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Abstract

Human decisions are based on accumulating evidence over time for different options. Here we ask a simple question: How
is the accumulation of evidence affected by the level of awareness of the information? We examined the influence of
awareness on decision-making using combined behavioral methods and magneto-encephalography (MEG). Participants
were required to make decisions by accumulating evidence over a series of visually presented arrow stimuli whose visibility
was modulated by masking. Behavioral results showed that participants could accumulate evidence under both high and
low visibility. However, a top-down strategic modulation of the flow of incoming evidence was only present for stimuli with
high visibility: once enough evidence had been accrued, participants strategically reduced the impact of new incoming
stimuli. Also, decision-making speed and confidence were strongly modulated by the strength of the evidence for high-
visible but not low-visible evidence, even though direct priming effects were identical for both types of stimuli. Neural
recordings revealed that, while initial perceptual processing was independent of visibility, there was stronger top-down
amplification for stimuli with high visibility than low visibility. Furthermore, neural markers of evidence accumulation over
occipito-parietal cortex showed a strategic bias only for highly visible sensory information, speeding up processing and
reducing neural computations related to the decision process. Our results indicate that the level of awareness of
information changes decision-making: while accumulation of evidence already exists under low visibility conditions, high
visibility allows evidence to be accumulated up to a higher level, leading to important strategical top-down changes in
decision-making. Our results therefore suggest a potential role of awareness in deploying flexible strategies for biasing
information acquisition in line with one’s expectations and goals.
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Introduction

Many decisions can be formalized as a process of accumulation

of evidence over time, ultimately favoring one alternative over

another [1,2]. Evidence accumulation models have successfully

captured the neural dynamics of simple decisions in a visual

motion categorization task [3] as well as more complex decisions

in which discrete pieces of evidence need to be integrated [4].

Here we investigate whether accumulation of evidence is affected

by the level of awareness of the information.

Visual subliminal priming studies have shown that perceptual [5–7],

cognitive [8,9], motor [10], and executive [11,12] stages can all be

influenced by subliminal information. Furthermore, the amount of

priming and subliminal processing increases linearly with prime

processing [13,14], suggesting that some stages of evidence accumu-

lation can proceed without awareness. Also, relatively long-term effects

of subliminal priming have sometimes been observed [15–18],

suggesting that accumulation of unconscious information is possible.

However, it is an open question whether and how awareness

modulates the way evidence is accumulated during decision-making.

Contemporary models of subliminal information processing

posit that subliminal information is marked by a lack of ‘‘global

ignition’’ [19], meaning that it cannot enter into a global

workspace system that allows it to be held in working memory

and broadcasted to a variety of higher level neural processors. This

lack of ignition may preclude ‘‘access’’ to the information.

Therefore, awareness may be a necessary condition for biasing

and modifying the sensory evidence in line with one’s expectations

and goals during decision-making.

In this study, we directly test the potential role of awareness in

human decision-making using a previously described task in which

participants have to accumulate sequentially presented pieces of

evidence across an extended period of time. We previously

observed a dependency of evidence accumulation on the amount

of prior accumulated evidence: when prior evidence was already

strong, participants weighted the newly incoming information

much less than when prior evidence was weak and indecisive [20].

Here we hypothesize that this top-down modulation may depend

on awareness. While accumulation may be possible irrespective of

the level of awareness [15–18], it may appear qualitatively
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different depending on awareness level. Specifically, if awareness is

necessary for top-down biasing of information during decision-

making, low-visible evidence may be accumulated in a linear

fashion, i.e. adding and subtracting new information without

regard to the history of prior accumulated evidence. Non-

linearities in evidence accumulation (e.g., giving less weight to

new information under conditions of high certainty [20,21]),

which are a more optimal decision strategy within a Bayesian

decision-making framework [22], may be present only for high-

visible evidence.

We tested this hypothesis by using a decision-making task in

which a sequence of five arrows was presented at either high or

low visibility (HV versus LV), by means of masking (Figure 1A). In

a series of behavioral experiments, we established whether and

how evidence is accumulated over time, depending on the level of

awareness. We also assessed the relationship between accumulated

evidence and subjective decision confidence for stimuli at both

awareness levels. Finally, we tracked accumulation-related neural

activity over time in the human brain for both types of

information, using magneto-encephalography (MEG).

Results

Behavioral Markers of Evidence Accumulation Over Time
On each trial, participants (N = 16) were presented with a

stream of five arrows, each of which could point to the left or right

with equal probability. Participants had to quickly decide on the

overall direction of the arrows by pressing a button at the end of

each stream with their left or right index finger, guessing if

necessary (Figure 1A). Strength of the evidence could range from

one (low evidence, e.g. two left and three right arrows) to five (high

evidence, e.g. five right arrows, see evidence accumulation

diagram in Figure 1B). Visibility of the arrows was manipulated

by masking them with an effective ‘‘metacontrast’’ mask (leading

to low visibility, LV) or with an equiluminant but less effective

‘‘pseudo’’ mask (leading to high visibility, HV; see Figure S1 for

details) [14,23]. On each trial, all arrows were either LV or HV.

Stimulus and mask duration were identical for LV and HV

conditions, allowing us to compare behavioral performance of

evidence accumulation and the underlying neural responses

without confounding stimulus visibility with basic task parameters

[24]. A six-choice discrimination task performed after the main

experiment confirmed that visibility of the arrows was much

poorer on LV trials than on HV trials (31% correct versus 73%

correct, Figure 1C; difference: p,0.001, see Materials and

Methods for further details).

