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Oscillations in the primordial bispectrum: Mode expansion
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(Received 5 July 2010; published 14 September 2010)

We consider the presence of oscillations in the primordial bispectrum, inspired by three different

cosmological models; features in the primordial potential, resonant type non-Gaussianities, and deviation

from the standard Bunch-Davies vacuum. In order to put constraints on their bispectra, a logical first step

is to put these into a factorized form which can be achieved via the recently proposed method of

polynomial basis expansion on the tetrahedral domain. We investigate the viability of such an expansion

for the oscillatory bispectra and find that one needs an increasing number of orthonormal mode functions

to achieve a significant correlation between the expansion and the original spectrum as a function of their

frequency. To reduce the number of modes required, we propose a basis consisting of Fourier functions

orthonormalized on the tetrahedral domain. We show that the use of Fourier mode functions instead of

polynomial mode functions can lead to the necessary factorizability with the use of only 1=5 of the total

number of modes required to reconstruct the bispectra with polynomial mode functions. Moreover, from

an observational perspective, the expansion has unique signatures depending on the orientation of the

oscillation due to a resonance effect between the mode functions and the original spectrum. This effect

opens the possibility to extract information about both the frequency of the bispectrum as well as its shape

while considering only a limited number of modes. The resonance effect is independent of the phase of the

reconstructed bispectrum suggesting Fourier mode extraction could be an efficient way to detect

oscillatory bispectra in the data.

DOI: 10.1103/PhysRevD.82.063517 PACS numbers: 98.80.Cq, 98.80.Es

I. INTRODUCTION

In recent years it has become evident that determining
the precise physics of inflation requires the observation of
higher order correlation functions beyond the power spec-
trum [1]. These correlation functions can be obtained from
the cosmic microwave background (CMB) [2–6] and large
scale structure [7,8], but recently [9–11], it has been shown
that in principle 21-cm observations of the early universe
can also be used to measure n-point statistics. Because
higher order correlation functions introduce more free
parameters they can be used to constrain more complex
models of inflation, since an increased set of parameters
will allow for a unique fitting of the model to the observed
data [1]. However, both due to computational and obser-
vational limitations, only the bispectrum has been reason-
ably investigated. For the detection of higher order
correlations we will have to wait for more advanced data
sets, such as Planck and improved analysis methods,
although preliminary attempts have been made [5,12,13].
Even the detection of the bispectrum is not optimal, as a
bispectrum would at least be a continuous three parameter
observable but thus far only constraints have been set on
limiting cases, in which 2 of the parameters are fixed and
the third one is measured for a predetermined triangular
configuration. The limiting cases (shapes) are known as the
local, equilateral, and orthogonal (and in the context of
limiting triangular configurations; enfolded) non-Gaussian

features. Precisely, these features have been chosen, as it
has been shown theoretically that most models of inflation
produce non-Gaussianities that fall in one of these three
classes (for recent reviews see [14–16]).
When constraining non-Gaussianities using the bispec-

trum, it has been a prerequisite that the comoving momen-
tum dependence should be factorizable; the bispectrum
should be separable into a product of functions of one
variable, each variable being one of the three comoving
momenta making up the connected correlation triangle.
Foremost, this requirement is set because of computational
limitations that would render the analysis intractable if a
given primordial bispectrum is not of the factorized form.
The number integrals and sums one has to perform when
computing an unfactorized bispectrum scale with the num-

ber of pixels as N5=2, while for factorizable shapes this
reduces by one factor of N [17]. Although one integral can
be computed fairly quickly the number of pixels [Oð106Þ
for WMAP and Oð107Þ for Planck] is large and one factor
of N can make all the difference. The constrained bispec-
tra, local, equilateral, and orthogonal, have thus far been
factorized templates. In the cases of equilateral [18] and
orthogonal [4] these have been constructed via approxima-
tion of a predicted signal, in the local case, the template is a
direct representation of the theory [19–21]. For a particular
type of bispectrum to be constrained, it is necessary to
construct a factorized template that ‘‘matches’’ the bispec-
trum. Until recently, there was no given prescription for
how to factorize a given theoretical bispectrum. In [22,23]
it was shown that factorizability can be achieved in both*p.d.meerburg@uva.nl
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comoving momentum and multipole space by expanding
the bispectrum in mode functions that are orthogonal on
the domain of the bispectrum dictated by triangle con-
straints. The purpose of this factorization is to be able to
quickly compute the full CMB bispectrum (Bl1l2l3) and

generate CMB maps with arbitrary primordial statistics
(up to the trispectrum [13]) which are used to determine
the variance of the (statistical) estimator. In the same paper,
it was also shown that one can efficiently extract informa-
tion about non-Gaussianity in the observed CMB by mea-
suring the weight of each mode in the data and comparing
this to theoretical predictions.1

In this paper we investigate how well this mode expan-
sion works for a class of bispectra that contain (a large
number of) oscillations. The reason to be interested in such
features is that a number of theoretical models [25–30]
predict oscillations in the bispectrum and in order to be
able to constrain such models, a plausible first step is to
factorize these bispectra. As it is, oscillations can be con-
sidered as an extra, distinguishable, degree of freedom
within the bispectrum which could result in narrowing
down the number of potential scenarios of inflation.

We introduce three different cosmological scenarios in
which oscillations in the bispectrum can appear. We will
briefly discuss the theory behind these models and show to
what extent these would be distinguishable from one an-
other in the data in Sec. II. Two out of three bispectra can
have significant correlation and it could be difficult to
discriminate between such models in future surveys. We
will discuss the method of polynomial expansion in order
to rewrite the primordial bispectra in factorized/separable
form in Sec. III. As expected, the number of modes re-
quired in the expansion grows along with the frequency of
the theoretical spectra. In Sec. III A we show how fast
polynomial expansion would yield a reasonable recon-
struction of the given bispectra predicted by the three
cosmological scenarios. Subsequently we will investigate
another set of modes that can lead to a separable expansion
of the theoretical bispectrum in Sec. III B. These modes are
based on the sine and cosine and the resulting set of
orthonormal functions can be considered a Fourier-type
basis on the tetrahedral domain. After detailing the con-
struction of this set of orthonormal mode functions, wewill
compare the number of modes required to achieve compa-
rable correlation with the polynomial mode expansion. It
turns out that this number is reduced significantly and as
such Fourier expansion can be considered a reasonable
alternative to expand oscillatory spectra. For larger
frequencies both Fourier and polynomial mode expansion
become inefficient. Fortunately, for various oscillatory
signals only a limited number of modes contribute

significantly in the reconstruction of the original spectrum.
This has several consequences for the viability of Fourier
mode expansion as well as possible observational advan-
tages compared to polynomial modes, which will be dis-
cussed in Sec. IV. In these class of models, just as the
frequency, the phase can be considered a free parameter of
the theory. In a polynomial mode expansion, different
phases can result in significantly different expansions. In
a Fourier mode expansion the phase is taken care of much
more naturally. Effectively the phase can be absorbed into
the weights of the expansion, and as such have minimal
effect on the overall expansion. Consequently, we will see
that the norm of the mode expansion coefficients will be
very similar for each phase making Fourier expansion
much more elegant and suitable for these type of spectra.
We conclude this paper in Sec. V.

II. OSCILLATIONS IN PRIMORDIAL BISPECTRA

In this section we will briefly discuss 3 distinct possi-
bilities that can produce non-Gaussianities that have an
oscillatory component. Two of these examples have an
exact solution, while a third has only been solved numeri-
cally and we will use an approximate form. In the follow-
ing paragraphs we will describe the physics behind these
models and quote their theoretically predicted primordial
bispectra. In addition we investigate how well these bis-
pectra can be distinguished from one another by computing
their correlation, which will be defined shortly. Since all
these bispectra have poor overlap with existing spectra,
there exists substantial room for improvement, which we
could achieve by approximating these shapes via mode
expansion. This will be the topic of the next section.
For completeness, let us introduce (standard) notation.

