movement towards the frame or away

from it. The eye centers denote shifting foci of attention, although

the system we employ does not have sufficient resolution to precisely

determine the true focus of attention.

Fig. 9. An example of face and eye center localization.

For facial expression analysis we have used the system which

is proposed in [6]. In this approach, the face is tracked by a

piecewise Bézier volume deformation (PBVD) tracker, based on the
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Fig. 10. (a) The Bézier volume model. (b) The motion units.

system developed by Tao and Huang [21]. A three dimensional facial

wireframe model is used for tracking. The generic face model consists

of 16 surface patches, and it is warped to fit the estimated facial

feature points, which are simply estimated by their expected locations

with respect to the detected face region boundary. These expected

locations are learned on a separate training set of faces.

The surface patches are embedded in Bézier volumes to generate

a smooth and continuous model. A Bézier curve for n + 1 control

points can be written as:

x(u) =
∑n

i=0
biB

n
i (u),

x(u) =
∑n

i=0
bi

(

n

i

)

ui(1− u)n−i,

(2)

where the control points bi and u ∈ [0, 1] control model shape

according to Bernstein polynomials, denoted with Bn
i (u). The Bézier

volume is an extension of the Bézier curve, and the displacement of

the mesh nodes can be computed as V = BD, where B is again the

mapping in terms of Bernstein polynomials, and D is a matrix whose

columns are the control point displacement vectors of the Bézier

volume.

After initialization of the facial model, head motion and facial

surface deformations can be tracked. 2D image motions are estimated

using template matching between frames at different resolutions.

Previous frames are also used for better tracking. Estimated image

motions are modelled as projections of true 3D motions. Therefore,

3D motion can be estimated using the 2D motions of several points

on the mesh.

Expression classification is performed on a set of motion units,

which indicate the movement of several mesh nodes on the Bézier

volume with respect to the initial, neutral/frontal frame. 12 different

motion units are defined as shown in Fig. 10. Unlike Ekman’s Action

Units [22], motion units represent not only the activation of a facial

region, but also the direction and intensity of the motion. A naı̈ve

Bayes classifier is used to compute the posterior probabilities of seven

basic expression categories (neutral, happiness, sadness, anger, fear,

disgust, surprise).

2) Motion Energy and Activity Levels: The motion energy in

a particular frame is computed by means of the optical flow.

For its computation we use the technique proposed by Lucas and

Kanade [17] for registration of images. This method assumes that

the flow is essentially constant in a local neighbourhood of pixels

under consideration, and solves the basic optical flow equations for

all the pixels in that neighbourhood under a least squares criterion. By

combining information from several nearby pixels, the Lucas-Kanade
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method can often resolve the inherent ambiguity of the optical flow

equation. It is also less sensitive to image noise compared to point-

wise methods. In our particular case, we have used a pyramidal

implementation of the Lucas-Kanade algorithm, developed by Jean-

Yves Bouguet [23]. Fig. 11 shows a graphical example of the optical

flow algorithm output for a particular frame.

Fig. 11. Example of the optical flow vectors obtained in a frame using the
pyramidal implementation of the Lucas and Kanade algorithm [23]. Optical
flow vectors are represented as red arrows in the picture.

C. Learning and Adaptation

There are several ways to define interaction between a computer

and its human user. The dominant paradigm is to specify the response

of the computer precisely, given a certain input from the user. In

the interactive photo frame, the manifestation of this paradigm is

a static design of the system response logic, and a pre-specified

input dictionary. There are however two immediate problems here.

Our affect-sensing technology is not robust enough to assign crisp

categories to different actions of different users. In other words, if

the system is not trained for a specific person, there is a possibility

that only a few input words will be activated during the lifetime of

the system, and other response possibilities are left unexplored. The

second problem is that the response dictionary of the system is not

static, and grows each time a new video is added to the system.

The solution to both problems is to model the operation of the

system as a dialogue, and let a consistent semiotics emerge through

the interaction [24]. In this approach, the initial response of the

system is random, or relates weakly to the actions of the user.

However, during interaction, action-response pairs are stored. The

system then periodically updates its response function by analysing

the existing action-response pairs. This serves a two-fold purpose.

1) The response of the system becomes consistent over a period of

usage, in that the user becomes able to trigger a certain response by a

certain action, and these triggering actions are suitably idiosyncratic.

2) The system, by giving glyph-based feedback to the user, induces

certain actions, yet if the user is not able to produce the expected

valence, the learning process will shift the required activity to an

appropriate level suitable for the user’s activity range. In other words,

the user and the system simultaneously adapt to each other, and for

each user, the final response pattern of the system will be different.

Let F t denote the feature responses collected during a session of

interaction with a user. At a specific moment T of the session, if

there are k active segments, and one additional segment that the user

seeks to activate at the moment of analysis, there will be k+1 feature

distributions, represented as N (µi,Σi), with i = 1 . . . k+1 . Here,

each segment is activated by a feature response that is close to its

distribution, as measured by the Mahalanobis distance between µi

and F t.

(a) (b)

Fig. 12. The user responses (each point is one frame) projected to two
dimensions. The response thresholds of the system are shown as ellipses for
two segments (red and blue in the coloured version), (a) before adaptation (b)
after adaptation.

We can take into account the idiosyncratic variations that are

conditioned to users by letting the system adapt its response to

the user. The terms that determine the system response are F t, µi

and Σi. Since F t is computed from the camera input recording

user’s behavior, the adaptation of the system is not concerned with

it, but rather involves changing µi and Σi. The idea is to update

these variables for an improved modeling of user behavior. Fig. 12

illustrates this idea on a toy example.