In the decision-making task, behavioral performance was less

accurate for LV than for HV trials (60% versus 81% correct,

p,0.001). Nevertheless, for both LV and HV trials, performance

increased with increasing amount of evidence (both p,0.001), and

thus evidence was accumulated for both trial types. For HV trials,

performance approached a ceiling level of 100% correct for the

highest evidence levels. For LV trials, the increase in performance

was linear, peaking at 73% correct on trials with five identical

arrows (Figure 1D). There was a trend of a right-side bias for LV

trials when all arrows pointed in the same direction (67% versus

79%: T = 1.78, p = 0.096). Although we had no a priori hypothesis

for such a bias, the finding is in line with earlier psychophysical

studies showing that choices can be strongly biased by hand-

preference especially under conditions of uncertainty (as in the

case of the LV stimuli) [25–27].

While evidence accumulation was present for both LV and HV

stimuli, there were striking behavioral differences in terms of how

evidence was accumulated between conditions. First, the speed of

decision-making was modulated by the amount of accumulated

evidence for HV (p,0.001) but not for LV information (p = 0.31),

leading to a significant interaction (p = 0.025, Figure 1E). Second,

the ‘‘impact’’ of each successive arrow on the final decision varied

as a function of time and accumulated evidence only for HV trials.

We defined the impact of an arrow as the extent to which the

arrow changed the response proportion in the direction of the

arrow (see Materials and Methods for details on the exact

quantification procedure). We observed a monotonically increas-

ing impact of arrows on the decision as a function of time for HV

stimuli (p,0.001), while this modulation of time was only marginal

for LV stimuli (p = 0.07), leading to a significant interaction

(p,0.001, Figure 1F). Moreover, for HV arrows, the influence of

the last arrow, defined as the extent to which it changed the

response probability in the direction of the arrow, decreased

linearly with the amount of previously accumulated evidence: the

larger the amount of accumulated evidence, the less influence the

last arrow had on the decision (p,0.001), as expected from a

rational strategy of progressively disregarding the arrows once

sufficient evidence is obtained (Figure 1B). This modulation of

accumulation by prior evidence was absent for LV stimuli

(p = 0.44), leading to a significant interaction (p,0.001, Figure 1G).

Together, these results show that strategic effects on decision-

making strongly depend on the awareness level of the stimuli.

Interestingly, these results were not simply due to the possibility

that, during HV trials, participants stopped performing the task

after having observed a sufficient amount of arrows. A ‘‘logical

counting’’ algorithm would not give any weight to the last arrow

when two or four pieces of evidence had already been

accumulated, since the last arrow cannot change the decision

anymore. In our data, however, the last arrow did have a sizeable

influence on the decision even when four pieces of evidence had

already been accumulated (Figure 1G, red line, right data point).

We further explored the relationship between decision-making

performance and subjective confidence in a new group of 16

participants; this time we additionally asked them to rate their

confidence of having responded correctly after every trial on a 6-

point scale (1 = pure guess, 6 = 100% sure). Overall decision-

Author Summary

When making a decision, we gather evidence for the
different options and ultimately choose on the basis of the
accumulated evidence. A fundamental question is whether
and how conscious awareness of the evidence changes
this decision-making process. Here, we examined the
influence of sensory awareness on decision-making using
behavioral studies and magneto-encephalographic record-
ings in human participants. In our task, participants had to
indicate the prevailing direction of five arrows presented
on a screen that each pointed either left or right, and in
different trials these arrows were either easy to see (high
visibility) or difficult to see (low visibility). Behavioral and
neural recordings show that evidence accumulation
changed from a linear to a non-linear integration strategy
with increasing stimulus visibility. In particular, the impact
of later evidence was reduced when more evidence had
been accrued, but only for highly visible information. By
contrast, barely perceptible arrows contributed equally to
a decision because participants needed to continue to
accumulate evidence in order to make an accurate
decision. These results suggest that consciousness may
play a role in decision-making by biasing the accumulation
of new evidence.

Sensory Awareness and Human Decision-Making
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making performance was similar as in the MEG environment (in

terms of overall performance and increase in performance with

increasing evidence). As expected, overall confidence for LV

arrows was much lower than for HV arrows (1.9 versus 3.8:

p,0.001; Figure 1H). More interestingly, participants’ confidence

level for correct responses and incorrect responses was nearly

equal for LV arrows (difference = 0.05, p = 0.093), but strongly

dissociated for HV arrows (difference = 1.07, p,0.001; Figure 1I),

resulting in a significant interaction (p,0.001). Thus participants

had little insight in their accuracy level when arrows were strongly

masked (LV), but they could very well distinguish correct from

error trials when arrows were only weakly masked (HV). Since the

inability to perform second-order confidence judgments has been

proposed as a marker of lack of awareness [28], the results confirm

that awareness was strongly reduced on LV compared to HV

trials. When directly correlating decision-making performance and

confidence for the correct trials, there was a strong correlation

between these measures for HV trials (r = 0.77, p,0.001), while

there was only a weak and marginally significant correlation for

LV arrows (r = 0.23, p = 0.087, Figure 1J). However, this was likely

due to the restricted range of confidence during LV since most

participants reported low confidence levels for LV trials. When the

range was restricted to the lowest three confidence levels, there was

in fact a significant correlation between decision-making perfor-

mance and confidence also for LV trials (r = 0.66, p,0.001).

