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Abstract. Spinor ultracold gases in one dimension (1D) represent an
interesting example of strongly correlated quantum fluids. They have a rich
phase diagram and exhibit a variety of quantum phase transitions. We consider
a 1D spinor gas of bosons with a large spin S. A particular example is the gas
of chromium atoms (S = 3), where the dipolar collisions efficiently change the
magnetization and make the system sensitive to the linear Zeeman effect. We
argue that in 1D the most interesting effects come from the pairing interaction.
If this interaction is negative, it gives rise to a (quasi)condensate of singlet
bosonic pairs with an algebraic order at zero temperature, and for (2S + 1)� 1
the saddle point approximation leads to physically transparent results. Since in
1D one needs a finite energy to destroy a pair, the spectrum of spin excitations
has a gap. Hence, in the absence of a magnetic field, there is only one gapless
mode corresponding to phase fluctuations of the pair quasicondensate. Once
the magnetic field exceeds the gap, another condensate emerges, namely the
quasicondensate of unpaired bosons with spins aligned along the magnetic
field. The spectrum then contains two gapless modes corresponding to the
singlet-paired and spin-aligned unpaired Bose condensed particles, respectively.
At T = 0, the corresponding phase transition is of the commensurate–
incommensurate type.

4 Author to whom any correspondence should be addressed.
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1. Introduction

Spinor Bose gases attracted a great deal of attention in the last decade as they exhibit a much
richer variety of macroscopic quantum phenomena than spinless bosons (see [1] for a review).
The physics of three-dimensional (3D) spin-1 and spin-2 bosons is rather well investigated,
both theoretically [2–9] and in experiments with Na and 87Rb atoms [10–14]. The structure of
the ground state strongly depends on the interactions, and in particular ferromagnetic, polar
(singlet-paired) and cyclic phases have been analyzed on the mean-field level and beyond the
mean field [1]. The spinor physics of 3D spin-3 bosons is described in [15] and, after successful
experiments with Bose–Einstein condensates of 52Cr atoms (S = 3) [16], experimental studies
of the spinor physics in this system are expected in the near future.

The observation of non-ferromagnetic states requires very low and stable magnetic fields
(well below 1 mG) at which the interaction energy per particle exceeds the Zeeman energy.
Currently, the obtained stable field on the level of 0.1 mG is expected to reveal a transition
between ferromagnetic and non-ferromagnetic states in chromium [17], and experiments using
magnetic field shielding and aiming at even lower fields are under way [18].

It is important to emphasize that a change in magnetization of an atomic spinor gas
under variations of the magnetic field requires spin–dipolar collisions, since the short-range
atom–atom interaction does not change the total spin. In dilute gases of sodium and rubidium,
the spin–dipolar collisions are very weak, and the magnetization does not feel a change in the
magnetic field on the time scale of the experiment. In contrast, in a gas of chromium atoms
that have a large magnetic moment of 6µB, the spin–dipolar collisions efficiently change the
magnetization and the gas becomes sensitive to the linear Zeeman effect [19].

Spinor Bose gases in 1D are in many respects quite different from their 2D and 3D
counterparts and represent an interesting example of strongly correlated quantum fluids. In
this paper, having in mind the gas of chromium atoms (S = 3), we assume that the system
is sensitive to the linear Zeeman effect. We consider a 1D spinor gas of bosons where the
dominant interactions are the density–density and the attractive pairing interactions. This choice
is justified by the fact that in 1D, only the latter interaction gives rise to a nontrivial quasi-long-
range order. In contrast to 2D and 3D, in 1D, pairs with nonzero spin S̄ do not condense. This
is related to the fact that for S̄ 6= 0, the symmetry of the condensate order parameter is non-
Abelian. It is well known that strong quantum fluctuations in 1D dynamically generate spectral
gaps for non-Abelian Goldstone modes, which leads to exponential decay of the correlations
(see e.g. [20]). As far as the polar phase (the condensate of S̄ = 0 pairs) is concerned, it
can be formed because the symmetry of the order parameter is Abelian. However, in 1D, its
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magnetic spectrum is quite different from that in 2D and 3D: in the absence of a magnetic
field, the spin excitations have a gap. For a large spin S, the saddle point approximation gives a
physically transparent description of the polar phase. A sufficiently large magnetic field closes
the gap and leads to the transition from the singlet-paired (polar) phase to the ferromagnetic
state. The presence of the spin gap strongly changes the physics of the 1D polar phase and
the polar–ferromagnetic transition compared with the higher dimensions discussed for spin-3
bosons in [15]. We investigate the 1D polar phase and this quantum transition, and discuss
prospects for observing them in chromium experiments.