The primordial bispectrum is given by

h� ~k1
� ~k2

� ~k3
i ¼ ð2�Þ7fNL�2�K

�X3
i¼1

ki

�
Fðk1; k2; k3Þ; (1)

where � is the gauge invariant curvature perturbation

(� ¼ �H��= _�0) which is constant after horizon exit, �
is the amplitude of the primordial power spectrum (i.e. for
single field slow-roll� ¼ H2=8��, whereH is the Hubble
rate at the end of inflation and � the slow-roll parameter)
and Fðk1; k2; k3Þ is the shape of the bispectrum. We will
also make use of S � k21k

2
2k

2
3F. In the following we will

discuss the shapes of the bispectra and quote theoretically
predicted ranges of their associated fNL where NL stands
for nonlinear. We would like to refer to the literature for a
detailed examination of the theoretically predicted values
of fNL [25–29] in various theoretical contexts.

A. Features in the potential

Sharp features in the potential can temporarily break
slow roll and produce large non-Gaussianities [27,28,31].
As long as the system relaxes within several Hubble times,

1During the finalization of this paper, the same group pub-
lished a paper [24] in which many nonfactorizable non-Gaussian
shapes have been constrained using the WMAP 5 yr data and the
method of mode expansion.
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inflation can still lead to a significant amount of e-folds to
solve the standard cosmological problems. The motivation
for these type of features is twofold. First, there are hints of
glitches in the primordial power spectrum that could be
cross-checked using the bispectrum [32]. A second moti-
vation is theoretical in nature. In certain brane inflation
models the effective 4-dimensional potential displays
sharp features (see [14] and references therein).

One of the possible sharp features is a step in the
potential, which can be parametrized as

Vð�Þ ¼ 1

2
m2�2

�
1þ c tanh

�
���s

d

��
; (2)

where c, d, and �s, respectively, determines the height,
width, and location of the feature.

The resulting bispectrum can only be computed numeri-
cally. The authors of [27,28] have proposed an approxi-
mate analytic form

FFeat ’ sinðkt=k� þ �Þ
k21k

2
2k

2
3

: (3)

The approximation can in principle be improved [14] by
multiplying by an ‘‘envelope’’ function, but such improve-
ment would not gain us any more useful insight required
for the analysis in this paper and we will therefore omit it.
Here k� is related the location of the feature in the potential
�s. Evidence for features in the power spectrum around
l� 30 have been put forward in [32]. It was shown that the
inclusion of features in the primordial potential could
improve the �2 best fit. Such a feature would approxi-
mately correspond to k� ¼ 30=�0 � 0:002 Mpc�1. This
relation also indicates that the smaller the scale at which
the feature appears the larger the associated wavelength.
Roughly the wavelength corresponds to the location of the
feature, e.g., for a feature at l ¼ 30 the wavelength �l� 30
[30]. Here we do not necessarily relate to an observed
feature at a specific value in multipole space since features
that lead to nonvanishing bispectra can still be present with
minimal consequences for the observable power spectrum.
The quantities we will compute in the remainder of this
paper are mostly integrals that run over the domain of
comoving momentum space between kmin � k � kmax. It
is therefore convenient to choose our reference scale
kmax � 10�1 Mpc�1, the smallest observable scale in the
data, in order to be able to compare the frequencies in the
various models. We then define x1 ¼ k1=kmax, x2 ¼
k2=kmax, x3 ¼ k3=kmax, xt ¼ kt=kmax and rewrite the shape
of this bispectrum as

FFeat ¼ k�6
max

sinð!fxt þ �Þ
x21x

2
2x

2
3

; (4)

with!f ¼ kmax=k�. For a feature at k� ¼ 0:002 Mpc�1 we

therefore find !f � 50. Note that ! ¼ 50 can be consid-

ered an upper limit in allowable frequencies due to features
in the potential. For features at smaller scales the frequency

will be smaller. This bispectrum with a frequency of
!f ¼ 50 is shown in the bottom of Fig. 1.

The amplitude of this type of non-Gaussianity is gov-
erned by the width and the depth of the feature in the
potential

ffeatNL � 7c1=2

d�
; (5)

which for a feature at l� 30 would imply ffeatNL �Oð10Þ
[32].

B. Resonant non-Gaussianity

This type of non-Gaussianity is a result of a periodic
feature in the inflaton potential as opposed to a sharp
feature explored in the previous example. These features
will cause oscillations in the coupling(s) of the interaction
terms of the inflaton field. Resonance occurs when an
oscillatory mode well within the horizon grows during
inflation until its frequency hits the same frequency as
those of the couplings. So as long as !>H resonance
will occur at some point within the inflationary history of
the mode. This resonance can result in a large contribution
to the three point correlation function [27,28].
In a general scenario, with an oscillatory potential we

obtain an expression for the bispectrum of the form [27–29]

Fres ¼ 1

k21k
2
2k

2
3

�
sinðC lnðkt=k�ÞÞ

þ C�1 cosðC lnðkt=k�ÞÞ
X
i�j

ki
kj

�
: (6)

FIG. 1 (color online). Three examples of oscillating bispectra.
We have set !v ¼ !f ¼ !r ¼ 50. The pivot scale in Eq. (9) is

set to k� ¼ 0:002 Mpc�1 and x1 ¼ 1 ! k1 ¼ kmax. In addition
� ¼ 0 in both the modified initial state and feature scenario. The
non-BD bispectrum contains the most features and, not clear
from this image, the number of features (effective frequency)
increases rapidly for smaller values of x1 making this bispectrum
particularly hard to reconstruct using mode expansion.
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Here C is related to the frequency as C ¼ !=H, withH the
Hubble rate during inflation (which is approximately con-
stant), and k� introduces a phase. One can also compute the
general expected amplitude of non-Gaussianity which is
related to the frequency as

fresNL �
ffiffiffiffi
�

p
2

ffiffiffi
8

p !1=2 _�A

H3=2
: (7)

Here �A represents the amplitude of the oscillatory compo-
nent of the couplings.

Physically such features might be realized in terms of
brane inflation [30] where the periodic feature comes from
a duality cascade in the warped throat, as well as axion-
monodromy inflation where the periodic feature is a result
of instanton effects [29,33]. As an example let us consider
the latter. Axion inflation is well embedded in string theory
and represents a favorable candidate for inflation if the
observed tensor modes are relatively large (r� 0:07). Such
a scenario implies inflation occurred at energies close to
the grand unified theory scale and would indicate that we
require the knowledge of the UV completion.

The axion potential is given by

Vð�Þ ¼ V0ð�Þ þ�4 cos�=f: (8)

The parameter f represents the axion decay parameter. The
range of f which would generate observable non-
Gaussianities and is still consistent with observations of
the power spectrum is given by 10�4 & f & 6� 10�3

[29,33]. The lower bound is set by the requirement that
the period of the oscillation should be larger than �l� 1
for l � 200. For a linear zero order potential the resulting
bispectrum is then given by

Fres ¼ k�6
max

x21x
2
2x

2
3

�
sinð!r lnxt þ �1Þ

þ!�1
r cosð!r lnxt þ �1Þ

X
i�j

xi
xj

�
; (9)

with !r ¼ ðf��Þ�1 and �1 ¼ !r lnkmax=k�. Here k� is
pivot scale (k� ¼ 0:002 Mpc�1), and �� is the value of
the inflaton field when the pivot scale exits the horizon and
is of order 10 (Mp). Given the range for f�� the frequency
of the oscillations in the bispectrum lie within 20 & !r &
103. A plot of this shape is shown in the top right of Fig. 1.