The procedure we use for improving the adaptation of the system

is simple. At periodical intervals, the parameters of the system are

updated as follows:

hi(F
t) =

p(F t|µi,Σi)
∑k+1

j=1
p(F t|µj ,Σj)

. (3)

µ
′

i = αµi + (1− α)

∑T

t=1
hi(F

t)F t

∑T

t=1
hi(F t)

. (4)

Σ
′

i = αΣi + (1− α)

∑T

t=1
hi(F

t)(F t − µi)(F
t − µi)

T

∑T

t=1
hi(F t)

. (5)

Here, hi(F
t) denotes the normalized membership probabilities of a

particular set of features F t for behaviour segment i, p(F t|µi,Σi)
is computed from the Gaussian distribution N (µi,Σi), and α is a

control parameter. Small values of α will result in small adjustments

in the systems behaviour, making it more responsive to the type of

activities displayed by the user, as opposed to activities expected by

the system. Large values of α may cause inconsistent behaviour in

the system, and abrupt changes in response.

IV. SYSTEM ASSESSMENT

We have constructed a working prototype of the system that has

basic functionality. We summarize the achievements and assessment

in this section.

A. Offline Segmentation

The offline segmentation module is completely implemented. To

gain insight into its operation, we have manually segmented a number

of video sequences. The system segmentation is then contrasted with

manual segmentation, provided by five different persons for each

video sequence. During manual segmentation, segments were also

assigned labels. We have not constrained these labels in any way;

the only constraint was conciseness. The freely available ANVIL

multimedia annotation tool4 was used.

Fig.13 shows a video sequence being processed in the ANVIL tool.

Five different segmentations are displayed as rows at the bottom of

4http://www.anvil-software.de/
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Fig. 13. The manual segmentation of videos and the corresponding automatically determined segmentation.

the video image. The temporal dimension is represented in each row

in a left-to-right fashion. Labeled segments are represented as boxes,

with the custom label written inside. The smoothed optical flow graph

that is appended to the figure (aligned in the temporal axis) is not

part of the annotation tool. It displays the result of automatic offline

segmentation (as vertical bars) and the optical flow illustrates the

‘reasoning’ of the system in choosing these segments. The bars are

elongated to intersect all five manual segmentations, so as to allow

visual comparison. As it is evident from the figure, the most important

segment boundaries (as evidenced by consensus among the taggers)

is found by the automatic algorithm.

B. Real-time Feature Analysis

The real-time feature analysis module has been partly imple-

mented. As we have discussed, some external software modules

were employed to make the system work. The processing is no

streamlined, and subsequently the computation burden of real-time

feature computation is high. This is a common problem we have noted

in similar systems. The SEMAINE API [25], which is developed for

building emotion-oriented systems, and which provides a rich set of

tools for this purpose, was considered for usage in an early stage

of development. Our initial experiments have shown that enabling

the facial feature analysis module in this system required a lot of

computational resources. The information provided by the API in this

modality is quite detailed, which led us to pursue a computationally

cheaper system that would nonetheless be useful in guiding the

interaction. The full assessment of this module is closely tied to

usability studies with real subjects, which was not performed during

the Workshop.

C. Real-time Facial Expression Analysis

We have assessed the accuracy of the eMotion software on the

Cohn-Kanade AU-Coded Facial Expression Database [12]. In this

database, there are approximately 500 image sequences from 100

subjects. These short videos each start with a neutral and frontal

face display, and with little overall movement of the face display

an emotional expression. Cohn-Kanade dataset has single action unit

displays, action unit combinations, as well as six universal expres-

sions, all annotated by experts. Without any manual facial landmark

correction, the eMotion software provides 70.68 per cent average

classification accuracy for six emotional expressions on this database.

We have used 249 of the emotional expression sequences (46 joy,

49 surprise, 33 anger, 37 disgust, 41 fear, 43 sadness sequences)

with three-fold cross validation to obtain the accuracy. Warping the

generic face model of the eMotion software into a more accurate face

representation anchored by seven manually annotated facial feature

points (outer eye corners, inner eye corners, nose tip, and mouth

corners) by a Thin-Plate Spline algorithm [26] has increased the

average classification accuracy to 80.72 per cent. Fig. 14 shows

the classification accuracy of the eMotion software for different

emotional expressions, with and without manual landmark correction.

V. CONCLUSIONS AND FUTURE WORK

We have developed a working prototype for an affect-responsive

photo frame application. Our report sketches the main parts of the

application, focusing on only visual features. The voice and speech

modalities can be added to the system following the same principles,

at the cost of higher computational complexity. We have completed

the offline segmentation, feature analysis and the interface modules.

The adaptation and dual-frame modules were not implemented during

the Workshop. The dual-frame mode of the system is particulary

interesting, as it solves the content acquisition and maintenance



ENTERFACE’10, JULY 12TH - AUGUST 6TH, AMSTERDAM, THE NETHERLANDS. 67

0

10

20

30

40

50

60

70

80

90

100

Joy Surprise Anger Disgust Fear Sadness Average

Viola-Jones Manual Landmark Support

10

Fig. 14. Classification accuracies of eMotion software for different emotional
expressions with and without manual landmark correction.

problems. This is the most important aspect that separates this work

from similar digital constructions in the literature. We do not assume

carefully recorded and annotated response patterns, but process the

input and the output of the system automatically.

Our preliminary experiments have shown us that the proposed

system is interesting and engaging. We have not conducted formal

usability studies, but earlier prototypes were inspected and practical

aspects of design were discussed. A thorough user assessment re-

quires usability studies on a reasonable set of subjects, which can

then reveal limitations of the system in longer term usage. It is

conceivable that our automatic content management results in less

meaningful segments than a hand-crafted set of responses. It remains

to be seen whether the constant novelty created by the dual usage of

the system is sufficient to offset this handicap, or even to turn it into

an advantage.
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