Overall, the results revealed that participants had markedly

reduced confidence in their decision making for LV arrows, but

could still use the information to achieve above-chance perfor-

mance on the decision task.

Finally, we tested whether there was a difference in ‘‘stimulus

strength’’ between the LV and HV arrows. In all experiments

described so far, the arrow stimuli themselves were identical
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Figure 1. Task set-up and behavioral performance. (A) Task. Participants were shown a sequence of five arrows that were briefly shown and
subsequently masked. Masks were constructed such that the arrows were either highly visible (HV) or near the threshold of awareness (low-visibility,
LV). Participants had to decide whether the predominant direction of the arrow sequence was left or right. (B) Evidence accumulation diagram.
Participants start with no evidence for either direction. Each incoming arrow moves the sum up or down in the diagram. Solid lines show the
transitions for the HV example in panel A. States at which no decision can yet be made are highlighted in light-grey; states at which enough evidence
is available for the decision are highlighted in dark-grey. (C) Individual performance during the six-choice discrimination task (Experiment 2) for HV
and LV stimuli. (D) Decision-making performance as a function of accumulated evidence for HV and LV stimuli. Negative and positive numbers denote
evidence for a left and right response, respectively (number of right-arrows minus number of left-arrows). (E) Reaction times as a function of
accumulated evidence for HV and LV stimuli. (F) Impact of each arrow on the final decision (i.e., the extent to which the direction of the arrow
determined the decision) over time for HV and LV trials. (G) Influence of the last arrow on the final decision as a function of the amount of previously
accumulated evidence for HV and LV stimuli. (H) Confidence ratings of visibility for HV and LV arrows (Experiment 3). (I) Confidence ratings for correct
and error trials for HV and LV arrows (Experiment 3). (J) Relationship between confidence level and performance for HV and LV stimuli (Experiment 3).
(K) Priming strength of single HV or LV arrow as measured in a distinct masked priming task, in terms of error rate (left panel) and reaction times (right
panel, Experiment 4).
doi:10.1371/journal.pbio.1001203.g001
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between conditions, and the only difference was the efficacy of the

mask. Therefore, theoretically, the bottom-up stimulus strength,

i.e. the ability of the stimulus to automatically climb up the

sensorimotor pathways, may be equal for both conditions, even

though visibility was strongly dissociated. To test this notion

directly, we assessed and directly compared the priming strength

of the LV and HV stimuli. Sixteen participants performed a simple

masked priming experiment in which they responded as fast as

possible to the direction of the mask (whose external outline was

changed to a left- or right-pointing arrow; see Figure S1 and [14]).

The mask was preceded by a LV or HV prime arrow pointing into

the same or the opposite direction as the target. Congruence of the

arrow prime resulted in significantly shorter reaction times (RT)

and lower error rates (ER) to the mask for both LV and HV

primes (all p,0.001). Crucially, this priming effect was not

significantly different between LV and HV primes (RT priming

effect: LV = 55 ms, HV = 50 ms, p = 0.13; ER priming effect:

LV = 18%, HV = 17%, p = 0.39; Figure 1K), in line with earlier

findings [29]. This shows that the bottom-up stimulus strength is

equal for LV and HV arrows, and points to an interesting

dissociation between the ‘‘direct’’ priming impact of a stimulus and

its visibility and its long-term effect on decision-making.

Neural Markers of Visibility
Using MEG, we first investigated whether LV and HV arrows

were processed differently in the human brain, irrespective of

evidence or direction. We used a cluster-level statistic to establish

the significance of differences between conditions. This method

effectively controls the type I error rate in situations involving

multiple comparisons (such as 275 sensors) by clustering

neighboring sensor pairs that exhibit the same effect (see Materials

and Methods for more details). A direct comparison of LV and

HV arrows, collapsed across all five arrows, revealed that there

was larger activity for HV than LV arrows over left frontal and

fronto-central sensors (50–100 ms interval, pcluster = 0.018 and

pcluster = 0.016, respectively). At a later interval, there was larger

activity for HV than LV arrows over parietal (100–150 ms

interval, pcluster = 0.001) and occipital (150–300 ms interval,

pcluster,0.001; Figure 2) sensors. A detailed time course analysis

estimated the first point of significant difference at 55 ms for the

frontal cluster, 125 ms for the parietal cluster, and 145 ms for the

occipital cluster (Figure 2B). The early frontal difference between

HV and LV arrows was present for all arrows except for the first

arrow of the sequence (Figure S2A), while the occipital and

parietal amplification for HV arrows was visible for each and every

arrow (Figure S2B,C). Interestingly, there was a behavioral

counterpart of the frontal asymmetry between the first and

subsequent arrows: whereas the first arrow had equal effects on the

decision for LV and HV arrows, there were large differences in the

weight of the subsequent arrows on the decision (Figure 1F).

Neural Markers of Evidence Accumulation Over Time
Previously we identified an inverse relationship between parietal

and central neural activity and the amount of accumulated

evidence: when more evidence was accumulated, neural activity

evoked by new incoming stimuli was attenuated [20] (see [30,31]

for comparable results). This pattern is consistent with the strategy

to reduce the weight of new evidence once substantial evidence has

already been accumulated. Behavioral results indeed showed that

the impact of the last arrow decreased with the total amount of

previously accumulated evidence, but for HV arrows only

(Figure 1G).

