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Chapter 3
Normal matrices

When A and E are not Hermitian and even when the analysis is restricted to

normal matrices the study of perturbations is difficult. One important reason is

that for normal matrices many fundamental questions remain unanswered. For

instance, given A and E normal matrices, it is still not fully understood under

which conditions is A+ E also normal.

In this chapter we deal with normality preserving perturbations and augmen-

tations of normal matrices and their consequences to the eigenvalues. We revisit

the normality preserving augmentation of normal matrices studied by Ikramov and

Elsner [45] in 1998 and complement their results by showing how the eigenvalues

of the original matrix are perturbed by the augmentation. Moreover, we construct

all augmentations that result in normal matrices with eigenvalues on a quadratic

curve in the complex plane, using the stratification of normal matrices presented

by Huhtanen [42] in 2001. To make this construction feasible, but also for its own

sake, we study normality preserving normal perturbations of normal matrices. For

2× 2 and for rank-one matrices, the analysis is complete. For higher rank, all es-

sentially Hermitian normality perturbations are described. In all cases, the effect

of the perturbation on the eigenvalues of the original matrix is given.

59
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3.1 Introduction

A complex number z ∈ C is often split up as z = <(z)+=(z), where 2<(z) = z+z

and 2=(z) = z − z. This interprets the complex plane as a two-dimensional real

vector space with as basis the numbers 1 and i. In this chapter, it will be convenient

to decompose z differently. For this, we introduce a family of decompositions

parametrized in θ ⊂ T ⊂ C, the circle group of unimodular numbers. For a given

θ ∈ T we let

z = Θ(z) + Θ⊥(z), where Θ(z) = <(θz)θ and Θ⊥(z) = =(θz)θ. (3.1)

Moreover, apart from the standard Toeplitz or Cartesian decomposition of a square

matrix, A, into its Hermitian and skew-Hermitian parts,

A = H(A) + S(A), where H(A) =
1

2
(A+A∗) and S(A) =

1

2
(A−A∗),

in accordance with (3.1) we consider the family of matrix decompositions

A = Θ(A) + Θ⊥(A), where Θ(A) = H(θA)θ and Θ⊥(A) = S(θA)θ. (3.2)

We call this decomposition the θ-Toeplitz decomposition of A . The matrix Θ(A)

is then the θ-Hermitian part of A and Θ⊥(A) its θ-skew-Hermitian part and subse-

quently, A is θ-Hermitian if A = Θ(A) and θ-skew-Hermitian if A = Θ⊥(A). Note

that θ-skew-Hermitian matrices are iθ-Hermitian. We now generalize a well-known

result to the θ-Toeplitz decomposition of normal matrices.

Lemma 3.1.1. Let θ ∈ T be arbitrarily given. For any normal matrix A we have

that

Av = λv ⇔ Θ(A)v = Θ(λ)v and Θ⊥(A)v = Θ⊥(λ)v,

where Θ and Θ⊥ and their relation to θ are defined in (3.2).

Proof. Let Au = λu for some u 6= ~0. Since A is normal, there exists a unitary

matrix U with u as first column and U∗AU = Λ diagonal. But then U∗A∗U = Λ∗,

showing that A∗u = λu. Since the argument can be repeated with A∗ instead of A,

that yields that A and A∗ have the same eigenvectors and that the corresponding
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eigenvalues are each other’s complex conjugates. Therefore,

2Θ(A)v = (θA+ θA∗)θv = (θλ+ θλ)θv = 2Θ(λ)v

and, similarly, also Θ⊥(A)v = Θ⊥(λ)v. The reverse implication is trivial.

Corollary 3.1.2. Let λ1 be an eigenvalue of a normal matrix A. For given θ ∈ T,

consider the line ` ⊂ C through λ1 defined by

` : {λ1 + ρθ | ρ ∈ R}.

Assume that λ1, . . . , λp are all eigenvalues of A that lie on `. Then the eigenspace

U of the eigenvalue Θ⊥(λ1) of Θ⊥(A) equals the invariant subspace of A spanned

by u1, . . . , up. Restricted to U , the matrix A− λ1Ip is θ-Hermitian.

Proof. Let λa and λb be eigenvalues of A, then we have that

Θ⊥(λa) = Θ⊥(λb) ⇔ =(θλa) = =(θλb) ⇔ θ(λa−λb) = ρ ∈ R ⇔ λa−λb = θρ.

Thus, Θ⊥(A)uj = Θ⊥(λ1)uj for all j ∈ {1, . . . , p}, and conversely, if we have

Θ⊥(A)u = Θ⊥(λ1)u then u is a linear combination of u1, . . . , up. Writing Up for

the matrix with columns u1, . . . , up we moreover find that

AUp = UpΛp with Λp = θR+ λ1Ip

where Λp is the p × p diagonal matrix whose eigenvalues are λ1, . . . , λp and R is

real diagonal. Thus, Θ⊥(U∗pAUp − λ1Ip) = Op proving the last statement.

3.1.1 Eigenvalues on polynomial curves

If A is θ-Hermitian then A is normal. Moreover, by the spectral theorem for

Hermitian matrices, all eigenvalues of A lie on the line ` : {ρθ | ρ ∈ R}. In the

literature, for instance [7, 23, 27], the matrix A is called essentially Hermitian if

there exists an α ∈ C such that A − αI is θ-Hermitian for some θ ∈ T. Clearly,

the spectrum of an essentially Hermitian matrix lies on an affine line shifted over
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α ∈ C. Conversely, if a normal matrix has all its eigenvalues on a line ` ⊂ C, it

is essentially Hermitian. This includes all normal 2 × 2 matrices and all normal

rank-one perturbations of αI for α ∈ C. Larger and higher rank normal matrices

have their eigenvalues on a polynomial curve C ⊂ C of higher degree.

Polynomial curves of degree k ≥ 2

Each matrix A ∈ Cn×n has its eigenvalues on a polynomial curve C ⊂ C of degree

k ≤ n − 1. This can be explained as follows (see also [42]). First, fix θ ∈ T such

that for each pair λp, λq of eigenvalues of A

λp 6= λq ⇒ Θ(λp) 6= Θ(λq). (3.3)

Note that there exists at most n(n−1) values of θ for which this cannot be realized.

These values correspond to the at most 1
2n(n− 1) lines going through each pair of

distinct eigenvalues of A. Once 3.3 is satisfied, the points

(
θΘ(λ1) , iθΘ⊥(λ1)

)
, . . . ,

(
θΘ(λn) , iθΘ⊥(λn)

)
∈ R× R

form a feasible set of points in R × R through which a Lagrange interpolation

polynomial ℘ ∈ Pn−1(R) can be constructed that satisfies

Θ⊥(λj) = i · θ℘
(
θΘ(λj)

)
for all j ∈ {1, . . . , n}.

