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Chapter 4

Hausdorff gaps

Now we are going to depart somewhat from the theme of regularity properties,
instead focusing on the definability of special objects. We mentioned some of
these in Section 1.3: a Bernstein set, an ultrafilter, a maximal almost disjoint
(mad) family, etc. In this chapter, we look at Hausdorff gaps, another kind of
combinatorial object known since the beginning of the 20th century. Hausdorff’s
construction [Hau36] of an (ω1, ω1) gap in P(ω)/fin was widely celebrated as
an early success of the techniques and methods of set theory in mathematics.
Many aspects of Hausdorff gaps, and other kinds of gaps, have been studied
since then, such as extensions to higher cardinals, more general algebras, and
the way forcing can destroy or create gaps. Surprisingly enough, the definability
question for Hausdorff gaps has only been considered recently, in the work of Stevo
Todorčević [Tod96] who showed, among other things, that there are no analytic
Hausdorff gaps in P(ω)/fin. We shall continue this line of research, investigating
what happens on higher projective levels, as well as the Solovay model, and under
suitable axioms of determinacy.

4.1 Introduction

The underlying space in this chapter will be [ω]ω, the collection of infinite subsets
of ω. The notations =∗ and ⊆∗ will be used throughout to represent the equality
or subset relation between two elements of [ω]ω modulo finite. The following
terminology has been established in the parlance of Hausdorff gaps: two sets
a, b ∈ [ω]ω are orthogonal (notation a⊥ b) if a∩ b is finite. If B is a set, then a is
orthogonal to B (notation a⊥ B) if a⊥ b for every b ∈ B. Finally, A,B ⊆ [ω]ω

are orthogonal (notation A⊥ B) if a⊥ b holds for every a ∈ A and every b ∈ B.
A pair (A,B) of orthogonal subsets of [ω]ω is called a pre-gap. There is

one very simple way of constructing a pre-gap: take any infinite, co-infinite set
c ∈ [ω]ω and pick any A and B so that ∀a ∈ A : a ⊆∗ c and ∀b ∈ B : c ∩ b =∗ ∅.
Such a set c is said to separate, or interpolate, the pre-gap (A,B). Of course,
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86 Chapter 4. Hausdorff gaps

the interesting object is a pre-gap (A,B) which is not constructed in this trivial
fashion.

Definition 4.1.1. A pre-gap (A,B) is called a gap if there is no c which separates
A from B.

An early result of Hadamard [Had94] already established that there cannot be
a gap (A,B) if both A and B are countable, although this is most widely known
from [Hau36]. On the other hand, a gap (A,B) where |A| = |B| = 2ℵ0 can be
explicitly constructed. For example, in [Tod96, p 56–57] Todorčević gives a very
simple construction of a gap (A,B) where A and B are perfect sets: for x ∈ 2ω,
define ax := {x�n | x(n) = 0} and bx := {x�n | x(n) = 1}. Identifying 2<ω with
ω, it is not hard to see that ({ax | x ∈ 2ω} , {bx | x ∈ 2ω}) is a gap.

Hausdorff’s classical construction [Hau36] was very different. His gap (A,B)
was such that |A| = |B| = ℵ1, regardless of the size of the continuum; moreover,
A and B were σ-directed.

Definition 4.1.2.

1. A set A ⊆ [ω]ω is σ-directed if for every countable collection {an ∈ A | n ∈
ω}, there exists a ∈ A such that an ⊆∗ a for all n.

2. A pair (A,B) is called a Hausdorff gap if it is a gap and both A and B are
σ-directed.

In the literature, the definition of a Hausdorff gap usually requires that A and
B are well-ordered by ⊆∗, as the original construction from [Hau36] in fact was,
but for our purposes σ-directedness is sufficient.

That the perfect gap created by Todorčević in [Tod96, p 56–57] cannot be a
Hausdorff gap follows from the following result of the same paper:

Theorem 4.1.3 (Todorčević). Let (A,B) be a pre-gap such that both A and B
are σ-directed and A is analytic. Then (A,B) is not a gap.

Proof. See [Tod96, Corollary 1].