For the analysis of evidence accumulation in the MEG

environment, we compared activity for LV and HV arrows that

had ‘‘low prior accumulated evidence’’ and ‘‘high prior accumu-

lated evidence,’’ averaged across the third to fifth arrow

presentation (the first two arrow presentations are not taken into

account since there is no differential amount of prior accumulated

evidence until after the first two arrows have been presented). Low

evidence consisted of trials with zero (for third and fifth arrow) or

one (for fourth arrow) prior accumulated evidence at the onset of

the arrow. High evidence consisted of trials with two (for third and

fifth arrow), three (for fourth arrow), or four (for fifth arrow) prior

accumulated evidence at arrow onset.

We found that when participants had high prior accumulated

evidence, the newly incoming arrows evoked a smaller activity at

right occipito-parietal and central sensors. Crucially, this phe-

nomenon was significant only for HV arrows (central sensors:

150–200 ms interval, pcluster = 0.014; occipito-parietal sensors:

250–300 ms interval, pcluster = 0.041) (Figure 3A, top row), while

there was only a non-significant trend for LV arrows in central

sensors (150–200 ms interval, pcluster = 0.077) (Figure 3A, middle

row). This resulted in a significant difference between conditions

over right occipito-parietal sensors (HV versus LV: 250–300 ms
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doi:10.1371/journal.pbio.1001203.g002
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interval, pcluster = 0.042) (Figure 3A, bottom row). Whereas neural

responses are collapsed across arrows in this figure, Figure S2B

shows that this effect was robustly observed in response to

individual arrow presentations preceded by low and high evidence

(a difference defined only for the third to fifth arrow, since

differences in amount of accumulated evidence only arise after two

arrows have been presented).

Neural Activity Related to a Change of Evidence
Under conditions of purely linear addition and subtraction of

information, the direction of the previous arrow should not

influence how the current arrow is processed. However, previous

studies have described an automatic influence of repetition

compared to alternation during decision-making [32], and

previously we also showed a large reduction in neural activity

for repeated compared to non-repeated arrows under conditions of

high visibility [20]. When directly contrasting ‘‘repeat’’ arrows (i.e.

arrows that were preceded by an arrow with the same direction)

with ‘‘change’’ arrows (i.e. arrows that were preceded by an arrow

with the opposite direction), we observed a large neural activity

reduction for arrow repetitions (neural responses are collapsed

across arrows). For HV arrows, this reduction was visible at

occipito-parietal (100–150 ms interval, pcluster = 0.030; 150–

200 ms interval, pcluster = 0.005; 200–250 ms interval, pcluster =

0.022) and central (HV: 200–250 ms interval, pcluster = 0.019)

sensors (Figure 4A, top row). A similar effect was also observed

for LV arrows at central sensors only (200–250 ms interval,

pcluster = 0.022) (Figure 4A, middle row), in line with earlier studies

showing subliminal repetition suppression effects [9,33]. Never-

theless, a direct comparison between both conditions shows that

this suppression effect was significantly larger for HV than LV

arrows (HV versus LV: 100–150 ms interval, pcluster = 0.039; 150–

200 ms interval, pcluster = 0.015; 200–250 ms interval, pcluster =

0.05) (Figure 4A, bottom row). Examination of the neural response

to each individual ‘‘change’’ and ‘‘repeat’’ arrows (defined only for

the second to fifth arrow, since the first arrow does not have a

preceding arrow) shows that this effect was robustly found

whenever a new arrow was presented, with no tendency to

decrease with time (Figure S2C). Further, restricting the LV

analysis to the poorest perceivers who scored at chance level in the

six-choice discrimination task (16.7%) showed that this effect was

present equally robustly for these nine ‘‘poor perceivers’’ (see

Figure S3).
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cluster that showed significantly reduced activity when accumulated
evidence is high for HV arrows in the 150–200 ms interval. Parietal
activity is plotted for the cluster that showed significantly stronger
effects of accumulated evidence for HV than LV arrows in the 250–
300 ms interval.
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Figure 4. Neural markers of change in evidence. (A) Topograph-
ical representation of reduced activity for arrow stimuli that were
preceded by an arrow with the same direction (‘‘repeat’’), compared to
arrow stimuli which were preceded by an arrow with the opposite
direction (‘‘change’’). Other conventions as in Figure 2. (B) Time course
of central and parietal clusters. Central activity is plotted for the cluster
that showed significant differences for both LV and HV arrows in the
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that shows a significantly larger difference for HV than LV arrows in the
150–250 ms interval.
doi:10.1371/journal.pbio.1001203.g004
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Discussion

In a combination of behavioral and electrophysiological studies,

we showed that while participants are able to accumulate evidence

over time independently from the level of awareness of the

evidence, there were marked differences between accumulation of

low-visibility (LV) and high-visibility (HV) information, both in

terms of brain activity and behavior. Although the amount of

bottom-up information provided by a single HV or LV arrow was

identical, as measured by priming (Figure 1K), the overall

decision-making performance was much less accurate when based

on LV evidence than on HV evidence (Figure 1D). More

interestingly, decision-making speed was modulated by the

amount of accumulated evidence, but only for HV stimuli

(Figure 1E). Also, subjective confidence in decision making was

markedly lower for LV than HV evidence (Figure 1H). Together,

this suggests that while participants could accumulate LV evidence

over time, there are qualitative differences in accumulation of

evidence depending on the level of awareness of the sensory

information.