If A is normal, however, we may draw additional consequences. We summarize

these in the following lemma.

Lemma 3.1.3. Let A be normal and let θ be such that (3.3) is satisfied. Then

there is a ℘ ∈ Pn−1(R) such that Θ⊥(A) = i · θ℘
(
θΘ(A)

)
, and thus the θ-Toeplitz

decomposition of A can be written as

A = Θ(A) + i · θ℘
(
θΘ(A)

)
,



3.1. INTRODUCTION 63

or, in terms of θA and its classical Toeplitz decomposition,

θA = H(θA) + i℘
(
H(θA)

)
.

Moreover, the eigenvalues of A lie on the image C of the function

c : R→ C : ρ 7→ θρ+ i · θ℘(ρ).

Proof. The statement is proved by applying the spectral theorem for normal and

Hermitian matrices.

Remark 3.1.4. Note that A is essentially Hermitian if and only if there exists a

θ ∈ T such that the interpolating polynomial ℘ ∈ P1(R). In fact, ℘ may even be

in P0(R).

Remark 3.1.5. If for some normal matrix A the degree of the interpolation poly-

nomial equals, say, two for some value of θ, it may well be of degree n − 1 for

almost all other values of θ, since in that case the eigenvalues lie on a rotated

parabola (see Figure 3.1).

Remark 3.1.6. There does not seem to be an easy way to determine θ for which

the polynomial degree is minimal, although for given θ, the polynomial can be com-

puted in a finite number of arithmetic operations without knowing the eigenvalues.

This is explained in the following section.

Computing the polynomial ℘ for given θ ∈ T

For almost any fixed value of θ, the interpolation polynomial ℘ belonging to a

normal matrix A can be computed, without knowing the eigenvalues of A, in a

finite number of arithmetic operations. This provides us with a curve C ⊂ C on

which all eigenvalues of A lie. Indeed, if the degree of ℘ equals k then A − Θ(A)

is a linear combination of

iθI , iθΘ(A) , i (θΘ(A))
2
, . . . , i (θΘ(A))

k
.
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Figure 3.1: Interpolating polynomials of different degree for different values of θ. The
seven asterisks represent the eigenvalues.

Making the combination explicit is equivalent to finding the coefficients of ℘. To

obtain ℘ in practice, notice that for any v ∈ Cn,

℘
(
θΘ(A)

)
v ∈ Kk

(
θΘ(A), v

)
= span{v, θΘ(A)v, . . . ,

(
θΘ(A)

)k
v},

the Krylov subspace of dimension k generated by the matrix θΘ(A) and the vector

v. Since θΘ(A) is Hermitian, an orthonormal basis for Kk
(
θΘ(A), v

)
can be

constructed using a three-term recursion, and solving the linear system can be

done cheaply. These and other considerations led Huhtanen to the development of

efficient structure preserving eigensolvers [42] and linear systems [43] for problems

involving normal matrices.

3.1.2 Commuting normal matrices

We begin by recalling a well-known result [39, §1.3] on commuting normal matrices

to which we shall refer often. Moreover, because we will also need to draw conclu-
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sions about commuting normal matrices with distinct or with multiple eigenvalues,

we opt to give its complete proof.

Lemma 3.1.7. Normal matrices A ∈ Cn×n and E ∈ Cn×n commute if and only

if they are simultaneously unitarily diagonalizable.

Proof. If both Λ = W ∗AW and ∆ = W ∗EW are diagonal for a unitary matrix W ,

then clearly [A,E] = W [Λ,∆]W ∗ = On. Conversely, assume that [A,E] = On. Let

U be a unitary matrix such that ∆ = U∗EU is diagonal with multiple eigenvalues

being neighbors on the diagonal of ∆. Thus

∆ =


δ1Im1

. . .

δ`Im`

 ,
where mj denotes the multiplicity of δj . Let S = U∗AU and write spq for its

entries. Then equating the entries of S∆ and ∆S in view of the relation

[S,∆] = U∗[A,E]U = On,

shows that spq = 0 whenever δp 6= δq. Thus, S is block diagonal with respective

blocks S1, . . . , S` of sizes m1, . . . ,m`. For each j ∈ {1, . . . , `}, Sj is normal. Let

Sj be such that Sj = QjΛjQ
∗
j for some unitary Qj and diagonal Λj . Now, with

Q =


Q1

. . .

Q`

 and Λ =


Λ1

. . .

Λ`

 and W = UQ

we find that ∆ = Q∗∆Q = W ∗EW and Λ = Q∗SQ = W ∗AW .

Remark 3.1.8. In case all eigenvalues of E are distinct, then the matrix S in

the proof is itself diagonal and the proof is complete. In case E has an eigenvalue,

say δ1, of multiplicity m1 > 1, then there is freedom in the choice of the first

m1 columns u1, . . . , um1 of U that correspond to δ1. Even though each choice

diagonalizes E, not each choice diagonalizes A as well. This is expressed as S
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having a diagonal block S1 of size m1. Writing U1 for the matrix with columns

u1, . . . , um1 we have that

AU1 = U1S1,

hence the column span of U1 is an invariant subspace V of A. The matrix Q1

determines, through the transformation W1 = U1Q1, an orthonormal basis for V
of eigenvectors of A. If S1 has multiple eigenvalues, again there may be much

freedom in the choice of Q1.

3.2 Normality preserving augmentation

In this section we revisit, from an alternative point of view, a problem studied by

Ikramov and Elsner in [45]. It concerns the augmentation by a number m of rows

and columns of a normal matrix in such a way that normality is preserved. Our

analysis differs from the one in [45], and we add details on the eigendata of A+ in

terms of those of A.

Normality preserving augmentation. Let A ∈ Cn×n be normal. Character-

ize all n×m matrices V,W ∈ Cn×m, and all Γ ∈ Cm×m such that

A+ =

 A V

W ∗ Γ

 , (3.4)

is normal, too. In other words, characterize all normality preserving augmenta-

tions of A.

Remark 3.2.1. Note that Hermicity, θ-Hermicity and essentially Hermicity pre-

serving augmentation problems are all trivial, because each of these properties is

inherited by principal submatrices. For unitary matrices this does not hold. How-

ever, if A and A+ are both unitary, their rows and columns all have length one.

Thus V = W = O and Γ is unitary. This solves the unitarity preserving augmen-

tation problem.
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3.2.1 Normality preserving augmentation for m = 1

First consider the case m = 1, and write v, w and γ instead of V,W and Γ. It is

easily verified that [A+, A
∗
+] = On if and only if

ww∗ = vv∗, w∗w = v∗v and A∗v + γw = Aw + γv. (3.5)

The two leftmost relations hold if and only if v = φw for some φ ∈ T. The right

most relation may add further restrictions on v, w and φ. Before studying these,

however, note that φ is the square of a unique θ ∈ TU ⊂ T, where

TU = {τ ∈ T | arg(τ) ∈ [0, π)}.