This is, to our knowledge, the only result that deals with Hausdorff gaps from
the definable point of view. We are interested in extending Todorčević’s result
in several directions and looking at Hausdorff gaps on definability levels beyond
the analytic. We shall use the following notation: if Γ is a projective pointclass,
we say that (A,B) is a (Γ,Γ)-Hausdorff gap if both A and B are in Γ, and a
(Γ, ·)-Hausdorff gap if A ∈ Γ and B is arbitrary. The theorem above says that
there are no (Σ1

1, ·)-Hausdorff gaps. Our main result from Sections 4.2 and 4.3
(Corollary 4.3.10) will show that the following are equivalent:
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1. there is no (Σ1
2, ·)-Hausdorff gap,

2. there is no (Σ1
2,Σ

1
2)-Hausdorff gap,

3. there is no (Π1
1, ·)-Hausdorff gap,

4. there is no (Π1
1,Π

1
1)-Hausdorff gap,

5. ∀r (ℵL[r]
1 < ℵ1).

The implications (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4) are trivial; (5)⇒ (1)
will be proved in the next section, using a variation of the argument from [Tod96];
and (4) ⇒ (5) will be proved in Section 4.3 using the method of Miller [Mil89]
for the inductive construction of Π1

1 sets in L.
In Section 4.4 we show that in the Solovay model, there are no Hausdorff gaps

whatsoever, and in Section 4.5 we show that the same is true under ADR (the
axiom of real determinacy). In Section 4.6 we briefly look at non-Hausdorff gaps
and generalize a dichotomy proved in [Tod96, Theorem 2].

4.2 Hausdorff gaps on the second level

Because of the equivalence mentioned above, the statement “there is no (Σ1
2, ·)-

Hausdorff gap” has large cardinal strength, so it cannot be obtained by iterated
forcing over L. For the same reason, we cannot hope to have a forcing-style proof
of the implication “∀r (ℵL[r]

1 < ℵ1) =⇒ @(Σ1
2, ·)-Hausdorff gap”, as we did, say,

in Corollary 2.2.7. Indeed, Todorčević’s proof that there are no (Σ1
1, ·)-Hausdorff

gaps was forcing-free, relying instead on a classical construction similar to the
Cantor-Bendixson method. We will extend this method to prove the result about
(Σ1

2, ·)-Hausdorff gaps. The way our proof is derived from Todorčević’s original
proof is similar to the way the Mansfield-Solovay theorem (Theorem 1.3.14) is
derived from the theorem that all analytic sets satisfy the perfect set property
(compare, e.g., [Jec03, Theorem 25.23] and [Jec03, Theorem 11.17 (iii)]).

Here and in the future, it will be useful to look at the space ω↑ω of strictly
increasing functions from ω to ω and, as usual, to identify elements of [ω]ω with
their increasing enumerations. For the proof we need several definitions.

Definition 4.2.1. Let (A,B) be a pre-gap (not necessarily σ-directed).

1. Let C be a set. We say that A and B are C-separated if C ⊥ B and for
every a ∈ A there is c ∈ C such that a ⊆∗ c.

2. We say that A and B are σ-separated if they are C-separated by some
countable C.
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3. Let S be a tree on ω↑ω. We call S an (A,B)-tree if

(a) ∀σ ∈ S : {i ∈ ω | σ_ 〈i〉 ∈ S} has infinite intersection with some b ∈
B, and

(b) ∀x ∈ [S], ran(x) ⊆∗ a for some a ∈ A.

If (A,B) is not a gap, then it is σ-separated, but the converse need not be
true in general. It is, however, true whenever A is σ-directed. On the other hand,
the existence of an (A,B)-tree contradicts B being σ-directed.

Lemma 4.2.2. Let (A,B) be a pre-gap. If B is σ-directed, then there is no
(A,B)-tree.

Proof. Suppose, towards contradiction, that S is an (A,B)-tree. For each σ ∈ S,
fix some bσ ∈ B such that {i | σ_ 〈i〉 ∈ S} ∩ bσ is infinite. By σ-directedness,
there is a b ∈ B which almost contains every bσ. In particular, for each σ, the
set {i | σ_ 〈i〉 ∈ S} ∩ b is infinite. Therefore we can inductively pick i0, i1, i2 ∈ b
in such a way that 〈i0, i1, i2, . . . 〉 is a branch through S. Then by definition of
an (A,B)-tree {i0, i1, i2 . . . } ⊆∗ a for some a ∈ A. But that implies that a ∩ b is
infinite, contradicting the orthogonality of A and B.

Todorčević’s proof in fact shows the following dichotomy: if (A,B) is a pre-
gap and A is analytic, then either A and B are σ-separated or there exists an
(A,B)-tree. We prove a similar dichotomy for Σ1

2 sets, with separation by a
subset of L[r] replacing σ-separation.

Theorem 4.2.3. Let (A,B) be a pre-gap such that A is Σ1
2(r). Then:

1. either there is a C ⊆ L[r] which separates A from B, or

2. there exists an (A,B)-tree.