2. The model

As the atom–atom short-range interaction conserves the total spin, the Hamiltonian of binary
interactions for 1D bosons with spin S can be written as a sum of projection operators on the
states with different even spins S̄ of interacting pairs [1],

V =
1

2

∫
dx

2S∑
S̄=0

γS̄P̂ S̄(x), (1)

where x is the coordinate. For the 1D regime obtained by tightly confining the motion of
particles in two directions, the interaction constants γS̄ are related to the 3D scattering lengths
a3D(S̄) at a given spin S̄ of the colliding pair. Omitting the confinement-induced resonance [21],
we have

γS̄ =
2h̄2

Ml2
0

a3D(S̄), (2)

where l0 = (h̄/Mω0)
1/2 is the confinement length, M is the atom mass and ω0 is the confinement

frequency.
Imagine that all γS̄ are equal to each other (γS̄ = γ > 0), except for γS̄ at S̄ = q . We then

use the relation
∑

S̄ P̂ S̄(x)=: n̂2(x), where n̂ is the density operator and the symbol :: denotes
the normal ordering, and we reduce the interaction Hamiltonian to the form V = (1/2)

∫
dx(γ :

n2(x) : +(γq − γ )P̂q(x). For a positive value of (γq − γ ), the system is an ordinary Luttinger
liquid, but when (γq − γ ) < 0, the situation may change. In 3D, a negative value of (γq − γ )

would lead to spontaneous symmetry breaking with formation of the order parameter in the
form of a condensate of pairs with total spin q. In 1D, only a quasi-long-range order is possible
and only if q = 0 so that the symmetry is Abelian [20]. Therefore, interactions with negative
coupling constants, which have q different from zero or from 2S, will not produce quasi-long-
range order. The case q = 2S is exceptional because it corresponds to a ferromagnetic state
where the order parameter (the total spin) commutes with the Hamiltonian. Therefore, at T = 0,
this state can exist even in 1D. We do not discuss this interesting state, and the only possibility
that remains is q = 0. Hence, in our model, we have a (repulsive) density–density interaction
and the pairing interaction that gives rise to the formation of singlet pairs.

In realistic systems, the coupling constants γS̄ are not equal to each other, although they
are generally of the same order of magnitude. We thus have to single out the density–density
interaction in a proper way and then deal with the rest. For example, the interaction Hamiltonian
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(1) can be represented as a sum of squares of certain local operators, as is usually done in the
theory of spinor Bose gases [1, 15],

V =
1

2

∫
dx
[
c0 : n̂2

(x)+ c1F̂
2
(x)+ c2P̂0(x)+ c3 Tr Ô

2
(x) : + · · ·

]
, (3)

where F = ψ+Sψ , Oi j = ψ+(Si S j)ψ , the constants ci are linear combinations of γS̄, and the
symbol . . . stands for higher-order spin terms, which we do not write. The operators : F̂2(x) : and
: Ô2(x) : are given by

∑
S̄[S̄(S̄ + 1)/2 − S(S + 1)]P̂ S̄(x) and

∑
S̄[S̄(S̄ + 1)/2 − S(S + 1)]2P̂ S̄(x),

respectively, where the summation includes all values of S̄ from zero to 2S. We then move the
S̄ = 0 part of these terms to the term c2P̂0(x) and carry out the same procedure with higher-
order spin terms, which changes the constant c2. The : F̂2(x) :, : Ô2(x) :, etc terms then no
longer contain the interactions with S̄ = 0 and, hence, can only lead to renormalizations of the
density–density and pairing interactions.