This yields a reformulation of v = φw that better reveals the underlying structure,

v = φw ⇔ v = θ2w ⇔ θv = θw = u ⇔ v = θu and w = θu

for some u ∈ Cn. Further restrictions on the vector u and the scalar θ ∈ TU follow

from substituting v = θu and w = θu into the rightmost equation in (3.5). After

some rearrangements we obtain the condition

Θ⊥(A)u = Θ⊥(γ)u.

Because the eigenpairs of Θ⊥(A) were already characterized in Corollary 3.1.2, we

have solved the augmentation problem for m = 1. The theorem below summarizes

this solution, constructively, in terms of the eigendata of A. Note that this result

was proved already in [45], though in a different manner.

Theorem 3.2.2. Let A be normal. Let γ ∈ C, and let ` : {γ + ρθ | ρ ∈ R} be a

line in C through γ with slope θ ∈ TU . Moreover, let λ1, . . . , λp be the eigenvalues

of A that lie on `. Then, the matrix

A+ =

 A v

w∗ γ
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is normal if v = θu and w = θu, where u is a linear combination of eigenvectors

corresponding to λ1, . . . , λp, with the convention that u = ~0 if p = 0. Conversely,

if A+ is normal then v = θu and w = θu, for some θ and the vector u is a linear

combination of eigenvectors of A whose corresponding eigenvalues all lie on a line

` : {γ + ρθ | ρ ∈ R} for some fixed γ ∈ C.

Proof. Corollary 3.1.2 shows the relation between the eigendata of Θ⊥(A) and A,

and together with the derivation in this Section this proves the statement.

3.2.2 Eigenvalues of the augmented matrix

We now augment the analysis in [45] with a study of the eigenvalues of A+ in

relation to those of A. Let Λp ∈ Cp×p be the diagonal matrix whose eigenvalues

are the p eigenvalues of A that lie on ` : R → C : γ + ρθ. Then, as already

mentioned in the proof of Corollary 3.1.2,

Λp = θR+ γIp

for some real diagonal matrix R. Let U ∈ Cn×n be any unitary matrix whose last

p columns are eigenvectors of A belonging to λ1, . . . , λp and let Up contain those

last p columns of U . Then, assuming that A and A+ are normal, Theorem 3.2.2

shows, with r = U∗pu, that

U
1

∗  A v

w∗ γ

U
1

 =


B

Λp θr

θr∗ γ

 . (3.6)

Moreover, Λp θr

θr∗ γ

 = θR+ + γIp+1, where R+ =

R r

r∗ 0

 . (3.7)

The above observations reveal some additional features of the solution of the aug-

mentation problem, that we formulate as a new theorem.
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Theorem 3.2.3. The only normality preserving 1-augmentations of A are the ones

that, on an orthonormal basis of eigenvectors of A, augment a p × p essentially

Hermitian submatrix of A. Hence, n − p eigenvalues of A are also eigenvalues

of A+. The remaining p + 1 eigenvalues of A+ lie on the same line as, and are

interlaced by, the remaining p eigenvalues of A.

Proof. The block form in Equation(3.6) shows that the eigenvalues of B are eigen-

values of both A and A+, whereas (3.7) shows that to locate the remaining p+ 1

eigenvalues of A+, one only needs to observe that, by Cauchy Interlace Theorem

(Theorem 1.1.10) the (real) eigenvalues of R interlace those of R+.

Remark 3.2.4. Note that the case p = 0, covered by Theorem 3.2.2, is also

included in the above analysis if one is willing to interpret on the same line as the

remaining p eigenvalues of A as any line in C. This just reflects that the additional

eigenvalue, γ ∈ C, of A+ can lie anywhere.

For an illustration of the constructions described in Theorems 3.2.2 and 3.2.3

we refer the reader to Section 3.5.1. There, we augment a given 3× 3 matrix A in

two different ways and compute the eigenvalues of the augmented matrix, A+.

3.2.3 Normal matrices with normal principal submatrices

By applying the procedure for m = 1 several times consecutively, we may also con-

struct m-augmentations with m > 1. In particular, all normal matrices having the

property that all their leading principal submatrices are normal can be constructed.

Since, generally, normal matrices do not have normal principal submatrices, this

shows that the m-augmentation for m > 1 has not yet been completely solved.

In Section 3.4 we investigate the principal submatrices of normal matrices from

the point of view of Section 3.1.1. This study will also give more insight into the

m-augmentation for m = 2. In [45], this case already proved to be quite compli-

cated. In particular, we give a procedure to augment A that does not reduce to

m-fold application of the 1-augmentation. Before that, we investigate normality

preserving normal perturbations. Apart from being of interest on its own, we shall

make use of some of the conclusions obtained here in Section 3.4.
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3.3 Normality preserving normal perturbations

In this section we consider a question related to the augmentation problem, and

we study it using the same techniques as the ones from the previous sections. In

particular, we investigate normality preserving θ-Hermitian perturbations. These

type of perturbations play a role also in the augmentation problem of Section 3.4.1.

Normality preserving normal perturbation. Let A ∈ Cn×n be normal.

Characterize all normal E such that A+ = A + E is normal. In other words,

characterize the normality preserving normal perturbations E of A.

Remark 3.3.1. Recall that any matrix A may be written as the sum of two normal

matrices, for instance, as A = Θ(A) + Θ⊥(A), where both Θ(A) and Θ⊥(A) are

normal. This illustrates why the problem above is non-trivial: the sum of normal

matrices can be, literally, any matrix.

We begin by formulating a multi-functional lemma summarizing the technical-

ities of writing out commutators of linear combinations of matrices.

Lemma 3.3.2. Let A,E ∈ Cn×n and γ, µ ∈ C. Then, with θ = γµ/|γµ|,

[γA+ µE, (γA+ µE)∗] = |γ|2 [A,A∗] + 2γµΘ ([A,E]) + |µ|2 [E,E∗] , (3.8)

and

Θ ([A,E∗]) =
[
Θ(A),Θ⊥(E∗)

]
+
[
Θ⊥(A),Θ(E∗)

]
. (3.9)

Therefore, if A and E are normal, then γA+ µE is normal if and only if

Θ ([A,E∗]) = On, (3.10)

or, in other words, if and only if [A,E∗] is γµ-skew-Hermitian.

Proof. The statements are obtained from straight-forward manipulations with the

commutator.

Corollary 3.3.3. Let A,E ∈ Cn×n be normal. Then A+E is normal if and only

if γA+ µE + αI is normal for all γ, µ, α ∈ C with the restriction that γµ ∈ R.
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Corollary 3.3.4. If A,E ∈ Cn×n are normal then [A,E∗] = On ⇔ [A,E] = On.