We observed a strong top-down biasing effect of the amount of

previously accumulated information, only for HV evidence: the

impact of the last arrow stimulus on the final decision decreased

linearly with the amount of previously accumulated evidence

(Figure 1G). Interestingly, participants did not stop accumulating

HV evidence altogether when they had accrued enough

information for their decision: even when a large amount of

evidence (4 units) had already been accrued for one of the two

decisions, the last arrow still had an impact on the decision

process, which was equally large as the impact of any of the LV

stimuli. This suggests that participants did not adopt a fully

‘‘logical’’ or digital counting strategy (perhaps for lack of time, as

arrows come in at a fast pace of one every 300 ms). Rather, on HV

trials only, they attributed a weight to later arrows that was

inversely related to the amount of already accumulated evidence.

These behavioral findings constrain the theoretical modeling of

the task. The observed strategy is not predicted by simple linear

accumulation models [34], since these would predict equal

weighting of later arrows, independently of the amount of

previously accumulated evidence. It is also not in line with a

simple gain of accumulation from LV to HV stimuli, since this

would result in overall larger weights of each arrow, but no

differential modulation by time and prior accumulated evidence.

Rather, the results suggest a more sophisticated mode of evidence

accumulation, in which the update signal is scaled with respect to

the previously accumulated evidence. This behavior arises

naturally from Bayesian and sequential sampling (SPRT) models

[20,21], where evidence is only accumulated up to a bound.

Beyond this bound, further evidence no longer contributes to the

decision, with two consequences: (1) on average, later evidence is

given a smaller weight, especially when early evidence is strong

and the bound is therefore likely to be reached; (2) response time

accelerates in proportion to the likelihood of reaching the bound.

Both of these properties accurately characterize the participants’

behavior on HV trials.

Importantly however, this modulation of evidence accumulation

by prior accumulated evidence was absent for LV stimuli, where

the impact of each arrow was not dependent on temporal position

or prior amount of accumulated evidence. Such a purely linear

accumulation of evidence is exactly what is predicted from optimal

Bayesian integration, assuming that the amount of available

evidence is low and therefore the accumulated amount rarely

reaches threshold (see [20], Figure 2C). This hypothesis can also

explain why RT remained constant on LV trials, independently of

total evidence: even when five arrows point in the same direction,

the total accumulation would still remain below the decision

threshold on most trials, thus always requiring a forced-choice

decision.

Overall, the simplest theoretical model therefore is that LV and

HV trials were processed through a similar accumulation-decision

pathway, yet with LV trials yielding a much lower level of evidence

and therefore remaining far from decision threshold. Conversely,

full awareness of the stimuli may be necessary for their

accumulated evidence to reach a decision threshold which enables

strategic top-down biasing of later evidence accumulation based

on the past accumulation.

Magneto-encephalographic (MEG) recordings lend further

support to this view. They showed that, while initial perceptual

processing was identical for LV and HV evidence, there was a late

divergence between LV and HV, which could be seen ,145 ms

after stimulus onset over occipital cortex (Figure 2). This late

divergence between LV and HV stimuli has been observed earlier

using different masking paradigms [35–37], and these findings are

generally in good accordance with a feedback view of masking, in

which initial processing in visual areas is intact but late

amplification by feedback is disturbed [19,38–40]. Note, however,

that our data do not allow us to make firm claims about the

underlying mechanisms of metacontrast masking, as different

explanations have also been put forward to explain the late sensory

divergence (e.g., [37]). There was also a neural difference between

LV and HV stimuli over left frontal and fronto-central sensors,

which became significant as early as ,55 ms. This early frontal

difference could be seen for all arrows except for the first arrow of

the sequence (Figure S2A). Interestingly, there was a behavioral

counterpart of this effect: whereas the first arrow had equal effects

on the decision for LV and HV arrows, there were large

differences in the weight of the subsequent arrows on the decision

(Figure 1F). This suggests that only after the visibility of the

sequence was established, on the basis of the first arrow, did

participants treat the incoming information differently for LV and

HV arrows. We speculate therefore that this frontal amplification

may be a source of the behaviorally observed biasing effect [41].

While a change in evidence increased activity over parietal and

central areas for both HV and LV evidence (albeit weaker,

Figure 4), a neural influence of accumulated evidence on the

processing of the current arrow was again found only for HV

evidence. This MEG observation corroborates earlier behavioral

and neural results [20] and suggests a neural implementation of

the biasing of later information by past visible information, namely

by a late (,200–300 ms after stimulus onset) top-down modula-

tion of sensory representations (Figure 3).

By manipulating the configuration of the mask only, we created

large differences in stimulus visibility without introducing

differences in stimulus strength [29], as evidenced by equal

priming effects under LV and HV conditions when a single arrow

was presented (Figure 1K). Given that priming was unrelated to

stimulus awareness, it is quite remarkable that the accumulation of

evidence was. What may underlie these differences? Direct

automatic priming effects are probably mediated by fast feedfor-

ward activations, which directly influence the evolving motor

decision program [10]. These feedforward activations are

relatively ‘‘automatic’’ [35] and have been found to be unaffected

by stimulus visibility [14], although they can be modulated by

several top-down factors, such as attention [42,43] and task-set

[44]. In contrast, the slow accumulation of evidence over time, as

probed in the present study, may require self-sustainable recurrent

interactions between distant brain regions, which may only be
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present when participants have complete access to (i.e., full

awareness of) the stimuli [19].