In the case of 52Cr, we have c0 = 0.65γ6, and the 3D scattering length is a6 = 112aB [15],
where aB is the Bohr radius. The exact value of the 3D scattering length a3D(0) is not known
and, hence, the constants γ0 and c2 are also unknown. In this paper, when discussing 52Cr atoms,
we omit the : F̂2(x) : and : Ô2(x) : (renormalized) terms, treat c2 as a free parameter and focus
on the case of c2 < 0.

We then write down the following Hamiltonian density in terms of the bosonic field
operators 9 j ,

H=
1

2M

∑
j

∂x9
+
j ∂x9 j +

g

2N

[∑
j

9+
j9 j

]2

−
g0

2N

[∑
j

(−1) j9+
j9

+
− j

] [∑
j

(−1) j9 j9− j

]
,

(4)

where the spin projection j ranges from −S to S, the coupling constant g0 is assumed to be
positive, and we put h̄ = 1. The coupling constants g0 and g are related to c0 and c2. For example,
in the case of 52Cr, we have g = 7c0 = 4.55γ6 > 0 and g0 = −c2.

3. Zero magnetic field: saddle point approximation

We now consider the case of N = 2S + 1 � 1 and apply the 1/N -approximation to the
model described by the Hamiltonian density (4). First, we decouple the pairing from the
density–density interaction by the Hubbard–Stratonovich transformation [22],

−
g0

2N

[∑
j

(−1) j9+
j9

+
− j

] [∑
j

(−1) j9 j9− j

]
→ N |1|

2/2g0 +

[
1
∑

j

(−1)m9+
j9

+
− j + h.c.

]
,

g

2N

[∑
j

9+
j9 j

]2

→ Nλ2/2g + iλ
∑

j

9+
j9 j , (5)

where 1(τ, x) and λ(τ, x) are auxiliary dynamical fields. At large N , the path integral
is dominated by the field configurations in the vicinity of the saddle point 1(τ, x)=1,
λ(τ, x)= iλ0. The values of 1 and λ0 are determined self-consistently from the minimization
of the free energy. The stability of the saddle point is guaranteed by the fact that the integration
over the 9,9+ fields yields a term proportional to N and therefore the entire action is ∼N . The
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presence of large N in the exponent in the path integral suppresses fluctuations of the fields 1
and λ, thus making the saddle point stable.

The bosonic action at the saddle point is

S̃ =

∑
ω,k,m

(9+
ω,m, 9−ω,−m)

(
iω− ε (−1)m1

(−1)m1+
−iω− ε

)(
9ω,m

9+
−ω,−m

)
, (6)

where ε = k2/2M −µ and µ= µ0 − λ0, with µ0 being the bare chemical potential. From
equation (6), we find the mean-field spectrum of quasiparticles (we assume that µ < 0),

E(k)=
1

2M

√
(k2 + κ2)(k2 + k2

0); κ2
= 2M(−µ−1), k2

0 = 2M(−µ+1). (7)

The saddle point equations are

1

g0
=

∫
dω dk

(2π)2
1

ω2 + E2(k)
, (8)

n =

∫
dω dk

(2π)2
ε(k)− E(k)

ω2 + E2(k)
, (9)

µ= µ0 − gn, (10)

where n is the density of one of the bosonic species.
The quasiparticles (spin modes) constitute a (2S + 1)-fold degenerate multiplet. As follows

from equation (7), the quasiparticles have a nonzero spectral gap,

E(0)≡ m = k0κ/2M. (11)

This result agrees with the one for N = 3 obtained in [24]. This is a special feature of 1D. In 2D
and 3D, the integral in the saddle point equation (8) does not diverge at small ω, k for κ → 0,
and such a gap is not formed. Therefore, one has a gapless spectrum of spin modes, which for
S = 3, 2 and 1 has been obtained in the studies of spinor Bose gases (see e.g. [1] and references
therein). We would like to emphasize the fact that although equations (8), (9) and (10) resemble
the equations for a superconductor, due to the bosonic nature of the problem, the order parameter
amplitude 1 is not equal to the spectral gap, and the latter is related to the parameter κ .