Thus, if either term vanishes, both A+ E∗ and A+ E are normal.

Proof. As was shown in the proof of Lemma 3.1.1, E and E∗ have the same

eigenvectors. Thus, A and E∗ are simultaneously unitarily diagonalizable if and

only if A and E are. Lemma 3.1.7 now proves that [A,E∗] = On ⇔ [A,E] = On,

and Lemma 3.3.2 proves the conclusion.

Corollary 3.3.5. The matrix γA+ µE with γ, µ ∈ C and A and E Hermitian is

normal if and only if γµ ∈ R or [A,E] = On.

Proof. The commutator of Hermitian matrices is always skew-Hermitian. Thus,

for [A,E] to be θ-Hermitian in Equation (3.10), γµ must be real, or [A,E] should

vanish.

3.3.1 Normality preserving normal rank-one perturbations

This section aims to show the similarities between the normality preserving normal

rank-one perturbation problem and the m-augmentation problem of Section 3.2.1.

Indeed, let E = vw∗ with v, w ∈ Cn. Then E is normal if and only if

‖w‖22vv∗ = ‖v‖22ww∗,

and thus if and only if v = zw for some z ∈ C. Write z = θρ with θ ∈ T and

0 ≤ ρ ∈ R. This shows that a rank-one matrix E is normal if and only if E is

θ-Hermitian,

E = θuu∗, θ ∈ T.

With A ∈ Cn×n normal, we look for the conditions on u ∈ Cn and θ ∈ T such that

A+ θuu∗ is normal. Since θuu∗ is θ-Hermitian, from Equations (3.8) and (3.9) in

Lemma 3.3.2 we obtain

[(A+ θuu∗), (A+ θuu∗)∗] = 2θ
[
Θ⊥(A), uu∗

]
.

Therefore, A + θuu∗ is normal if and only if Θ⊥(A) and uu∗ commute. Accord-

ing to Lemma 3.1.7, this is true if and only if they are simultaneously unitarily
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diagonalizable. For this, it is necessary and sufficient that u be an eigenvector of

Θ⊥(A). As in Theorem 3.2.2 we formulate this result constructively in terms of

the eigendata of A.

Theorem 3.3.6. Let A be normal and let γ ∈ C and ` : {γ+ ρθ | ρ ∈ R} be a line

in C through γ with slope θ ∈ T. Let λ1, . . . , λp be the eigenvalues of A that lie on

`. Then, the matrix

A+ = A+ θuu∗

is normal if and only if u is a linear combination of eigenvectors corresponding to

λ1, . . . , λp, with the convention that u = ~0 if p = 0.

Proof. Corollary 3.1.2 shows the relation between the eigendata of Θ⊥(A) and A,

and together with the derivation above this proves the statement.

Remark 3.3.7. An interesting consequence of adding the normality preserving

normal rank-one perturbation E = θuu∗ is that

Θ⊥(A+ θuu∗) = Θ⊥(A) + Θ⊥(θuu∗) = Θ⊥(A),

because θuu∗ is θ-Hermitian. Thus, the conditions under which adding another

θ-Hermitian normal rank-one perturbation F = θww∗ to A + E lead to a normal

A+ E + F are identical to the conditions just described for E. We shall get back

to this observation in Section 3.3.3.

3.3.2 Eigenvalues of the perturbed matrix

To study the eigenvalues of A+ in relation to those of A, let Λp ∈ Cp×p be the

diagonal matrix whose eigenvalues are the p eigenvalues of A that lie on the line

` : {γ + ρθ | ρ ∈ R}. Then

Λp = θR+ γIp

for some real diagonal matrix R. Let U ∈ Cn×n be any unitary matrix whose first

p columns are eigenvectors of A belonging to λ1, . . . , λp. Then, assuming that A
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and A+ are normal, Theorem 3.3.6 shows that

U∗A+U = U∗(A+ θuu∗)U =

Λp

B

+

θrr∗
On−p


because u is a linear combination of the first p columns of U . This leads to the

following theorem, in which we summarize the above analysis.

Theorem 3.3.8. The only normality preserving normal rank-one perturbations of

A are the ones that, on an orthonormal basis of eigenvectors of A, are θ-Hermitian

rank-one perturbations of a p×p, θ-Hermitian submatrix. Hence, n−p eigenvalues

of A are also eigenvalues of A+. The remaining p eigenvalues of A+ are the

eigenvalues of

Λp + θrr∗ = θ(R+ rr∗) + γIp. (3.11)

These interlace the p eigenvalues of A on ` with the additional (p+1)st point +∞θ.

Proof. The eigenvalues of A+ are the eigenvalues of B together with the eigenvalues

of the matrix in Equation (3.11). Obviously, all eigenvalues of B are eigenvalues

of A as well. Since rr∗ is a positive semi-definite rank-one perturbation of R, the

eigenvalues ρ1 ≤ . . . ≤ ρp of R+ rr∗ and the eigenvalues r1 ≤ . . . ≤ rp of R satisfy

r1 ≤ ρ1 ≤ r2 ≤, . . . ,≤ ρp−1 ≤ rp ≤ ρp

as a result of Weyl’s Theorem (Theorem 1.1.7). Multiplying by θ and shifting over

γ yields the proof.

Remark 3.3.9. Note that if p = 1, only one eigenvalue is perturbed, and we have

ρ1 = r1 + ‖r‖22. In terms of the original perturbation E = θuu∗ this becomes

λ̃ = λ + ‖u‖22, where λ is the eigenvalue of A belonging to the eigenvector u (see

also Corollary 1.1.8).

As a consequence of the following theorem, it is possible to indicate where the

eigenvalues of the family of matrices A + tE are located. This can only be done

for normal normality preserving perturbations.
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Theorem 3.3.10. Let A,B ∈ Cn×n be normal. Consider the line ` through A

and B,

` : R→ Cn×n : t 7→ tA+ (1− t)B.

If E = B −A is normal, all matrices on ` are normal; if E is not normal, A and

B are the only normal matrices on `.

Proof. Observe that `(t) = A + (1 − t)E. If E is normal, then Corollary 3.3.3

shows that all matrices γA+ µE with γµ̄ ∈ R are normal, which includes the line

`. Assume now that E is not normal. Because A and B = A+E both are normal,

Equation (3.3.2) in Lemma 3.8 gives that

(1− t)
(

2H
(

[A,E∗]
)

+ (1− t)[E,E∗]
)

= On with [E,E∗] 6= On.

The solution t = 1 confirms the normality of A, and the linear matrix equation

2H
(

[A,E∗]
)

+ (1− t)[E,E∗] = On with [E,E∗] 6= On

allows at most one solution in t which, by assumption, is t = 0.