Previous studies have shown that subliminal information

can be accumulated linearly over a few hundreds of milliseconds

[13,14,45–47]. Although indirect consequences of subliminal

information can be measured for several minutes [17] and up to

even as long as 24 h after its presentation [18], these effects may

betray a form of learning and therefore synaptic changes rather

than long-lasting subliminal activation. Indeed, most priming

studies reveal a fast decay of subliminal information within less

than one second [48,49]. Relative to this state of knowledge, the

current study is the first to show that information from sequentially

presented masked stimuli can be accumulated linearly over a long

duration of more than a second. However, we also show a

qualitative difference in how evidence is treated by the nervous

system depending on the level of sensory awareness. As noted

above, this qualitative difference need not imply that the

processing pathway is entirely different for HV compared to LV

trials. Rather, the same decision mechanism may be involved, with

the main difference being that only a trickle of evidence is

accumulated on LV trials, with the consequence that the decision

threshold is typically not reached, therefore preventing the

subsequent deployment of top-down strategies for down-weighting

further incoming arrows. Indeed, our results suggest that the

parietal and prefrontal regions that implement such decision

making by evidence accumulation [1,2] may integrate sensory

evidence across long periods of time, whether or not the original

information was above or below the threshold for conscious access,

but with a much weaker signal in the latter case.

A similar conclusion was reached by Sackur and Dehaene [50]

when studying sequential two-step tasks with subliminal versus

visible digits. As here, a qualitative behavioral difference was seen:

participants were only able to perform a chained task of addition

followed by comparison when the target digits were consciously

seen, although they could perform each individual computation

above chance when the digits were subliminal. This difference,

although qualitative, could have arisen from the fact that

subliminal digits did not yield enough evidence to ever reach

threshold for the first computational step of the chained task.

Thus, as in the present case, the same processing chain could have

been in place on both conscious and non-conscious trials, but with

non-conscious stimuli providing much smaller evidence that did

not allow participants to go past the first processing stage and

deploy further strategies.

There has been ample speculation about the function of

awareness, ranging from none whatsoever [51,52] to enabling

social communication [53]. Our results suggest a potential role of

awareness in biasing information processing, namely the strategic

exploitation of information in line with prior expectations and

goals. This proposal fits with earlier hypotheses which link

conscious access with flexible information processing, owing to

the possibility of quickly circulating the conscious information to

virtually all of the brain’s higher level processors [54–57]. It also

fits with a role of consciousness in enabling ‘‘meta-cognition,’’ the

ability to introspect about self-performance, which also has been

associated with high-level processing in the prefrontal cortex [58].

Here, this strategic biasing process showed clear behavioral and

neural advantages: it sped up processing and reduced neural

computations related to the decision process when enough

evidence had already been accrued. Under conditions of severely

degraded evidence (such as near-threshold or subliminal informa-

tion), the most rational strategy could, however, be to give each

piece of evidence equal weight [20]. Interestingly, the strategic

biasing process for highly visible information may exactly be the

reason why ‘‘conscious’’ decision-making may in some special

cases actually be poorer than ‘‘unconscious’’ decision-making

[59,60], namely when an unbiased (equal) weighting of the

evidence is required.

Materials and Methods

Participants
All participants in all experiments had normal or corrected-to-

normal vision. The study was approved by the local institutional

review board (CMO Arnhem-Nijmegen), and a written informed

consent was obtained from the participants according to the

Declaration of Helsinki, explicating that they agreed to participate

in the MEG and behavioral experiments.

Stimuli
The experimental stimuli in all experiments were leftward and

rightward pointing arrows. Stimuli were black, presented on a grey

background, and subtended visual angles of 2.0u60.87u (see Figure

S1). Stimuli were presented using a PC running Presentation

software (Neurobehavioral systems, Albany, USA) and shown on a

screen that was ,75 cm away from the participant. Mask stimuli

were constructed such as to either substantially reduce visibility of

the stimuli (metacontrast mask), leading to low-visibility (LV)

stimuli, or have only weak masking properties (pseudo mask),

leading to high-visibility (HV) stimuli. Masks were identical in

terms of overall luminance.

Experiment 1: Decision-Making Task
Sixteen healthy participants (5M/11F, age range 23–35)

participated in the decision-making task (640 trials) within the

MEG environment. Participants were presented with sequences of

five successive arrows, each of which were briefly presented

(17 ms), and followed 50 ms after its onset by a mask (100 ms), and

a blank (150 ms). Therefore, the stimulus onset asynchrony (SOA)

between successive arrows was 300 ms. Half of the trials contained

metacontrast masks (leading to low-visibility [LV] stimuli) and the

other half pseudo-masks (leading to high-visibility [HV] stimuli;

see Figure 1A). Each arrow sequence contained either all LV or all

HV arrows. At the end of each arrow sequence, the fixation square

turned green, and the participants had to decide as quickly as

possible whether the predominant direction of the arrow stimuli

was left or right, by pressing a button with their left or right hand.

Participants had to respond within a 500 ms time window. Each

trial was followed by a baseline interval, during which a red

fixation square was displayed for an average duration of 2,000 ms

(between 1,750 and 2,250 ms). Several days before the MEG

experiment participants were invited to the lab day to practice the

task (,0.5 h). Prior to MEG data acquisition, participants engaged

in an additional brief training session. During MEG data

acquisition, participants engaged in 10 task blocks, each block

consisting of 64 trials. Total duration of the experiment was

,60 min. For five participants, we collected only eight task blocks,

due to time constraints.