After the integration in equations (8) and (9), we obtain the saddle point equations in the
parametric form,

2πn =
κ2 + k2

0

2k0
K

(√
1 −

κ2

k2
0

)
− k0 E

(√
1 −

κ2

k2
0

)
, (12)

πk0

Mg0
= K

(√
1 −

κ2

k2
0

)
, (13)
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where K (x) and E(x) are elliptic functions5. From the form of these equations, it is clear that
κ/k0 is a function of the parameter

η =
1

2π

(
Mg0

n

)1/2

, (14)

and k0 can be written in the form

k0 = b(η)(nMg0)
1/2. (15)

Accordingly, equation (11) for the gap takes the form

m =
ng0

2
b2(η)

κ

k0
(η), (16)

so that the gap in the units of ng0 depends only on the parameter η.
In the limit of weak interactions where η� 1, we obtain

κ

k0
'

4

e
exp

(
−

1

η

)
, b ' 2, (17)

and equation (11) gives an exponentially small gap,

m '
8ng0

e
exp

(
−

1

η

)
. (18)

For strong interactions, η� 1, we have

κ

k0
' 1, b ' πη, (19)

and the gap is given by

m '
π 2η2

2
ng0. (20)

The numerically obtained dependence of κ/k0 on η is displayed in figure 1, and the function
b(η) is shown in figure 2. The gap is presented in figure 3. The asymptotic formula (18) obtained
in the limit of small η already works with 20% accuracy for η = 0.05. With the same accuracy,
the large-η asymptotic formula (20) is already valid for η = 1.

In the limit of weak interactions, taking into account that |µ| ≈1 and using equations (7)
and (15), we obtain µ≈ −ng0/4M . Substituting this relation into equation (10), we obtain

n =
µ0

g − g0
. (21)

Hence, the system is thermodynamically stable for g > g0.

5 We adopt the definition of the elliptic functions given in [23].
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Figure 1. The ratio κ/k0 as a function of η.
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Figure 2. The parameter b as a function of η.
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Figure 3. The gap m in the units of ng0 as a function of η.
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The only gapless excitation of the system is the phase mode of the complex scalar field 1.
This excitation describes sound waves of the pair condensate. The effective Hamiltonian for the
phase mode 8 is

Hphase =
v

2

∫
dx[Ks5

2 + K −1
s (∂x8)

2], [5(x),8(y)] = −iδ(x − y), (22)

where 5 is a canonically conjugate momentum. The velocity v and the Luttinger parameter
Ks are extracted from the functional derivatives of the saddle point action and are given by the
following equations,

(Ksv)
−1

= − N12

∫
dω dk

2(2π)2
∂G(ω, k)

∂ω

∂G(−ω,−k)

∂ω

= N12

∫
dω dk

2(2π)2
(ε2 +ω2

−12)2 + (21ω)2

(ω2 + ε2 −12)4

=
N12

8π

∫
dk

2E2 +12

E5

=
N12

4π

M3

κ5
f1(k0/κ), (23)

v/Ks = − N12

∫
dω dk

2(2π)2
∂G(ω, k)

∂k

∂G(−ω,−k)

∂k

= N12

∫
dω dk

(2π)2
(k/M)2

(ε2 +ω2
−12)2 + (21ε)2

(ω2 + ε2 −12)4

=
N12

8π

∫
dk(k/M)2

2E4 + 5(1ε)2

E7

=
2N12

π

M

κ3
f2(k0/κ), (24)

where G(ω, k) is the Green’s function of the field 9 j , defined as 〈〈9 j(ω, k)9+
j ′(ω, k)〉〉 =

δ j j ′G(ω, k), and

f1(x)=

∫
∞

0
dy

8(1 + y2)(y2 + x2)+ (1 − x2)2

[(y2 + 1)(y2 + x2)]5/2
,

f2(x)=

∫
∞

0
dy y2 2(y2 + 1)2(y2 + x2)2 + (5/4)(y2 + x2/2 + 1/2)2(x2

− 1)2

[(y2 + 1)(y2 + x2)]7/2
.