Thus, any line in Cn×n parametrized by a real variable that does not lie entirely

in the set of normal matrices, contains at most two normal matrices.

Remark 3.3.11. Let A be normal. Lemma 3.1.1 shows that if E is such that

A+ E is normal, then

σ(A+ E) ⊂ σ
(

Θ(A) + Θ(E)
)
× σ

(
Θ⊥(A) + Θ⊥(E)

)
.

and perturbation theory for θ-Hermitian matrices can be used to derive statements

about the eigenvalues of A+E. According to Theorem 3.3.10, if E itself is normal

too, this relation is valid continuously in t along the line A+ tE:

σ(A+ tE) ⊂ σ
(

Θ(A) + tΘ(E)
)
× σ

(
Θ⊥(A) + tΘ⊥(E)

)
.

For non-normal E this is, generally, not true, as is illustrated in Section 3.5.2.
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Corollary 3.3.12. Let A be normal. As a result of Theorem 3.3.10 and Remark

3.3.11, the perturbed eigenvalues of

t 7→ A+ tθuu∗, 0 ≤ t ≤ 1

seen as functions of t, form line segments that all lie on the same line with slope

θ.

3.3.3 θ-Hermitian rank-k perturbations of normal matrices

Consider for given k with 1 ≤ k ≤ n the θ-Hermitian rank-k matrix

E = θH, where θ ∈ TU and H = H∗. (3.12)

Let A be normal. Then, since Θ⊥(E∗) = On, Lemma 3.3.2 shows that A + E is

normal if and only if

[Θ⊥(A), H] = On. (3.13)

By Lemma 3.1.7 this is equivalent to Θ⊥(A) and H being simultaneously diago-

nalizable by a unitary transformation U . Thus, H needs to be of the form

H = U∆U∗ (3.14)

where ∆ ∈ Rk×k is diagonal with diagonal entries δ1, . . . , δk and the columns

u1, . . . , uk of U are orthonormal eigenvectors of Θ⊥(A). But then, writing

E = E1 + . . .+ Ek, where for all j ∈ {1, . . . , k}, Ej = θδjuju
∗
j ,

the observation in Remark 3.3.7 reveals that perturbing A by E is equivalent

to perturbing A consecutively by the rank-one matrices E1, . . . , Ek. The above

analysis is summarized in the following theorem. An illustration of this theorem

is provided in Section 3.5.2.

Theorem 3.3.13. Let E = θH be a θ-Hermitian rank-k perturbation of a normal
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matrix A. Then E is normality preserving if and only if E can be decomposed as

E = E1 + . . .+ Ek,

where E1, . . . , Ek are all normality preserving θ-Hermitian rank-one perturbations

of A. In fact, for each permutation σ of {1, . . . , k} and each m ∈ {1, . . . , k}, the

partial sum

A+

m∑
j=1

Eσ(j)

is normal, too.

Remark 3.3.14. In accordance with Remark 3.1.8, if the matrix ∆ in Equation

(3.14) has multiple eigenvalues, there exist non-diagonal unitary matrices Q such

that ∆ = Q∆Q∗. As a result, H can be written as Z∆Z∗ where the orthonormal

columns of Z span an invariant subspace of Θ⊥(A). This implicitly writes the per-

turbation θH as the sum of rank-one normal perturbations that do not necessarily

preserve normality. This aspect is also illustrated in Section 3.5.2.

Theorem 3.3.15. The only normality preserving θ-Hermitian rank-k perturba-

tions of A are the ones that, on an orthonormal basis of eigenvectors of A, are

θ-Hermitian perturbations of θ-Hermitian submatrices of size s1× s1, . . . , sm× sm
of ranks k1, . . . , km, where k1 + . . . + km = k. As a result of this perturbation, at

most s1 + . . .+ sm eigenvalues of A are perturbed, which are located on at most m

distinct parallel lines `1, . . . , `m, defined by θ ∈ T and γ1, . . . , γm ∈ C as

`j : {γj + θρ | ρ ∈ R}.

Moreover, the eigenvalues of A + tE with t ∈ [0, 1] connect the eigenvalues of A

with those of A+ by line segments that lie on `1, . . . , `m.

Proof. Write θH = θ(δu1u
∗
1 + . . . + δkuku

∗
k), where u1, . . . , uk are eigenvectors

Θ⊥(A), and repeatedly apply Theorem 3.3.8. The statement about the eigenvalues

of A+ tE follows from Corollary 3.3.12.

For a qualitative illustration of the effect on the eigenvalues due to a rank-

one θ-Hermitian perturbation and a rank-k θ-Hermitian perturbation of a normal
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matrix, see Figure 3.2. The asterisks in the pictures are eigenvalues of A, the circles

represent different choices for γ, and the boxes are the perturbed eigenvalues.

*
*

*

*

* *

*

*

*

*

* *

*

<(z)

=(z) `

<(z)

=(z)`3

`2

`1

Figure 3.2: Eigenvalue perturbation by a rank-one matrix (left) and a rank-k matrix
(right).

Remark 3.3.16. If H in (3.12) is semi-definite, then the eigenvalues of A+tE all

move in the same direction over the parallel lines `1, . . . , `m from Theorem 3.3.15.

3.3.4 Normality preserving normal perturbations

The above analysis of θ-Hermitian normality preserving perturbations also gives

sufficient conditions for when normal perturbations E of the form E = θ1H1+θ2H2

with H1, H2 Hermitian and θ1, θ2 ∈ T are normality preserving in case θ2 6= ±θ1.

Notice that in order for E to be normal itself, [H1, H2] = On by Corollary 3.3.5.

Obviously, E is, in general, not θ-Hermitian for some value of θ. Nevertheless, the

following holds.

Theorem 3.3.17. Let A be normal, H1, H2 Hermitian with [H1, H2] = On, and

θ1, θ2 ∈ T with θ1θ2 6∈ R. Then E = E1 + E2 = θ1H1 + θ2H2 is a normality

preserving normal perturbation of A if E1 and E2 both are normality preserving

perturbations of A.

Proof. Corollary 3.3.5 covers the normality of E. Furthermore, assuming that

A + E1 is normal, Equation (3.13) gives that A + E1 + E2 is normal if and only

if [Θ⊥(A + E1), H2] = On, where Θ⊥ refers to the θ2-skew-Hermitian part. But
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then

[
Θ⊥(A+ E1), H2

]
=
[
Θ⊥(A), H2

]
+
[
Θ⊥(θ1H1), H2

]
=
[
Θ⊥(A), H2

]
,

because [H1, H2] = On, proving the statement.