The amplitude of the axion bispectrum (for a linear
potential) is given by

fresNL ¼ 3
ffiffiffiffiffiffiffi
2�

p
b

8ðf��Þ3=2
: (10)

The amplitude is therefore proportional to a power of the
frequency. For a linear potential b ¼ �4=ð	3fÞ, where
	� 6� 10�4 is fixed by Cosmic Background Explorer
normalization. From observations of the power spectrum
one can constrain bf < 10�4 [29] and therefore

fresNL � 10�3!5=2
r ; (11)

allowing Oð1Þ � fresNL � Oð104Þ.

C. Initial state modifications

Since inflation is an effective field theory in a curved
background, choosing an appropriate vacuum state is by no
means evident.2 In general the initial or vacuum state is
chosen to be equivalent to the free field vacuum state in flat
Minkowski space, know as the Bunch-Davies vacuum.
Although it seems that possible corrections to this assump-
tion are constrained to be small (from general observation
of the power spectrum [29,35,36] and backreaction con-
straints [34,37]), it has been shown that small corrections
in the BD state can result in rather large non-Gaussian
effects [25,26,37,38]. Using the currently available bounds
on non-Gaussianity from CMB data, deviations from a
pure Bunch-Davies state have been constrained even fur-
ther, although these constraints strongly depend on the
inflationary model. However, there exists significant
room for improvement as non-Gaussianities from these
modifications are highly oscillatory and therefore the de-
rived constraints are relatively poor since they depend on
the correlation with measured smooth bispectra.
A number of different scenarios have been considered in

which initial state modifications were investigated. Here
we will not discuss all of these, although the results can
differ significantly [26]. Such differences make it difficult
to make robust predictions, it seems inevitable however
that once you introduce a effective field theory cutoff,
oscillations appear in both the power and bispectrum. We
will consider one example that represents a large class of
models with a noncanonical effective field theory action,
which already drives large non-Gaussianities to start with.
This particular class has a speed of sound cs < 1, such that
perturbations in the medium propagate slow compared to
the growth of the causal horizon. The leading order shape
of the resulting bispectrum is given by [26]

FBD ¼ cs�0

k1k2k3

X
j

�
1

2

cosð~kjcs�0 þ �Þ
~kjcs�0

� sinð~kjcs�0 þ �Þ
ð~kjcs�0Þ2

þ cos�� cosð~kjcs�0 þ �Þ
ð~kjcs�0Þ3

�
: (12)

Here ~kj ¼ kt � 2kj. In [25] it was assumed that there exists

a fixed physical cutoff hypersurface �0 that is scale depen-
dent such that the overall momentum dependence of the
bispectrum becomes scale invariant. Such a choice is
known as the new physics hypersurface, as opposed to
the boundary effective field theory approach in which the
cutoff is time dependent [39]. The subtlety is that the cutoff

2For a in depth discussion on deviations from a BD vacuum
see, for example, [26,34] and Sec. 6.4 in [14].
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appears due to the presence of a non-BD state in each
direction in comoving momentum space. Consequently,
�0ðkiÞ will depend on the ki direction the BD vacuum
has been perturbed in. This direction is set by the direction
in which ki picks up a minus sign due to the Bunch-Davies
vacuum perturbation as explained in [25]. One could allow
for scale invariance breaking and consider boundary effec-
tive field theory, however there are some suggestions [40]
that such a large scale invariance should have been ob-
served already. We can rewrite the bispectrum as

FnBD ¼ !vk
�6
max

x1x2x3

X
j

1

x3j

0
@1
2

cosð!v
xjþ1þxjþ2

xj
þ �2Þ

!vðxjþ1þxjþ2

xj
� 1Þ

�
sin!vð!v

xjþ1þxjþ2

xj
þ �2Þ

!2
vðxjþ1þxjþ2

xj
� 1Þ2

�
cos�� cosð!v

xjþ1þxjþ2

xj
þ �2Þ

!3
vðxjþ1þxjþ2

xj
� 1Þ3

1
A; (13)

where �2 ¼ ��!v and!v ¼ k�0cs ¼ ðk=a0Þ=ðH=csÞ or
the ratio between the largest physical momentum scale and
the Hubble radius at time �0 which can be as large as 103

[25,26,37]. Note that from this expression it seems that
xj ¼ xjþ1 þ xjþ2 represents a singular line (the enfolded

limit). However, one can show that all infinities are can-
celled against each other and the expression is finite and
vanishing.3 When computing quantities numerically, such
as the correlator in Sec. III, these apparent singularities can
be hard to handle and we need to be aware of these. We
have plotted this shape in the top left Fig. 1.

The amplitude of the non-BD bispectrum is a function of
the frequency and the Bogoliubov parameter quantifying
the deformation away from the BD state. The way this
bispectrum was computed considered a Bogolyubov cor-
rection of linear order 
 and small speed of sound cs. In
this particular scenario, fNL is roughly given by

fnBDNL � 1

c2s
!3

v
: (14)

From backreaction and power spectrum constraints

 & 10�2, which could still allow observable levels of
non-Gaussianity.

D. Distinguishability

Although the presented theoretical bispectra have differ-
ent characteristics, we would like to get an indication of
how well these could be discriminated. For instance, it
seems obvious that the similarity between the feature
bispectrum and the resonant bispectrum could lead to
significant confusion when actually traced in the data. In
order to do so, we want to measure the distinguishability of
these shapes, which is usually quantified using the amount
of overlap or correlation between two shapes. One can
define a inner product between two shapes

FX ? FY �
Z
�k

dk1dk2dk3k
4
1k

4
2k

4
3wkFXFY

¼
Z
�k

dk1dk2dk3wkSXSY: (15)

The correlation between two shapes FX and FY is then
defined as

C ðFX; FYÞ � FX ? FY

ðFX ? FXÞ1=2ðFY ? FYÞ1=2
: (16)

Here wk is a weight function, which was chosen as wk ¼
1=kt in [23] to increase resemblance with the Fisher matrix
(correlation) found in multipole space. The integral runs
over the ‘‘tetrahedral’’ domain, which is bounded by the
following triangle constraints:

ka � kb þ kc for ka � kb; kc; ka; kb; kc � kmax;

where a; b; c ¼ f1; 2; 3g, a � b � c.
Before we compute the correlation between the shapes,

let us perform a quick qualitative analysis in order to get an
indication of what to expect. First of all, note that the shape
coming from initial state modifications [Eq. (13)] is clearly
different from the other two. While for features [Eq. (4)
and (9)] the argument in the oscillating functions explicitly
depends on the sum all three comoving momenta, the
argument in Eq. (13) depends on the ratio of momenta.
Consequently we can expect a rather small overlap. This
becomes even more apparent once we adapt a new set of
variables

k ¼ kt=2; k1 ¼ kð1� 
Þ; k2 ¼ 1
2kð1þ �þ 
Þ;

k3 ¼ 1
2kð1� �þ 
Þ; dk1dk2dk3 ¼ k2dkd�d
;

proposed in [22]. As a consequence the argument in Eq.
(13) will depend on the two variables � and 
, while the
arguments in Eq. (4) and (9) will only depend on k. In that
sense, we can say that oscillations in these shapes are in
orthogonal directions.
In addition, for both the feature and resonant bispectrum

the frequency is fixed along one direction. That is, the
frequency does not change (feature) or only slightly
changes (resonant) when you run through a fixed direction
in comoving momentum space. For the non-BD bispec-
trum however the argument in the oscillating function has a

3This limit is on the enfolded line xj ¼ xjþ1 þ xjþ2 within the
sum. Outside the sum, this expression is nonzero but finite. For
example x1 ! x2 þ x3 gives:

1

8x42x
4
3!