The functions f1(k0/κ) and f2(k0/κ) can be expressed in terms of elliptic functions

E(
√

1 − κ2/k2
0) and K (

√
1 − κ2/k2

0), but the expressions are cumbersome and we do not present
them. In the limit of weak interactions, we have

f1(k0/κ)=
2κ

3k0
, f2(k0/κ)=

k0

24κ
, η� 1 and κ � k0, (25)
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Figure 4. The velocity v in the units of
√

2ng0/M as a function of η.

whereas for strong interactions, these functions are given by

f1(k0/κ)=
3π

2
, f2(k0/κ)=

π

8
, η� 1 and κ ' k0. (26)

The velocity v is given by the relation

v =
√

8
k0

M

{
κ

k0

[
f2(k0/κ)

f1(k0/κ)

]1/2
}
, (27)

so that for weak interactions using equations (25), (15) and b ' 2, we have

v '

√
2ng0

M
, η� 1. (28)

For strong interactions, equations (26), (15) and (19) lead to

v '

√
2ng0

3M
πη, η� 1. (29)

The dependence of v on the parameter η is displayed in figure 4.
The Luttinger parameter Ks follows from the relation

K −1
s =

N

16π

(
k2

0

κ2
− 1

)2√
f1(k0/κ) f2(k0/κ). (30)

The scaling dimension of the 1 field is d = Ks/4π and it decreases very rapidly with η,
which indicates that the mean-field approximation works very well. In figure 5, we show the
dependence of d on η for N = 7. In the regime of weak interactions, the scaling dimension is
exponentially small and it remains significantly smaller than unity, even for η ' 2.

To conclude this part, we give a brief summary of the properties of the paired phase. With
certain modifications, the properties for an arbitrarily large spin S are similar to the ones for
S = 1 described in [24]. Namely, all single particle correlation functions decay exponentially.
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Figure 5. The scaling dimension d of the order parameter field 1 for N = 7 as a
function of η.

This follows from the fact that the operator ψ+
j always emits a gapped vector excitation

(Bogolyubov quasiparticle) from the (2S + 1)-fold degenerate multiplet (for S = 1 it is a gapped
triplet). Two-particle correlation functions of the operatorsψ jψ j and their Hermitian conjugates
(no summation assumed) undergo a power law decay.

4. Magnetic field and the exact solution

In order to study the influence of the magnetic field on the properties of the singlet-paired phase,
one can also use the saddle point approximation employed in the previous section. However, the
saddle point equations become too involved. Therefore, we resort to non-perturbative methods.

As was demonstrated in [25], the model described by the Hamiltonian density (4) possesses
U(1)× O(2S + 1) symmetry. Therefore, it is reasonable to suggest that the low-energy sector
of this model is described by a combination of the U(1) Gaussian theory and the O(2S + 1)
nonlinear sigma (NLσ ) model. For S = 1, this was explicitly demonstrated in [24]. Both the
U(1) theory and the sigma model are integrable and the exact solution gives access to the low-
energy sector, of the model. At a special ratio of the coupling constants, one can get even further,
because it was demonstrated [25] that the entire model (4) is integrable at a particular ratio of
g0/g. Below we restrict our consideration to the low-energy sector, where we are not constrained
to this particular ratio.