Remark 3.3.18. A similar result holds for normal perturbations E1 + . . . + Ek

where Ej = θjHj with Hj Hermitian and θj ∈ T for each j ∈ {1, . . . , k}. Moreover,

each normal perturbation E can be written in this form in several different ways.

We are now ready to return to the augmentation problem of Section 3.3 and

to study augmentations of normal matrices A that result in an augmented matrix

A+ whose eigenvalues all lie on the graph of a quadratic polynomial.

3.4 Further augmentations

We now return to the m-augmentation problem of Section 3.3 and concentrate

on the case m > 1. If all eigenvalues of A+ lie on a line, then A+ is essentially

Hermitian, a property that is inherited by principal submatrices. In that case it is

clear which matrices A can be augmented into A+. The next simplest case is the

case where all eigenvalues of A+ lie on a curve C that is the image of a quadratic

function in a rotated complex plane.

3.4.1 Matrices A+ with all eigenvalues on a quadratic curve

Assume that for θ ∈ T there exists a ℘ ∈ P2(R) such that

A+ = Θ(A+) + i · θ℘
(
θΘ(A+)

)
, where A+ =

 A V

W ∗ Γ

 . (3.15)

Then, A+ is normal with all its eigenvalues on the rotated parabola C ⊂ C defined

as the image of q, where

q : R→ C : ρ 7→ θρ+ i · θ℘(ρ)
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and

℘(x) = r0 + r1x+ r2x
2 with r0, r1, r2 ∈ R.

Remark 3.4.1. Throughout this section we assume, without loss of generality,

that r2 > 0. The case r2 = 0, as argued above, is trivial and concerns essentially

Hermitian matrices, whereas the case r2 < 0 can be avoided by replacing θ by

−θ, which is nothing else than a trivial change of coordinates that transforms the

polynomial ℘ into −℘.

The curve C now divides the complex plane C in three disjoint parts

C = C+ ∪ C ∪ C− (3.16)

where C+ is the open part of C that lies on the one side of C that is convex.

The principal submatrices of A+ and their eigenvalues

For convenience, write

X = θΘ(A), M = θΘ(Γ) and 2Z = θV + θW,

then,

θΘ(A+) =

X Z

Z∗ M

 and
(
θΘ(A+)

)2
=

 X2 + ZZ∗ XZ + ZM

Z∗X +MZ∗ M2 + Z∗Z

 (3.17)

Thus, explicitly evaluating ℘ at A+ using the block forms in (3.17), and comparing

the result with the block form of A+ displayed in (3.15) yields

A = Θ(A) + i · θ℘
(
θΘ(A)

)
+ i · θr2ZZ∗ (3.18)

and

Γ = Θ(Γ) + i · θ℘
(
θΘ(Γ)

)
+ i · θr2Z∗Z.

The results that follow will sometimes be stated for A only, even though similar

statements obviously hold for Γ. The first proposition simply translates Equation
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(3.18) in words.

Proposition 3.4.2. The n×n principal submatrix A of A+ is a θ-skew-Hermitian

rank-k (with k ≤ min(m,n)) perturbation of a normal matrix that has all the

eigenvalues on C.

Lemma 3.4.3. If A in Equation (3.18) is normal then σ(A) ⊂ C ∪ C+.

Proof. If A is normal, then i · θr2ZZ∗ is a normality preserving θ-skew-Hermitian

matrix perturbation of the normal matrix Θ(A) + i · θ℘
(
θΘ(A)

)
that has all its

eigenvalues on C. By Theorem 3.3.15 each perturbed eigenvalue λ ∈ C of A moves

along a line ` : {λ+ i · θρ | ρ ∈ R}. Note that ` is vertical in the θ-rotated complex

plane. By Remark 3.3.16 and because ZZ∗ is positive semi-definite, the direction

is the same for each perturbed eigenvalue and is determined by the sign of r2. In

Remark 3.4.1 we assumed that r2 > 0, and thus the direction is directed into C+
defined in (3.16).

Remark 3.4.4. Note that a multiple eigenvalue λ of Θ(A)+i·θ℘
(
θΘ(A)

)
, located

on C, may be perturbed by i · θr2ZZ∗ into several distinct eigenvalues of A. Those

will all be located on ` : R→ C : ρ 7→ λ+ i · θρ with ρ > 0.

Corollary 3.4.5. Assume that A in (3.18) is normal. Then σ(A) ⊂ C if and only

if A+ is block diagonal with blocks A and Γ.

Proof. If Z 6= O then trace(ZZ∗) 6= 0 and at least one eigenvalue is perturbed.

Lemma 3.4.3 shows that a perturbed eigenvalue cannot stay on C and necessarily

moves from C into C+.

Augmentations with eigenvalues on a quadratic curve

We may now reverse the previous observations. Given A, we choose a parabolic

curve C and construct Z ∈ Cn×m such that i · θr2ZZ∗ perturbs the eigenvalues of

A onto C. We then use C to define the corresponding m-augmentation A+ of A.

Corollary 3.4.6. Necessary for a normal matrix A to be m-augmentable into a

normal matrix A+ with all eigenvalues on a quadratic curve C is that σ(A) ⊂ C∪C+.

Proof. This is just another corollary of Lemma 3.4.3.
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Clearly, for any given finite set of points in C, there are infinitely many can-

didates for such quadratic curves C. It is the purpose of this section to show

that each of this candidates can be used, and to construct essentially all possible

corresponding augmentations A+.

Theorem 3.4.7. Let A ∈ Cn×n be normal, and let θ ∈ T and ℘ ∈ P2(R) be such

that σ(A) ⊂ C ∪ C+ where C is the graph of

q : R→ C : ρ 7→ θρ+ i · θ℘(ρ).

Then there exist p-augmentations A+ of A such that

σ(A+) ⊂ C,

where p is the number of eigenvalues of A in C+.

Proof. Write Λp ∈ Cp×p for the diagonal matrix with precisely the eigenvalues

λ1, . . . , λp of A that do not lie on C and let Up ∈ Cn×p have corresponding orthonor-

mal eigenvectors u1, . . . , up as columns. Since σ(Λp) ⊂ C+, for each j ∈ {1, . . . , p}
there exists a positive real number ψj such that

(λj − i · θψj) ∈ C.

Write Ψ ∈ Cp×p for the diagonal matrix with σ(Ψ) = {
√
ψ1, , . . . ,

√
ψp} and set

Z = UpΨ.

By Lemma 3.1.1 the columns of Up are also eigenvectors of Θ(A) and thus i ·θZZ∗

is a θ-skew-Hermitian normality preserving perturbation of A. Moreover,

u∗j (A− i · θZZ∗)uj = (λ− i · θψ) ∈ C.

Because the matrix A− i · θZZ∗ is normal with all eigenvalues in C, the equality
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Θ(A− i · θZZ∗) = Θ(A) leads to

A− i · θZZ∗ = θΘ(A) + i · θ℘
(
θΘ(A)

)
.