For the analysis of reaction times (RT) and responses, we

discarded trials to which participants responded very early

(RT,150 ms), after the reaction time cut-off (RT.500 ms) or

not at all (missed trials). For the analysis of responses, we

compared the proportion of left/right responses as a function of

the amount of accumulated evidence for a left/right response, for

HV and LV trials (Figure 1D). For reaction times, we compared

the RTs as a function of accumulated evidence for HV and LV

trials (Figure 1E). For the analysis of arrow impact as a function of

time, we used a logistic multiple regression analysis, in order to

Sensory Awareness and Human Decision-Making

PLoS Biology | www.plosbiology.org 7 November 2011 | Volume 9 | Issue 11 | e1001203



independently estimate the effect of each arrow on the decision

(Figure 1F). For the analysis of arrow influence as a function of

previously accumulated evidence, we quantified the change in

proportion of left/right response as a function of the direction of

the last arrow, for the three levels of previously accumulated

evidence (0, 2, and 4; see Figure 1B and Figure 1G). To investigate

(differences in) linear trends as a function of accumulated evidence

or time, we performed linear regression analysis for each

participant and tested the significance of (differences in) slopes

using (paired samples) t tests.

We recorded ongoing brain activity during Experiment 1 using

a whole-head MEG with 275 axial gradiometers (VSM/CTF

Systems, Port Coquitlam, British Columbia, Canada). Head

localization was monitored continuously during the experiment

using coils that were placed at the cardinal points of the head

(nasion, left and right ear canal). The magnetic fields produced by

these coils were used to measure the position of the participant’s

head with respect to the MEG sensor array. In addition to the

MEG, the electrooculogram (EOG) was recorded from the

supraorbital and infraorbital ridge of the left eye for the

subsequent artifact rejection.

All data analysis was performed using the FieldTrip toolbox

developed at Donders Institute for Brain, Cognition and

Behaviour [61] using Matlab 7 (MathWorks, Natick, MA, USA).

Data were checked for artifacts using a semiautomatic routine that

helped detecting and rejecting eye blinks, muscle artifacts, and

jumps in the MEG signal caused by the SQUID electronics.

Subsequently, independent component analysis was used to

remove any heart artifacts and eye movements not rejected by

the semiautomatic routine. Finally, we low-pass filtered the data

using a two-pass Butterworth filter (filter order of 6, frequency cut-

off of 40 Hz). We did not apply any high-pass filter. We calculated

an estimate of the planar gradient for the data analysis on the

sensor level. The horizontal and vertical components of the planar

gradients were calculated for each sensor using the signals from the

neighboring sensors, thus approximating the signal measured by

MEG systems with planar gradiometers. The planar field gradient

simplifies the interpretation of the sensor-level data because the

maximal signal typically is located above the source [62]. We

established the significance of the differences in field strength for

each experimental factor at the cluster level, using a nonparamet-

ric cluster randomization test. This test effectively controls the type

I error rate in situations involving multiple comparisons (such as

275 sensors) by clustering neighboring sensor pairs that exhibit the

same effect. The randomization method first identified sensors

whose t statistics exceeded a critical value when comparing two

conditions sensor by sensor (p,0.05, two-sided). In the second

step, to correct for multiple comparisons, contiguous sensors

(separated by ,5 cm) that exceeded the critical value (as defined

in the first step) were considered a cluster. The cluster-level test

statistic was defined from the sum of the t values of the sensors in a

given cluster. The cluster with the maximum sum was used in the

test statistics. The type I error rate for the complete set of 275

sensors was controlled by evaluating the cluster-level test statistic

under the randomization null distribution of the maximum cluster-

level test statistic. This was obtained by randomizing the data

between the two conditions across multiple participants, calculat-

ing t statistics for the new set of clusters. A reference distribution of

cluster-level t statistics was created from 1,000 randomizations.

The p value was estimated according to the proportion of the

randomization null distribution exceeding the observed maximum

cluster-level test statistic (the so-called Monte Carlo p value). MEG

data analysis focused on (1) overall differences between processing

of LV and HV information; (2) neural markers of accumulated

evidence for LV and HV information; and (3) effects of change in

evidence (i.e., repeated versus different arrow direction) for LV

and HV information. In all cases, we performed statistical tests

(corrected for multiple comparisons) at five intervals after the onset

of the arrow stimulus (from 50–300 ms in 50 ms steps). The first

50 ms after the onset of each arrow stimulus were used as a

baseline interval. This ‘‘baseline’’ interval was physiologically

motivated, for it takes approximately 50 ms for a visual stimulus to

reach the cortex [63]. The aim of this baseline procedure was to

effectively remove spill-over of overall activity from the previous

arrow by subtracting out the activity at the onset of the arrow

stimulus. A caveat of this procedure is that the previous LV/HV

arrow may lead to a late (.350 ms) difference in evoked activity,

which is misinterpreted as early differential activity evoked by a

later arrow. Inspection of non-baseline-corrected traces suggests

that this was not the case for our data (see Figure S2A, lower

panel), but this possibility can nevertheless not be conclusively

ruled out. For the analysis of overall differences between LV and

HV arrows, we compared activity during LV and HV arrows,

averaged across all five arrow presentations. For the analysis of

global effects of accumulation evidence, we compared activity for

LV and HV arrows that had ‘‘low prior accumulated evidence’’

and ‘‘high prior accumulated evidence,’’ averaged across the third

to fifth arrow presentation (since there is no differential amount of

prior accumulated evidence until after the first two arrows are

presented). Low evidence consisted of trials with zero (for third and

fifth arrow) or one (for fourth arrow) prior accumulated evidence

at the onset of the arrow. High evidence consisted of trials with

two (for third and fifth arrow), three (for fourth arrow), or four (for

fifth arrow) prior accumulated evidence at the onset of the arrow.