As we have said, the O(N) NLσ model is exactly solvable. In the absence of a magnetic
field, its excitations are massive particles transforming under the vector representation of the
O(N) group. This agrees with our result for model (4) based on the large N approximation.
As is always the case for Lorentz invariant integrable models, all of the information about the
thermodynamics is contained in the two-body S-matrix, which was found in [26]. Consider
N = 2S + 1 (S integer) and physical particles that have a relativistic-like spectrum
ε(θ)= m cosh θ, p(θ)= ṽ−1m sinh θ , with mass (gap) m, velocity ṽ and the total energy

E = m
∑

i

cosh θi . (31)
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For the particles confined in a box of length L with periodic boundary conditions, the Bethe
Ansatz equations read

exp[iṽ−1mL sinh θi ] =

n∏
i 6= j

S−1
0 (θi − θ j)

m1∏
a1

θi − λ(1)a1
− iπ

θi − λ
(1)
a1 + iπ

,

n∏
i=1

λ(1)a1
− θi − iπ

λ
(1)
a1 − θi + iπ

m2∏
a2=1

λ(1)a1
− λ(2)a2

− iπ

λ
(1)
a1 − λ

(2)
a2 + iπ

=

m1∏
b1=1

λ(1)a1
− λ

(1)
b1

− 2iπ

λ
(1)
a1 − λ

(1)
b1

+ 2iπ
,

. . .

mS−1∏
aS−1=1

λ(S)aS
− λ(S−1)

aS−1
− iπ

λ
(1)
a1 − λ

(2)
a2 + iπ

=

mS∏
bS=1

λ(S)aS
− λ

(S)
bS

− iπ

λ
(S)
aS − λ

(S)
bS

+ iπ
, (32)

where S0 is related in the standard way to the integral kernel K (θ),

1

2iπ

d ln S0(θ)

dθ
= δ(θ)− K (θ)

and

K (θ)=

∫
eiωθ/πK (ω)dω/2π, K (ω)=

1 − exp[−2|ω|/(N − 2)]

1 + exp[−|ω|]
.

The spectral gap m (the particle mass) and velocity ṽ are related to the bare parameters
of the model (4). For N � 1, one can use equation (16) for the gap, and in the
low-energy limit, the spectrum (7) of the spin modes becomes E(k)=

√
m2 + ṽ2k2 with

ṽ = (b/2)
√

ng0(1 + κ2/k2
0)/M , so that in the limit of weak interactions, we have ṽ ≈

√
ng0/M .

Equations (32) constitute a system of S + 1 coupled algebraic equations for the quantities
θ1, . . . θn, λ(1)1 , . . . λ

(1)
m1
λ
(2)
1 , . . . λ

(2)
m2
, . . . λ

(S)
1 , . . . λ(S)mS

. Integer numbers mi are eigenvalues of the S
Cartan generators of the group O(2S + 1). From equation (32) it is obvious that the total energy
of the system depends on configurations of λs and through them it depends on the spin indices
of constituent particles. Some of the Cartan generators for the problem under consideration
were constructed in [25], where it was also shown that the projection of the total spin of the
system is

Sz
= Sn −

∑
i

mi . (33)

The Cartan generators commute with the Hamiltonian, and mi s are integrals of motion.
Therefore, the magnetic field that couples to mi through Sz (33) does not violate integrability.
Moreover, once the field is applied, the energies of all eigenstates with mi 6= 0 go up. Thus,
at sufficiently low temperature one may consider only eigenstates with no λ-rapidities, since
their energies decrease in the field. When the magnetic field exceeds the spectral gap m, the
θ -rapidities start to condense, creating a Fermi sea. In the ground state, the θ -rapidities are
distributed over a finite interval (−B, B). The distribution function ρ(θ) and magnetization Sz

are determined by the following integral equations,∫ B

−B
K (θ − θ ′)ρ(θ ′) dθ ′

=
m

2πṽ
cosh θ, (34)
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−B
K (θ − θ ′)ε(θ ′) dθ ′

= m cosh θ − hS, ε(±B)= 0, (35)

Sz/L = S
∫ B

B
dθ ρ(θ), (36)

where h = gLµBB, with B being the magnetic field and gL the Landee factor. There is obviously
one transition at hc = m/S. The magnetization is zero when h < hc and gradually increases
with the field when h > hc (there is another transition in high magnetic fields corresponding to
the saturation of the magnetization, but the low-energy theory cannot describe it). In order to
find the magnetic field dependence of the magnetization near the transition, where B � 1, we
approximate the kernel as