The assumption r2 > 0, justified in Remark 3.4.1, now gives that

A = θΘ(A) + i · θ℘
(
θΘ(A)

)
+ i · θr2

(
Z
√
r2

)(
Z
√
r2

)∗
,

and according to Equation (3.18) this is precisely the n × n leading principal

submatrix of A+, where A+ is defined as A+ = θH + i · θ℘(H), where

H =

θΘ(A) Ẑ

Ẑ∗ M

 , with Ẑ =
ZQ
√
r2

(3.19)

and M,Q ∈ Cm×m are arbitrary Hermitian and unitary matrices.

For a given n× n normal matrix A, the typical situation is that after selecting

θ suitably, at least p = n−3 of its eigenvalues do not lie on a quadratic curve, and

a matrix Z of rank p is needed to push those outliers onto C. This is illustrated in

Figure 3.3.

Remark 3.4.8. It is, of course, possible to move each eigenvalue of A from C+
onto C as a result of an arbitrary amount of rank-one perturbations. This would

increase the number of columns of Z, and give m-augmentations of A with m > p.

However, this would not increase the rank of Z, and ZZ∗ would remain the same.

Together with the analysis of Section 3.3.3, that shows which θ-Hermitian pertur-

bations are normality preserving, this shows that in essence, each p-augmentation

A+ with Z of full rank, is of the form (3.19). In Section 3.5.3 we give an explicit

example of the construction in the proof of Theorem 3.4.7.

Augmentations without computing eigenvalues

So far, explicit knowledge about the eigenvalues and eigenvectors of A was used

to construct augmentations A+. There are, however, cases in which it is sufficient

to know the polynomial curve E on which the eigenvalues of A lie. To see this,
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Figure 3.3: Illustration of the construction in the proof of Theorem 3.4.7. Three of the
seven eigenvalues of A, indicated by the circles, are already on the quadratic curve C, and
a rank-4 matrix Z is needed to push the remaining four eigenvalues onto C, after which
the augmented matrix can be formed.

assume that A is normal and

A = Θ(A) + i · θ℘
(
θΘ(A)

)
, ℘ ∈ P2k(R) and ℘ 6∈ P2k−1(R)

for some integer k ≥ 1. Since ℘ has even degree, there exist polynomials p ∈ P2(R)

such that

℘(x)− p(x) ≥ 0 for all x ∈ R.

This implies that the matrix (℘−p)
(
θΘ(A)

)
, is positive semi-definite and, hence,

it can be factorized as

(℘− p)
(
θΘ(A)

)
= ZZ∗, (3.20)

after which we have that

A = Θ(A) + i · θp
(
θΘ(A)

)
+ i · θZZ∗.
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It is trivial that the matrix i · θZZ∗ is a normality preserving perturbation of

Θ(A) + i · θp
(
θΘ(A)

)
and by choosing between θ and −θ, as explained in Remark

3.4.1, this leads to an m-augmentation of A, with generally m = n − 1. Section

3.1.1 explained how ℘ can be computed in a finite number of arithmetic operations,

and the same is valid for the factorization (3.20). Of course, the problem of finding

a minorizing polynomial p ∈ P(R) may prove to be difficult in specific situations.

3.4.2 Polynomial curves of higher degree

If one tries to generalize the approach of Section 3.4.1 to polynomial curves C of

higher degree, the situation rapidly becomes more difficult. As an illustration,

consider the cubic case. The third power of the matrix θΘ(A+) in (3.17) equals X3 +XZZ∗ + ZZ∗X + ZMZ∗ X2Z +XZM + ZM2 + ZZ∗Z

Z∗X2 + Z∗ZZ +MZ∗X +M2Z M3 + Z∗ZM +MZ∗Z + Z∗XZ

 ,
and thus, comparing the leading principal submatrices,

A = Θ(A) + i · θθ℘(θA) + i · θr2ZZ∗ + i · θr3(XZZ∗ + ZZ∗X + ZMZ∗),

where r3 is the coefficient of x3 of ℘. Thus, A is a rank-k (with k ≤ 2m), θ-skew-

Hermitian perturbation of the normal matrix Θ(A) + i · θ℘(θA). Of course, if ZZ∗

commutes with Θ(A), then it commutes with X, and this may help the analysis.

However, it becomes much harder to control the perturbation in such a way, that

A will be augmented into a matrix A+ with σ(A+) ⊂ C. Therefore, we will not

pursue this idea any further.

3.5 Illustrations

In this section we present some illustrations of the main constructions and theorem

of this chapter. By making them explicit, we hope to create more insight in their

structure.
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3.5.1 Illustrations belonging to Section 3.2

This example, illustrates Theorem 3.2.2 and Theorem 3.2.3. Let A be the matrix

A =


2i

2 + i

−3

 .
Take γ = 1 and choose ` the line through γ = 1 and the eigenvalue 2 + i of A,

` : R→ C : ρ 7→ 1 + ρθ, with θ = ei
π
4 =

1 + i√
2
.

Thus, in order for A+ to be normal, u must be a multiple of e2, v = θu and

w∗ = θu∗, which yields that for all µ ∈ C,

A+ =


2i

2 + i θµ

−3

θµ 1


is a normal augmentation of A. Moreover, for the choice γ = 1 and `, these are all

the normal augmentations of A. The eigenvalues of A+ that are not eigenvalues

of A are the eigenvalues of2 + i θµ

θµ 1

 =

1 + θ
√

2 θµ

θµ 1

 = θ

√2 µ

µ 0

+ I,

and thus equal to

λ = θ

(√
2

2
±
√

2µ2 + 1

)
+ 1,

which lie on ` and have the eigenvalue 2 + i (that was perturbed) as average, as

is depicted in the left in Figure 3.4. Here, the stars represent eigenvalues of A,

the circles depict different choices for γ and the squares indicate the perturbed

eigenvalues.
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A second option is to choose γ = −2 + 3i instead of γ = 1. This gives other

possibilities to construct normality preserving augmentations. The first one is to

choose γ = −2 + 3i instead of γ = 1. This gives other possibilities to construct

normality preserving augmentations. The first one is to choose ` through γ and

−3, which shows that u must be a multiple of e3 and v = θu and w∗ = θu∗ where

θ = (1 + 3i)/
√

10, which is a similar situation as for γ = 1. The second non-trivial

option is to choose ` through γ and both 2i and 2+ i. Then with θ = (−2+ i)/
√

5,

we may take u as a linear combination of e1 and e2, showing that

A+ =


2i θα

2 + i θµ

−3 0

θα θµ 0 −2 + 3i

 .

is normal for all α, µ ∈ C. For the given value of γ those two options are the

only possible normality preserving augmentations. The perturbed eigenvalues are

depicted in the right picture in Figure 3.4.