2

�
ðx2 þ x3Þ3 � zððx2 þ x3Þ2 � 2x22!

2Þ cos
�
2x2!

x2 þ x3

�

� x2

�
ððx2 þ x3Þ2 � 2x23!

2Þ cos
�
2x3!

x2 þ x3

�

þ 2x3ðx2 þ x3Þ!
�
sin

�
2x2!

x2 þ x3

�
þ sin

�
2x3!

x2 þ x3

����
:
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component that scales as 1=xj. Consequently for xj ! 0

the effective frequency !eff ! 1. Naturally, xj is cutoff

from below (as kmin=kmax � 10�4), however even with a
cutoff the range in effective frequencies is large along a
direction. This effect is present at all frequencies, and it
turns out it will determine the efficiency of mode expan-
sion for this bispectrum discussed in the next section.

We have numerically calculated the correlator as defined
in Eq. (16) between both feature bispectra and non-BD
spectrum. We found the correlation to be maximal for low
values of both frequencies (of order 1% around ! ¼ 10),
indicating that there is no evidence for a particular resonant
frequency; the largest correlation occurs due to the fact that
there are less oscillations, thereby decreasing the chance
for (almost perfect) cancellations in the integral. As ex-
pected, we can safely conclude that these shapes are dis-
tinguishable/orthogonal.

For the two bispectra of Eq. (4) and (9) we can expect a
larger correlation. The appearance of a log in Eq. (9) is the
only major difference between the two bispectra. In the
new coordinate set, the bispectrum of (4) does not depend
on the � or 
. Let us try to make a simple analytical
approximation of the relevant correlator before we com-
pute the correlation numerically. The first term in (9)
dominates the second for large values of ðf��Þ�1.
Therefore for simplicity we neglect the second term. As
a consequence both terms now depend only on k. In the
computation of the correlator the integration over � and 

drops out and to get an indication of the resonance we only
need to investigate the following integral:

Z 3

0
xtdxt sinð!fxt þ �Þ sinð!r logxt þ �1Þ; (17)

where we assumed that at most kt ¼ 3kmax ! xt ¼ 3. This
integral can be done analytically and results in a sum of �
functions (we have set � ¼ �1 ¼ 0). The interpretation of
the result is rather complicated as all terms are divergent
and there are no terms that can be easily neglected.
However, one can plot the result and find that there is a
clear resonance ‘‘area’’ around !r ’ 20!f. We have con-

firmed this resonance as a function of the frequency when
considering the full expression and allowing both phases
to be nonzero. We have plotted (Fig. 2) the correlation for
a range of frequencies (10<!< 1000) and a phase
� ¼ �1 ¼ 0. The largest values obtained from this numeri-
cal computation are of order 0.6, or 60% correlation (we
have used discreet steps of �! ¼ 10), and we expect there
to exist a correlation ofOð1Þ for some specific values of!.
As such it will be hard to discriminate between these two
models solely using observations of the bispectrum (as one
could simply confuse frequencies). However, as mentioned
before, axion inflation, for example, predicts a large scalar
to tensor ratio. The measurement of r could break the
degeneracy between a sharp feature in the potential versus
axion inflation. In addition, one does not expect !r < 10

since it would not produce observational fresNL, while for the

feature bispectrum the natural frequency is no larger than
!f � 50. If one would be able to extract a frequency from

the data, a large frequency would favor a resonant model
while a low frequency could indicate a sharp feature.

III. MODE EXPANSION

A. Power modes

The discussed primordial bispectra have very little in
common with the constrained local, equilateral and or-
thogonal bispectra. Typically, to constrain any type of
non-Gaussianity one computes the correlator [Eq. (16)]
and derive the so-called ‘‘fudge’’ factor which indicates
how much ‘‘signal’’ leaks into an existing template With
the use of the fudge factor one is able to deduce a bound on
the amplitude of the unconstrained bispectrum. The reason
why certain templates have been constrained and some
others have not, is twofold. First and foremost, until now
most models produced non-Gaussianities that can roughly
be placed in one of the constrained types. For this reason, it
was not immediate to search for any other type, simply
because there were no models that indicated bispectra with
completely orthogonal characteristics. Of course, opti-
mally, one would simply look for the full bispectrum as a
function of the multipole numbers instead of constraining
the amplitude, in particular, bispectral configuration, but
the low S/N and computational limitations have so far
restrained us to the former.

FIG. 2 (color online). The correlation between the bispectral
shapes of (4) and (9) for various values of the frequency. The
light areas correspond to correlations of order Oð1Þ, while
the dark shaded areas correspond to correlations close to 0.
The correlation was computed with � ¼ �1 ¼ 0.
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The second reason not to look for more ‘‘exotic’’ bis-
pectra is that for a fast estimator, the bispectrum one would
like to constrain needs to be factorizable and scale invari-
ant. That is, it is useful if the bispectrum can be we written
as sum of products of functions, where each function only
depends on one direction in multipole or comoving mo-
mentum space. It has been shown that such factorizability
reduced the number of computations one has to make in
order to constrain the amplitude of the bispectrum by a
factor l2, where l is the number of observable multipoles of
the experiment (leaving only l3 computations).

The constrained non-Gaussian amplitudes (in the form
of fiNL, where i labels the comoving momentum type,
local, equilateral, or orthogonal) are all based on templates
that are factorized in the manner explained above. For
instance, although Dirac-Born-Infeld (DBI) inflation does
not produce a factorized bispectrum, it is well approxi-
mated by the equilateral template [18], that is factorized by
construction. The same is true for both the local and
orthogonal template, as well as the enfolded [25] template.
However, the method for constructing such factorized
approximations of existing theoretical bispectra is rather
ad hoc. Until recently there was no procedure no construct
a factorized bispectrum using a consistent prescription.

In [23], a method for constructing factorized approxi-
mations to theoretical bispectra has been proposed using
polynomial expansion. The approach is fairly straightfor-
ward; one defines a set of orthonormal 3 dimensional
functions [where orthonormal is defined using a correlator
of the form4 Eq. (16), and the weight function can be
adjusted] which are a priori factorized and from there
one computes the corresponding weight factors (�n) via
the inner product between a number of polynomial modes
(Rn) up until a sufficient overlap between the polynomial
expansion and the original bispectrum is established, i.e.,
until N such that

Sðx1; x2; x3Þ ’
XN
n¼0

�nRnðx1; x2; x3Þ: (18)

Without discussing the details of constructing such poly-
nomial modes (see [23] for a detailed description), here we
want to try and investigate how well this would work in
case of the oscillatory bispectra of (4), (9), and (13).

Before we do so, let us make a few notes. First of all,
recall that the objective of the expansion is to factorize a
given theoretical bispectrum. However, as you can see
from Eq. (4), this particular bispectrum, albeit a best-fit
approximation,5 is already of the factorized form. One can
still try to expand this in terms of power law polynomials,
as described here, since polynomial modes will in general
behave better numerically. The other two examples of
primordial bispectra are not factorizable in terms of oscil-
lating functions using simple identities. Consequently, the
polynomial expansion seems to be a good first effort in
order to set up an approximately factorized form.
Second, were we able to expand these into a factorized

form, and subsequently projected to multipole space and
applied to the data, we might still miss the entire signal,
simply because one of the free parameters is the frequency
of the oscillations. For a non-BD bispectrum and the axion
inflation model, the range of possible frequencies spans (at
least) 2 orders of magnitude. Therefore, if we would fix the
frequency, searching for a signal with a constructed fac-
torized template would probably not be the best approach.
Fortunately, we will later see that if you would measure
mode functions in the data, instead of a fixed template, one
could in principle extract information about a variety of
oscillating signals. Let us emphasize that even if we would
not be able to reconstruct a factorized form of a given
spectrum with a small number of modes, it is still very well
possible we could observe the same spectra by measuring a
small number of mode functions in the data [effectively the
frequency (and the phase) remain a free parameter during
mode extraction].