K (θ)= δ(θ)− A + O(θ 2), A = ln 4 +ψ(1/2 + 2/N − 2)−ψ(2/N − 2), (37)

and look for the solution of equations (34) and (35) in the form

ε(θ)≈ a(θ 2
− B2), ρ(θ)≈ const. (38)

Substituting ε(θ) and ρ(θ) given by equation (38) into (34) and (35), we obtain

Sz

L
=

S

πṽ
[2m(hS− m)]1/2

{1+8A/3[2(hS − m)/m]1/2 + O((hS − m)/m)}, h > hc. (39)

Keeping only the leading term in equation (39) and restoring the dimensions, we have

Sz

L
=

√
2Sm

π h̄ṽ

(
B−Bc

Bc

)1/2

, B > Bc, (40)

with the critical magnetic field given by

Bc =
m

gLµBS
. (41)

Equation (40) shows a typical field dependence of the magnetization for the quantum
commensurate–incommensurate transition. This transition was first studied by Japaridze and
Nersesyan [27] in the context of spin systems with a gap, where (as in our case) it is driven
by the magnetic field. Later, Pokrovsky and Talapov [28] considered such a transition in the
charge sector, where it is driven by a change in the chemical potential. The magnetization is
exactly zero below the critical field and increases as

√
B−Bc above the critical field near the

transition. Note that this is quite different from the 3D case, where the magnetization decreases
continuously with the magnetic field when the latter goes below the critical value (see e.g. [15]).

5. Conclusions

We found that the phase diagram and general properties of 1D bosons with a large spin S
resemble the properties of spin-1 bosons. For the attractive pairing interaction (g0 > 0), the
bosons with opposite spin projections create pairs that Bose condense, giving rise to quasi-long-
range order. The saddle point approximation based on the condition of large N = 2S + 1 gives a
transparent picture of the emerging polar phase. The peculiarity of 1D is that all spin excitations
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have a spectral gap. Hence, in the absence of a magnetic field, there is only one gapless
mode corresponding to phase fluctuations of the pair quasicondensate. Once the magnetic field
exceeds the gap, another quasicondensate emerges. This is the condensate of unpaired bosons
with spins aligned along the magnetic field. The spectrum then acquires two gapless modes
corresponding to the singlet-paired and spin-aligned unpaired bosons, respectively. At T = 0,
the corresponding phase transition is of the commensurate–incommensurate type, which is
qualitatively similar to what we have in the case of the O(3) NLσ model. There is a second
transition at high magnetic fields corresponding to the saturation of the magnetization. However,
it is not described by the low-energy theory and is beyond the scope of this paper. In the
context of ultracold quantum gases, the commensurate–incommensurate transition has also been
discussed for 1D spin-3/2 fermions in the presence of the quadratic Zeeman effect [29].

The observation of the commensurate–incommensurate phase transition in a 1D gas of 52Cr
atoms would require (aside from a positive value of g0 and, hence, a negative c2) fairly strong
interactions corresponding to the parameter Mg0/n̄ ∼ 1, where n̄ = 7n is the total density, so
that η ∼ 0.5. Then the spin gap in the polar phase is of the order of ng0 and (assuming that
g0 is by a factor of 3 smaller than g) can be made on the level of 100 nK at 1D densities
n̄ ∼ 105 cm−1. Then the transition occurs at the critical field of the order of 0.2 mG and can be
observed at temperature T ∼ 20 nK. This, however, is likely to require the 1D regime with a
rather strong confinement in the transverse directions (with a frequency of the order of 100 kHz,
as in the ongoing chromium experiment in the 1D regime at Villetaneuse [17]).

Note added

After this work was completed, the Villetaneuse group reported the observation of the
demagnetization transition for 52Cr atoms in the 1D regime, under a decrease in the magnetic
field to below 0.5 mG. However, the experiment was performed at temperatures ∼100 nK and
the state that is reached by decreasing the magnetic field does not necessarily reveal the nature
of the ground state due to thermal excitations (and due to diabaticity at the transition in the
experiment).
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