For the analysis of the effect of change in evidence, we compared

activity for LV and HV arrows that were either preceded by the

same arrow (repeat) or preceded by the opposite arrow (change),

averaged across the second to fifth arrow presentation (since there

is no preceding arrow until after the first arrow is presented).

We also sought to establish the first time point of significant

differences between LV and HV stimuli for the three clusters that

showed a significant difference between stimulus types (fronto-

central, parietal, and occipital clusters). We carried out t tests on

5 ms time intervals for the 50–300 ms interval after stimulus onset,

on the difference wave between HV and LV stimuli, for each

cluster. We defined the first time point of significant difference

between HV and LV stimuli as the first sample in which five

contiguous samples (i.e., 25 ms) showed a significant (p,0.05, two-

tailed) difference between conditions.

Experiment 2: Visibility Task
All participants of Experiment 1 also participated in Experiment

2, while still in the MEG environment. To test visibility of strongly

and weakly masked arrows, participants engaged in a six-choice

discrimination task (120 trials, 50% LV and 50% HV). Stimulus

and trial timing was exactly the same as in the experimental task

with the exception that after the presentation of a trial, the

question ‘‘How many arrows were pointing to the left/right?’’ was

presented. This question remained on the screen until the

participant made a response, after which a new trial started.

Participants had to indicate their decision by pressing one of six

response buttons. Whether participants were instructed to detect

right- or left-pointing arrows was counterbalanced across partic-

ipants. Before administering this task, participants were told that

only accuracy was important in this task, not the speed of

responding. To minimize strategic guessing, participants were

notified of the fact that in this task, overall, equal numbers of trials

(10) of each evidence level were presented.
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Experiment 3: Confidence Task
Sixteen participants (5M/11F, age range 20–32), who did not

participate in Experiments 1 and 2, took part in the confidence-

rating task (512 trials). Here, we assessed the relationship between

decision-making performance and subjective confidence. Stimulus

parameters and timing were all identical to Experiment 1, with the

exception of an additional confidence question at the end of each

trial, after the participant had given his/her response. The

following question was presented, 1 s after the participants’

response: ‘‘How confident are you about your response?’’ This

sentence remained on the screen until the participant made a

response, after which a new trial started. Participants had to

indicate the confidence in their decision by pressing one of six

buttons on the keyboard (1 = ‘‘pure guess’’, 6 = ‘‘100% sure’’). The

confidence response was unspeeded.

Experiment 4: Masked Priming Task
All participants of Experiment 3 also participated in Experiment

4. Here we assessed the amount of priming engendered by LV and

HV arrows, using a masked priming experiment (640 trials). Here,

the outline of the mask also formed an arrow stimulus (see Figure

S1). Participants were instructed to respond as fast as possible to

the direction of the mask arrow while ignoring the preceding

prime arrow. Stimulus duration was the same as in Experiment 1.

Each trial was followed by a baseline interval with an average

duration of 1,000 ms (between 750 and 1,250 ms).

Supporting Information

Figure S1 Stimuli used in the experiments. Arrow stimulus. The

arrow stimuli subtended a visual angle of 2.0u by 0.87u in all

experiments. For Experiments 1–3, we used rectangular mask

stimuli. Mask stimuli were constructed such as to either have only

weak masking properties (pseudo mask), leading to high-visibility

(HV) stimuli, or substantially reduce visibility of the stimuli

(metacontrast mask), leading to low-visibility (LV) stimuli. Masks

were identical in terms of overall luminance. For the masked

priming task (Experiment 4), the outline of the mask also formed

an arrow stimulus.

(EPS)

Figure S2 Time course of activity (differences) for each arrow.

(A) Time course of overall differences in neural processing of low-

and high-visibility arrow stimuli, for the fronto-central, parietal,

and occipital cluster outlined in Figure 2. Shown are baseline-

corrected traces (top panel) as well as non-baseline-corrected traces

(bottom panel). A direct comparison of these shows that there is a

superposition of activity for each subsequent arrow stimulus as well

as an overall activity increase, which is strongest over frontal

sensors, and somewhat visible over occipital and parietal sensors.

By removing the baseline differences, the signal reflects the

increase in activity generated by the current stimulus, over and

above the activity generated by earlier arrows. (B) Time course of

global effect of accumulated evidence for ‘‘low evidence’’ and

‘‘high evidence’’ arrows, for low- and high-visibility arrow stimuli,

in the clusters outlined in Figure 3. (C) Time course of activity for

‘‘repeat’’ and ‘‘change’’ arrows, for low- and high-visibility arrow

stimuli, in the clusters outlined in Figure 4.

(EPS)

Figure S3 Neural markers of change of evidence for nine ‘‘poor

perceivers’’ who scored at chance level in the six-choice

discrimination task. Topographical representation of larger

activity (between 150 and 250 ms) for arrow stimuli that were

different from their directly preceding arrows (‘‘change’’),

compared to arrow stimuli which were the same direction as

their directly preceding arrows (‘‘repeat’’). This activity difference

was plotted for high-visibility (top row) and low-visibility (middle

row) arrows, as well as the difference in activity between them

(bottom row). Differences are robust and qualitatively similar to

those in the whole group (see Figure 4 for whole group results).

(EPS)
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