1. Feature bispectrum

First we consider the bispectrum coming from a feature
in the potential [Eq. (4)]. Out of the given examples it has
the simplest form (excluding the envelope). We choose
� ¼ 0 for simplicity, and since the phase can always be
scaled out it will not affect the results.6 In Table I we have
computed the number of modes necessary to get a corre-
lation of at least 98% with the original spectrum for several
values of !f. As expected, as the frequency is increased,

one has to expand the bispectrum with a (rapidly) growing
number of modes. For !f ¼ 9 we get a 93% correlation

with 82 modes. On itself, it actually quite remarkable that
one is able to reproduce the spectrum with a limited

4For the construction of these polynomial modes we set
w ¼ 1. Once computing the correlator between the original
and the reconstructed spectrum one can take w ¼ 1=kt in order
to see how much of an effect projection onto multipole space can
have. We find that it reduces the correlation by 5 to 10% in both
polynomial expansion and Fourier expansion. As such, it should
not effect the conclusions we draw in this paper where all
correlation shown are based on w ¼ 1. In order to build modes
that are optimized for multipole expansion you should start by
considering a weight function 1=kt. This is beyond the scope of
this paper.

5The proposed envelop function has the form ðk1 þ k2 þ
k3Þneðk1þk2þk3Þ=k�m, where m and n are fitted to the numerical
results. The envelope function is therefore also factorizable.
Again, we did not consider this envelop since it is smooth
compared to the oscillatory part of the bispectrum. However,
such an envelope could be of significant influence in predicting
the correlation in multipole space [22].

6One would also have to consider cos!fxt but we found no
difference when expanding between the cosine and sine in terms
of the required number of modes.
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number of modes. Recall that the possible feature at l� 30
would result in a (decaying) oscillation with !f � 50,

which would be hard to fit this way. On the other hand,
as we argued earlier, a frequency of !f ¼ 50 can be

considered an upper limit, as features at a higher multipole
number would result in longer wavelengths. We have
plotted an example of how the correlation between the
original spectrum and the expansion increases as a function
of the number of mode functions in the expansion in Fig. 3

2. Resonant bispectrum

Next, let us consider the resonant bispectrum. It is quite
similar to the feature bispectrum, but theoretically we
expect much larger frequencies (20 � !r � 103). We
have computed [Fig. 4] the correlation between the expan-
sion and the original spectrum, chosen to be sinð!r lnxtÞ
since for the same reason as before the phase will barely
affect the number of modes required to reconstruct the
spectrum. As expected, the convergence of the correlation
toward one (perfect overlap) proceeds slowly. For the
lowest frequency we considered (!r ¼ 20), the corre-
lation reaches 71% after 82 modes. For!r ¼ 60 the largest
correlation we can achieve is 7% after 82 modes.
Recall that the amplitude of the resonant bispectrum is
proportional to its frequency. The maximum correlation
between existing templates and the axion spectrum is of
order 1% [33] (although for small frequencies this can
be 10% for the equilateral template) and possibly

measuring these modes in the data would therefore still
allow for a constraint on axion inflation that is 10–100
times7 better than what we have now. In general, increasing
the frequency above !r � 60, a large correlation becomes
hard to achieve with a limited number of modes.

3. Non-BD bispectrum

For the non-BD spectrum of Eq. (13) we find that
computing the correlator numerically requires a very
high resolution, because this shape contains terms that
are singular and the spectrum as a whole is only finite
due to the exact cancellation between all the specific terms.
To avoid these problems one has to stay away from the line
(s) xjþ1 þ xjþ2 ¼ xj, which can be done by adding a small

� in the vicinity of this line in the integral that defines the
dot product [Eq. (15)]. The results are shown in Fig. 5.
Even for low frequency (!v ¼ 20) we cannot achieve a
large correlation with 82 modes. On the other hand, in-
creasing the frequency does not really affect the ability to
reach similar correlation. Overall, we find that the non-BD
bispectrum is the most difficult to reconstruct due to the
appearance of terms that diverge inside the argument, since
for xj ! 0 the frequency of the signal becomes extremely

large at some of the edges of the tetrahedral domain. The
observation that we can still reach some correlation is
because there are also areas on the tetrahedral domain
where the effective frequency is relatively small. These
areas remain even if !v increases (although they should
become smaller and smaller) Consequently we find that
achievable correlation with 82 modes is small but does not
decrease significantly when you go to higher frequencies.

FIG. 4 (color online). The correlation between sinð!r lnxtÞ for
3 different frequencies. From top to bottom !r ¼ 20, 40, and 60.
Beyond frequencies of 60 polynomial expansion would require
many modes to achieve significant correlation with the original
spectrum.

TABLE I. As the frequency is increased it requires a rapidly
growing number of modes to get over 98% correlation with the
original spectrum.

!f 1 2 3 4 5 6 7 8 9�

# of modes Rn 1 5 8 12 18 43 55 69 82

FIG. 3 (color online). Example of the increasing correlation
[Eq. (16) between the approximation of Eq. (4) and the original
spectrum. Here !f ¼ 9 and we find that it requires over 80

modes to achieve perfect correlation.

7This would require adding the modes once extracted from the
data.

P. DANIEL MEERBURG PHYSICAL REVIEW D 82, 063517 (2010)

063517-8



The correlation with smooth spectra is typically of order
� 1% [26] which means that an accumulated correlation
of only a few percent could drastically improve the con-
straints we can put on j
j as the amplitude scales propor-
tionally to !3

v.
Polynomial expansion seems to work reasonably well

for low frequencies of the various bispectra. For larger
frequencies, to reconstruct the original spectrum the poly-
nomial expansion requires an increasing number of modes.
Given the large allowable frequencies for the resonant and
non-BD bispectra, polynomial expansion might not be the
most effective way of expanding. In the next section we
will explore another type of expansion which uses a
Fourier basis. We will investigate if such a basis would
require less modes to achieve similar correlation.

B. Fourier modes

The polynomial expansion of [23] is based on power
modes, i.e., the expansion is in increasing order of xn. This
is not necessarily optimal for describing oscillatory func-
tions. There are two possible alternatives; the first one
would be to expand the argument into a sum of functions
that each depend on one direction only. A such, one can
again use trigonometric identities to expand the cosine and
sine into factorized forms (be that oscillatory functions).
The second option could be to use a Fourier expansion
instead of a polynomial expansion. This would only be
useful if for large frequencies you would need a small(er)
number of modes. Before we get into Fourier mode expan-
sion let us briefly discuss the alternative of expanding the
argument in the oscillatory function.

This option would only suffice if the approximation
requires 2 modes maximally. If it requires more modes,
you will get a product of two or three different directions in

momentum space, and as a result you will not be able to
expand the cosine and the sine. Let us consider the axion
model. The argument is given by ! logxt. Using the mode
expansion, one finds that one can achieve >99% correla-
tion after just two polynomial modes; zero order and first
order. Not surprisingly this is almost equivalent to a Taylor

expansion to first order of logkt=k� around the point kt �
1:4� ffiffiffi

2
p

. Consequently, there are no cross terms, and one
can expand the cosine and sine into factorizable function of
the three comoving momenta, just like you could expand
the feature spectrum into oscillating functions. As it turns
out however, although there is a 99% correlation between
the arguments after expansion, the full bispectrum is very
sensitive to small deviations in the argument, especially for
large frequency. Consequently, the correlation between the
full bispectrum and the approximated bispectrum decreases
as a function of the frequency; from �90% for !r ¼ 1 to
�50% for!r ¼ 20. Although this is equivalent to what can
be achieved with the polynomial expansion using 7 modes,
the problem is that we cannot improve it in any way. Since
this will only work for a first order expansion, we can never
reach beyond 50% correlation, unlike the polynomial ex-
pansion, where we can simply include more modes. Note
that for the non-BD model this method will not work as the
argument is already a product of two directions in comov-
ing momentum space, i.e., ðkjþ1 þ kjþ2Þ=kj.