*

*

**

*

*
<(z)

=(z)`2

`3

γ = −2 + 3i

<(z)

=(z)

`1

γ = 1

Figure 3.4: Normality preserving augmentations of a 3×3 matrix for two different values
of γ.
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3.5.2 Illustrations belonging to Section 3.3

Normality preserving non-normal perturbations

First we illustrate Theorem 3.3.10 by presenting an example of a line through two

normal matrices that contains only two normal matrices. For this, let

A =

0 1

1 0

 , B =

 0 1

−1 0

 , and E = B −A =

 0 0

−2 0

 .
Thus, E is a non-normal normality preserving perturbation of A. Hence, apart

from A and B, no other matrix of the form A+ tE with t ∈ R is normal. Indeed,

[A+ tE, (A+ tE)∗] =

1− (1− 2t)2 0

0 (1− 2t)2 − 1

 ,
and this matrix is only zero for t = 0 and t = 1. Moreover, the eigenvalues of

A+ tE are
√

1− 2t and −
√

1− 2t

whereas the corresponding sums of the eigenvalues of H(A + tE) and S(A + tE)

equal

(1− t) + it and − (1− t)− it.

Thus, for instance at t = 1
2 , the eigenvalue zero of A + tE is not the sum of the

eigenvalues of the the Hermitian and skew-Hermitian parts of A+ tE.

Normality preserving normal perturbations

Now we illustrate Theorem 3.3.13. This concerns normality preserving normal

perturbations. For this, we take θ = 1 and consider the matrix A+ E, where

A =


1

i

1 + i

 and E = u1u
∗
1 + 2u2u

∗
2
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with u1, u2 ∈ C3 mutually orthonormal. Then A+E is normal if and only of both

u1 and u2 are eigenvectors of

2Θ⊥(A) = 2SA =


0

i

i

 .
However, A+ E where E = u1u

∗
1 + u2u

∗
2 with u1, u2 ∈ C3 mutually orthonormal,

is normal if and only if both u1 and u2 are linear combinations of the same two

eigenvectors v1 and v2 of 2Θ⊥(A). Thus, with

u1 =
1

4


√

2

1

1

 , u2 =
1

4


−
√

2

1

1

 , where v1 =


1

0

0

 and v2 =


0

1
2

√
2

1
2

√
2

 ,
we have that

E1 + E2 =
1

16


2
√

2
√

2
√

2 1 1
√

2 1 1

+
1

16


2 −

√
2 −

√
2

−
√

2 1 1

−
√

2 1 1

 =
1

16


4

2 2

2 2


is a normality preserving rank-two perturbation of A, written as the sum of two

rank-one perturbations that individually do not preserve normality. However, we

also have that

1

4
v1v
∗
1 +

1

2
v2v
∗
2 =

1

16


4

0

0

+
1

16


0

2 2

2 2

 =
1

16


4

2 2

2 2


and this expresses the perturbation as a sum of two normality preserving normal

rank-one perturbations. The eigenvalues of A + tE are 1 + 1
4 t due to the term

1
4v1v

∗
1 , together with the eigenvalues of

i
1 + i

+
1

8
t

1 1

1 1

 , which are i+
1

2

(
1 +

t

4
±
√

1 +
t2

16

)
,
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which are due to the term 1
4v2v

∗
2 . As stated in Theorem 3.3.15, the rank-2 pertur-

bation moves the eigenvalues of A in the horizontal direction. Since the eigenvalues

i and 1 + i of A are on the same horizontal line, they can be simultaneously per-

turbed by a rank-one perturbation. For t ∈ [0, 4] those eigenvalues are plotted

by circles in Figure 3.5. We also computed the eigenvalues of A + tE1 and of

A + 4E1 + tE2 for t ∈ [0, 4] and indicated them by asterisks and boxes, respec-

tively. As is visible in Figure 3.5, the eigenvalues leave the straight line before

returning to the eigenvalues of the normal matrix A+ 4E1 + 4E2 = A+ 4E.

Figure 3.5: Eigenvalue trajectories of a normality preserving perturbation, and of the
same perturbation written as the sum of non-normality preserving normal perturbations.

3.5.3 Illustrations belonging to Section 3.4

We now illustrate Theorem 3.4.7. The starting point is a 3 × 3 matrix A, chosen

so that the conditions of the theorem are easy to satisfy. Let

A =


5i

1

2 + 2i

 and thus, H(A) = X =


0

1

2

 .



90 CHAPTER 3. NORMAL MATRICES

With θ = 1, the eigenvalues already lie on a parabolic curve, and thus also with the

trivial choice Z = On augmentations A+ can be constructed having eigenvalues

on the same curve. More interesting is to choose a Z 6= On such that A − iZZ∗

is normal. Since H(A) has distinct eigenvalues, Z needs to have eigenvectors of

H(A) as columns. Take for example

Z =


2 0

0 0

0 1

 hence ZZ∗ =


5

0

1

 and A−iZZ∗ =


i

1

2 + i

 .
The eigenvalues of A− iZZ∗ lie on the curve C that is the image of

q : R→ C : ρ 7→ ρ+ i(1− ρ)2.

Augmentation A+ can now be constructed by choosing an arbitrary Hermitian

2× 2 matrix M and an arbitrary unitary matrix Q, for instance

M =

1 1

1 2

 and Q =
1

2

√
2

1 1

1 −1

 ,
and then to form the Hermitian part of A+ as

H(A+) =

 Z ZQ

Q∗Z∗ M

 =



0
√

2
√

2

1 0 0

2 1
2

√
2 − 1

2

√
2

√
2 0 1

2

√
2 1 1

√
2 0 − 1

2

√
2 1 2


Finally, A+ itself can be formed as A+ = H(A)+iq(H(A)) = H(A)+i(I−H(A))2,

resulting in
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A+ =



5i
√

2
√

2 +
√

2i

1 0 0

2 + 2i 1
2

√
2 − 1

2

√
2− 1

2

√
2i

√
2 0 1

2

√
2 1 + 3 1

2 i 1 + 2 1
2 i√

2 +
√

2i 0 − 1
2

√
2− 1

2

√
2i 1 + 2 1

2 i 2 + 4 1
2 i


Indeed, A+ is a 2-augmentation of A. From this example we observe that if Z,M,Q

are chosen real, then H(A+) is real symmetric and A+ complex symmetric, being

the sum of a real symmetric matrix and i times a polynomial of this real symmetric

matrix. Note that not all complex symmetric matrices are normal. In fact, the

leading 4×4 principal submatrix of A+ in the above example is not normal, nor is

the trailing 2× 2 principal submatrix. Thus A+ could not have been constructed

using the procedure for m = 1 twice.