FIG. 5 (color online). The correlation between the non-BD
bispectrum of Eq. (13) and its polynomial expansion as a function
of the mode number for 3 different frequencies !v ¼ 20 (solid
line), 40 (dashed line), and 60 (dot-dashed line). We have set
�2 ¼ 0 but have found very little difference for nonzero �2.

FIG. 6 (color online). The one dimensional orthonormal
Fourier functions fnðx1Þ within the tetrahedral domain for the
first 11 modes.
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The second option is to consider a Fourier expansion,
where we try and fit terms such as sin!fðx; y; zÞ to a sum of
Fourier modes that all depend on one direction only. Such a
factorization would still lead to the l2 reduction in compu-
tation, since the integrals in k space can now be performed
individually.8 We consider exp½i2�nx	 as our basis func-
tion (as apposed to xn) and constructed a orthogonal set of
three dimensional mode function similar to [23]. The first
few one dimensional functions are given by

f0ðx1Þ ¼
ffiffiffi
2

p
; f1ðx1Þ ¼ 0:22þ 0:23iþ 1:45e2i�x1 ;

f2ðx1Þ ¼ �0:0087þ 0:041ið0:088þ 0:62iÞe2i�x1
� ð0:31þ 1:12iÞe4i�x1 ;

f3ðx1Þ ¼ ð�4:9þ 2:2iÞ10�3 � ð0:15� 0:11iÞe2i�x1
þ ð0:68� 0:65iÞe4i�x1 � ð0:59� 0:65iÞe6i�x1 ;

f4ðx1Þ ¼ ð�6:5� 3:8iÞ10�4 � ð0:042þ 0:017iÞe2i�x1
þ ð0:44þ 0:12iÞe4i�x1 � ð1:þ 0:2iÞe6i�x1
þ ð0:63þ 0:1iÞe8i�x1 ;

f5ðx1Þ ¼ ð�1:1� 11:1iÞ10�5 � ð0:002þ 0:011iÞe2i�x1
þ ð0:051þ 0:16iÞe4i�x1 � ð0:25þ 0:63iÞe6i�x1
þ ð0:4þ 0:89iÞe8i�x1 � ð0:21þ 0:41iÞe10i�x1 . . . ;

The functions are shown up to n ¼ 10 in Fig. 6. From these
one can construct the three dimensional basis functions via
a product of each mode and symmetrization of three co-
moving momentum arguments; x1, x2, and x3

Z prsðx1; x2; x3Þ / ½fpðx1Þfrðx2Þfsðx3Þ þ 5 perm	: (19)

One has to introduce a counting scheme to renumerate the
three labels fp; r; sg to n. We have chosen equal slicing
counting [24], of which the first 27 modes (n) and their
association (fp; r; sg) are shown in Table II. After the
construction of these modes, one has to apply additional
Gramm-Schmidt orthogonalization to Zn to increase or-
thonormality of different mode functions. We refer to the
three dimensional orthonormalized modes as F n and the
corresponding weights as ~�n;

Sðx1; x2; x3Þ ’
XN
n¼0

Reð~�nF nðx1; x2; x3ÞÞ: (20)

If S would have been complex, one should add i Imð~�nF nÞ
in order to take this into account. The coefficients ~�n can
be computed by taking the inner product [Eq. (15)] be-
tween the original shape function (bispectrum) and the
various mode functions F n, i.e.,

~� n ¼
Z
�xi

dx1dx2dx3Sðx1; x2; x3ÞF �
nðx1; x2; x3Þ: (21)

1. Feature bispectrum

For the feature bispectrum we do not necessarily have to
consider the Fourier expansion9 since that spectrum can be
rewritten into a product of Fourier modes simply by using
trigonometric identities, e.g.,

sin!fxt ¼ cos!fx3ðsin!fx1 cos!fx2

þ cos!fx1 sin!fx2Þ
þ sin!fx3ðcos!fx1 cos!fx2

� sin!fx1 sin!fx2Þ: (22)

The other two bispectra are not of the same form, since
their arguments are nonlinear functions, i.e., lnxt for reso-
nant non-Gaussianities and ðxjþ1 þ xjþ2Þ=xj for non-BD

modifications and these can be made of the form above by
expanding, using the constructed Fourier modesF n. Given
the form of the first argument you expect only a limited
number of modes to significantly contribute, for example,
those modes that have equal mode number in the directions
x1, x2, and x3 (you should think about this expansion as a
series around the point xt, see Table II). For the second
argument you expect more modes to matter, since the
arguments depend on all three directions independently.
Consequently the weights ~�n are expected to be close
to zero for many n when expanding resonant non-
Gaussianities, while for the non-BD scenario they should
all matter to some extent (and obviously more modes will
be important for large !v).

2. Resonant bispectrum

We have computed the correlation for the axion bispec-
trum with the Fourier expansion for frequency ranges of

TABLE II. The association of mode numbers for the first 27 modes. For example n ¼ 10 corresponds to the mode for which one
direction is of maximally 4th order and the other two are 0 order, i.e., for polynomial modes R10 / fð1; x1; x21; x31; x41Þ þ
fð1; x2; x22; x32; x42Þ þ fð1; x3; x23; x33; x43Þ.
n ¼ 0 ! 000 n ¼ 4 ! 111 n ¼ 8 ! 022 n ¼ 12 ! 113 n ¼ 16 ! 222 n ¼ 20 ! 024 n ¼ 24 ! 133
n ¼ 1 ! 001 n ¼ 5 ! 012 n ¼ 9 ! 013 n ¼ 13 ! 023 n ¼ 17 ! 123 n ¼ 21 ! 015 n ¼ 25 ! 124
n ¼ 2 ! 011 n ¼ 6 ! 003 n ¼ 10 ! 004 n ¼ 14 ! 014 n ¼ 18 ! 033 n ¼ 22 ! 006 n ¼ 26 ! 034
n ¼ 3 ! 002 n ¼ 7 ! 112 n ¼ 11 ! 112 n ¼ 15 ! 005 n ¼ 19 ! 114 n ¼ 23 ! 223 n ¼ 27 ! 115

8In [23] Fourier mode expansion is briefly discussed in Sec. E
as a possible orthonormal basis, however no results are shown.

9We will later show that we would also find it when we would
search for resonant bispectra in the data, as the weights peak at
almost the same mode numbers.
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!r ¼ 20–80 up to 82 modes (Fig. 7). As expected, we see
that there are only a few modes that give significant con-
tribution to the correlation, while most modes give only
very little contribution and are not important for the ex-
pansion. We will discuss this fact in the context of CMB
data mode extraction in Sec. IV. Given that the allowed
range of frequencies is 20 & !r & 103, this expansion is
actually reasonable for the lower frequencies and the num-
ber of modes necessary to establish a similar correlation as
the polynomial expansion is reduced by a factor of 5.

3. Non-BD bispectrum

As for the polynomial basis expansion, the presence of a
large number of features in the non-BD bispectrum does
not allow for a fast reconstruction of the spectrum. In fact,
expansion in the Fourier basis requires even more modes
compared to the polynomial basis, reaching only �20%
correlation after 82 modes with!v ¼ 20. We also find that
!f ¼ 40 actually reaches a slightly larger correlation,

although this seems mostly due to a relatively large corre-
lation with the zero order (n ¼ 0) mode. Most likely this is
caused by the fastest oscillating part of the spectrum
which, in combination with numerics, could add constant
power. We did observe something similar in Fig. 5 for
polynomial modes where the zero mode causes the corre-
lation of the non-BD bispectrum reconstruction with
!v ¼ 40 to be better initially compared to bispectrum
expansion with !f ¼ 20.

In most realistic scenarios !v > 100 (otherwise your
effective field theory approach breaks down) and therefore
both polynomial expansion and Fourier expansion fail to
reconstruct this bispectrum effectively. The possible

explanation why Fourier expansion is even worse than
polynomial expansion for this type of bispectrum, seems
to be related to the rapid change in frequency in a fixed
direction. Fourier expansion is optimized for scale invari-
ant frequencies. The polynomial expansion is simply opti-
mized in reproducing as many different shapes as possible,
explaining the observation that it is able to slowly increase
correlation with the addition of modes while Fourier ex-
pansion seems to converge. Given the large enhancement
of the amplitude fnBDNL (which scales as!3

v), one might still
be able to extract some information from that data even
with such small correlations.
Another possibility is that once non-BD bispectrum is

projected onto multipole space one might establish a larger
correlation with fewer (multipole) modes. The projection
has the tendency to wash out small features (hence the
weight of 1=kt in the correlator). We hope to report on this
in the future.

4. Toy spectra

To investigate the power of the Fourier expansion for
oscillatory bispectra we have also tried to fit three toy-
model shapes moving in different direction through co-
moving momentum space

F1 ¼ 1

k21k
2
2k

2
3

�
sin

!1

x1 þ 1
þ sin

!1

x2 þ 1
þ sin

!1
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�
;
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k21k
2
2k

2
3
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k21k
2
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2
3

�
sin

!3xt
x1 þ 1

þ sin
!3xt
x2 þ 1

þ sin
!3xt
x3 þ 1

�
:

(23)

We find again that for such a shapes the correlation in-
creases about 5 times faster compared to polynomial mode
expansion with the same frequency. The correlation as a
function of mode numbers for F1 and F2 are shown in
Fig. 8. We will discuss the weights of these models in the
next section. Note that F1 is already of the factorized form,
however, here we simply aim at showing the effectiveness
of Fourier expansion. We want to emphasize that these
spectra are not based on any physical model, but simply
show that in general oscillatory spectra are better fitted
using a Fourier basis.

5. Smooth spectra

Although the Fourier expansion seems to work well for
resonant non-Gaussianities and the toy spectra, compared
to polynomial expansion we confirm that Fourier expan-
sion is not as effective: it is easier to gain fast convergence
with a limited number of modes for most oscillating bis-
pectra, but it is difficult to get correlation beyond 0.97 for
smooth bispectra. This is probably due to overshooting at
the boundaries as discussed in [23]. We explicitly show this
in Fig. 9 where we compare the expansion of the ‘‘smooth’’

FIG. 7 (color online). Correlation between sinð!r lnxtÞ for
frequencies !r ¼ 20, 40, 60, and 80. Compared with the poly-
nomial mode expansion we reach a similar correlation using
about 5 times less modes. Also note that the increase of the
correlation is somewhat discreet, indicating that we might need
only a fraction of these modes to reconstruct the original
spectrum. We will discuss this observation in the next section.
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DBI inflation bispectrum (which is very similar to equi-
lateral), using Fourier modes and polynomial modes.

We conclude that Fourier expansion is a viable alterna-
tive for polynomial expansion in the case of oscillatory
bispectra with relatively large frequencies. Using the
Fourier expansion we can achieve factorizabilty of various
oscillating bispectra with significantly less modes com-
pared to polynomial expansion. For frequencies ! 
 50,
polynomial and Fourier expansion are both unable to re-
construct the original spectrum with a small number of
modes. In order to reconstruct models with such large
frequencies, one should look for alternative methods.
However, constraining these models with only a limited
number of modes seems to be a practical possibility. This
will be topic of the next section.

IV. DISCUSSION

Even though the expansion of the oscillatory primordial
bispectra becomes unavailing for really large frequencies,
there are a number of interesting observations which could
make constraining and expanding oscillating bispectra
much more viable than presently argued. First of all, as
predicted, the expansion in mode functions of the resonant
bispectrum has a very discrete character; basically if you
consider Fig. 7 only few modes actually contribute signifi-
cantly to the convergence of the correlation. In Fig. 10 we
show the various weights (j~�nj) as a function of mode
number [as well as for F1 and F3 (not shown)]. We can
trace back the corresponding mode numbers in Table II.
For instance there is a clear peak at n ¼ 16, which corre-
sponds to all directions being maximally of quadratic
order, and n ¼ 41 with all directions being maximally of
cubic order. Other peaks (e.g. n ¼ 21, 32, and 53) corre-
spond to the modes in which two out of three directions
have one and two maximal orders less than the third; i.e., in
mode number n ¼ 23 two directions are maximally qua-
dratic and the third is maximally cubic. As we already
argued the location of these peaks makes sense, since the
resonant model is a function of kt (or xt), which is the sum
of the three comoving momenta. Effectively this shape is
orientated in the kt direction. One could only try to expand
the spectrum only in those modes, which could signifi-
cantly reduce the number of modes necessary. Since the
important modes seem to be related to the direction of
propagation of the oscillation, we find that this conclusion
is independent of the phase. In other words, only the value
of the weights will differ, not the mode numbers that are
relevant for the expansion. This can be explained as fol-
lows. Consider a very simple example of an oscillating

mode Re½eiðxþ�Þ	. If we would expand this into polynomial
mode functions, f1; x; x2; . . . ; xng we would find that �n

would change as a function of n if we vary �. This makes
perfect sense, since we know the polynomial expansion of

FIG. 9 (color online). The correlation between the DBI bis-
pectrum and both polynomial and Fourier expansion as a func-
tion of the maximum number of modes. As expected, both
expansions start out equally (the zero mode of the real part of
the Fourier expansion is equivalent to the zero mode of the
power law expansion), but while the power law reaches a
correlation of >99% after just 5 modes, the Fourier remains
stuck at 97%.

FIG. 8 (color online). The correlation as a function of mode number for two out of three toy spectra F1 (left) and F2 (right) in
Eq. (23). In both cases Fourier expansion (dashed line) leads to faster convergence compared to polynomial expansion (solid line).
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these functions exactly, as they are the Taylor series of the
sine and cosine. If we would expand in Fourier modes
f1; eix; . . . einxg, the expansion is obviously much simpler.
However, more importantly, the complex phase will not

affect the quantity�� � . Let us consider the mode with the
largest value ��� the resonance peak. The location of this
resonance peak will be unaltered by a change of phase. For
the weights of a polynomial mode expansion this is not
true, as the introduction of a nonzero phase will cause this
example to shift from a cosine to a sine, thereby trans-
ferring power from odd to even modes. This would cause
peaks in �n to shift from n to nþ 1.
Second, from an observational point of view, given the

discreteness of the correlation it is (obviously) not neces-
sary to constrain all mode functions in the CMB data to get
an indication of whether there is an oscillatory three point
signal and what the possible frequency of this signal might
be. For resonant non-Gaussianities we only need to con-
sider those modes that have a significant weight ~�, and the
measured value of the weights would be a direct measure
of the frequency. If one could extract the multipole pro-
jected Fourier modes that are responsible for most of the
weight, this could in principle provide signatures of pri-
mordial bispectra with frequencies much larger than
!r ¼ 80. Measuring modes up to, e.g,. n ¼ 100 would
not only provide information about the frequency of the
signal, but could also hint on the type of primordial

FIG. 10 (color online). The weights
ffiffiffiffiffiffiffiffiffiffiffiffi
�n�

�
n

p
for a resonant bispectrum as a function of the mode number for various frequencies. It is

clear that only a limited number of modes are valuable in the reconstruction of the original spectrum via mode expansion. From an
observational point of view this is very convenient as it would require the measurement of only a limited number of Fourier modes to
learn about oscillations in the primordial bispectrum.

FIG. 11 (color online). The weights derived for 65 modes for
both cos!r lnkt (dashed line) with !r ¼ 50 and sin!fkt (solid

line) with !f ¼ 20 showing that these both peak for similar

mode numbers. Although distinguishing between these would be
quite hard, it seems that for the feature bispectrum the values of
the weights ~�n are peaked sharper.
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bispectrum. The distinction between the feature bispec-
trum (4) and the resonant bispectrum (9) would be more
difficult, since the values of the weights peak at similar
mode numbers although we have found that expanding the
feature bispectrum in the constructed Fourier basis (instead
of the simple trigonometric expansion discussed in
Sec. III B 1) could still be used to discriminate between
the two signals (see Fig. 11).

To emphasize the ability to extract information on the
primordial shape solely from the modes that are important,
we have investigated three toy-model shapes of Eq. (23).
We have computed the Fourier weights for two different
frequencies in Fig. 12. As expected, F1 has weights that
peak when only one comoving momentum in k space is
nonzero is, i.e., it peaks at the modes where one momen-
tum oscillates and the other two momenta are constant

FIG. 12 (color online). The weights
ffiffiffiffiffiffiffiffiffiffiffiffi
�n�

�
n

p
for the three toy spectra as a function of the mode number for various frequencies. For

the top spectrum the most relevant modes are those that have a maximal frequency of�2�n for one comoving vector and are constant
for the other two. For the second toy spectrum (middle row) the symmetry of the argument makes all weights relevant (decreasing as a
function of mode number). The third example (bottom row) has modes dominating of which two comoving momentum vectors have
nonzero (equal) frequency and the third one is constant. For example, the lower-right bottom example has j~�57j dominating, which
corresponds to fp; r; sg ¼ f0; 5; 5g.
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(see Table II). The obvious reason is that each term in F1

depends on one comoving momentum variable only, im-
plying that there should be no cross-terms in the expansion.
For F2 we find that many more modes are relevant, which
makes perfect sense given that the argument in the sine
depends on all three vectors in comoving momentum
space. For F3 however the argument effectively only de-
pends on two comoving momenta, therefore the relevant
mode functions (the ones with the largest j~�j) are the ones
that have similar frequency in two momentum vectors and
are constant in the third.

In this paper we have only discussed mode functions in
momentum space, and one either has to construct similar
Fourier modes in multipole space or project these modes
forward using the transfer function [23], and use these to
expand a late-time oscillatory bispectrum, and see if we get
similar results in terms of mode number sensitivity. One
expects that after projection the transfer function has caused
some smoothing of the signal, which could render a Fourier
basis less effective. On the other hand, intuitively it seems
perfectly reasonable that a Fourier basis should be much
more efficient in reconstructing oscillatory bispectra from
the data. In addition, the effects of the transfer function on
the correlation in l space can be examined by choosing the
1=kt weight wk in the primordial correlation function. We
have found that our results were only marginally affected
when including this weight factor and therefore we expect
that Fourier mode expansion should be equally efficient in
multipole space. To make sure that this is actually true, we
should compute the projection of several oscillatory bispec-
tra and construct an orthonormal Fourier basis in multipole
space. We hope to report on this in the near future.

V. CONCLUSIONS

We have investigated the viability of mode expansion for
bispectra that contain oscillations. The motivation for in-
vestigating such features and their mode expansion is that
recently it has been shown that several scenarios or mecha-
nisms can produce such features not only in the power
spectrum, but also in the bispectrum. The appearance of
oscillations in the bispectrum makes comparison with ex-
isting bispectral constraints, based on smooth bispectra,
very inefficient and there exists substantial room for im-
provement. In order to constrain oscillatory bispectra from
the data, a logical first step is to factorize the bispectrum in
order to efficiently compute its multipole counterpart.
Polynomial expansion has been proposed to achieve facto-
rization of a given theoretical bispectrum and we have
investigated this for three different models. As expected,
the larger the frequency of the primordial bispectrum, the
more modes it requires to establish a reasonable approxi-
mation of the original spectrum. In the case of a feature in
the primordial potential polynomial mode, expansion
might still be useful, at least for features at high multipoles
(resulting in rather small frequencies in comoving

momentum space). In fact, during the finalization of this
paper the authors of [24] have considered a feature bispec-
trum and extracted 31 polynomial modes in the data, which
allowed them to investigate late-time bispectra with a
maximal frequency of !f ¼ 5–10 (in comoving momen-

tum space). They did not find 3� evidence for nonzero
non-Gaussianity. The other two example bispectra typi-
cally have a lot more oscillations within the tetrahedral
domain, resulting in many modes necessary to realize an
acceptable correlation. Fortunately, both the resonant and
non-BD bispectrum have an amplitude that scales with the
frequency. Therefore, a small improvement in correlation
could lead to a significant improvement in the ability to
constrain the model by measuring these modes in the data
and reconstructing the primordial signal.
Complementarily, we have proposed a different basis

expansion, based on Fourier functions instead of polyno-
mials. This still leads to the necessary computational re-
duction one is after and therefore is a perfectly valid
alternative. Such expansion is more relevant for resonant
and non-BD scenario, since the feature bispectrum can
already be transformed into Fourier modes analytically,
using identities. We have shown that Fourier modes are
much more efficient for the resonant bispectrum, reducing
the number of modes necessary to establish the same cor-
relation as polynomial modes by at least a factor of 5. For
the non-BD bispectrum both Fourier expansion and poly-
nomial expansion are difficult. Correlation increases fast
with the addition of modes, but quickly converges to a fixed
value, where the fixed value decreases a function of fre-
quency. We believe that this is due to the exact form of the
bispectrum, which has many small features near the edges
of the tetrahedral domain. One might hope that some of
these very small features are washed out when you compute
the multipole equivalent, although that would be very time
consuming since the non-BD shape is not of the factorized
form. We hope to investigate this in a future attempt. In
addition we have investigated three toy-spectra, not based
on any particular model, which have a different oscillating
orientation compared to the three theoretical models.
Expanding these in Fourier modes show similar improve-
ment compared to polynomial expansion as the resonant
bispectrum. In general, we therefore believe that Fourier ex-
pansion is much more effective in the expansion of oscil-
latory spectra compared to polynomial basis expansion.
From an observational standpoint, it seems that for

resonant inflation only a limited number of modes contrib-
ute significantly in reproducing the original bispectrum.
This allows us to consider only those modes that contribute
substantially. This holds independent of the phase and
frequency of the signal and is due to the specific form of
this bispectrum, which oscillates (primarily) in the kt
direction. Because the modes that are important for the
reconstruction of the original bispectrum are independent
of the frequency, this also implies that when one would
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observe these modes in the data one could in fact find
evidence for much larger frequencies than discussed
here, simply because for larger frequencies these modes
will also matter but their respective weight will be smaller.
Despite the fact that we could not optimally expand the
non-BD bispectrum using Fourier modes, we did look into
the three toy sepctra. We found that other modes are
important. Moreover, the modes that are important directly
represent the orientation of the oscillating spectrum and
could therefore discriminate between different bispectra
quite effectively. If this conclusion holds after forward
projection into multipole space, measuring a number of
Fourier mode functions in the CMB data would present an
efficient way of deducing whether oscillations are present

in the data and could give both an indication of the fre-
quency and the shape of the primordial bispectrum.
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