Proof. Let A∗ ⊆ ω↑ω be such that x ∈ A∗ iff ran(x) ∈ A. Let T be a tree on
ω × ω1, increasing in the first coordinate, such that A∗ = p[T ] and T ∈ L[r].
Define an operation on such trees T as follows

• for (s, h) ∈ T , let

c(s,h) := {i > max(ran(s)) | ∃(s′, h′) ∈ T extending (s, h) s.t. i ∈ ran(s′)}

• let T ′ := {(s, h) ∈ T | c(s,h) has infinite intersection with some b ∈ B}.

Now let T0 := T , Tα+1 := T ′α and Tλ =
⋂
α<λ Tα for limit λ. Note that this

definition is absolute for L[r] so all the trees Tα are in L[r].

Let α be least such that Tα = Tα+1. We distinguish two cases:
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• Case 1: Tα = ∅. Let x ∈ A∗ be given. Let f ∈ ωω1 be such that (x, f) ∈
[T0]. Let γ < α be such that (x, f) ∈ [Tγ] \ [Tγ+1], and let (s, h) ⊆ (x, f) be
such that (s, h) ∈ Tγ \ Tγ+1. Now let cx := c(s,h) and note that this set is in
L[r] since it is constructible from Tγ and (s, h) both of which are in L[r].
By assumption cx ⊥ B, and it is also clear that ran(x) ⊆∗ cx. It follows
that the collection C := {cx | x ∈ A∗}, with each cx defined as above, forms
a subset of L[r] which separates A from B.

• Case 2: Tα 6= ∅. In this case we will use the tree Tα to construct an (A,B)-
tree S. By induction, we will construct S and to each σ ∈ S associate
(sσ, hσ) ∈ Tα, satisfying the following conditions:

– σ ⊆ τ =⇒ (sσ, hσ) ⊆ (sτ , hτ ), and

– ran(σ) ⊆ ran(sσ).

First ∅ ∈ S, and we associate to it (s∅, h∅) := (∅,∅). Next, suppose σ ∈ S
has already been defined and (sσ, hσ) ∈ Tα associated to it. By assumption,
(sσ, hσ) ∈ T ′α, so c(sσ ,hσ) has infinite intersection with some b ∈ B. For
each i ∈ c(sσ ,hσ) we add σ_ 〈i〉 to S. Moreover, by assumption, for each
i ∈ c(sσ ,hσ) there exists (s′, h′) ∈ Tα extending (s, h) such that i ∈ ran(s′).
Now associate precisely these (s′, h′) to σ_ 〈i〉, i.e., let sσ_〈i〉 := s′ and
hσ_〈i〉 := h′. By induction, it follows that the condition ran(σ_ 〈i〉) ⊆
ran(sσ_〈i〉) is satisfied.

Now we have a tree S on ω↑ω. By definition, for every σ ∈ S the set of its
successors c(sσ ,hσ) has infinite intersection with some b ∈ B. Now let x ∈ [S].
By construction,

⋃
{(sσ, hσ) | σ ⊆ x} forms an infinite branch through Tα,

whose projection a :=
⋃
{sσ | σ ⊆ x} is a member of p[Tα] ⊆ p[T0] = A∗.

Since by assumption ran(σ) ⊆ ran(sσ) holds for all σ ⊆ x, it follows that
ran(x) ⊆ ran(a). This proves that S is an (A,B)-tree.

Corollary 4.2.4. If ∀r (ℵL[r]
1 < ℵ1) then there is no (Σ1

2, ·)-Hausdorff gap.

Proof. Let (A,B) be a pre-gap such that A and B are σ-directed and A is Σ1
2(r).

By Lemma 4.2.2, the second alternative of Theorem 4.2.3 is impossible, hence
there is a C ⊆ L[r] which separates A from B. Since the reals of L[r] are
countable, C is countable, so A and B are σ-separated. Since A is also σ-directed,
(A,B) cannot be a gap.

4.3 Inaccessibility by reals

It was already mentioned in [Tod96] that if V = L then there exists a (Π1
1,Π

1
1)-

Hausdorff gap, though a proof of this fact was not provided. In this section we
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give a proof of this result and, moreover, prove the stronger statement that the
non-existence of a (Π1

1,Π
1
1)-Hausdorff gap implies that ℵ1 is inaccessible in L.

This complements the result of the previous section, i.e., Corollary 4.2.4.
Since the argument will involve a modification of Hausdorff’s original con-

struction, let us briefly review it.
The (ω1, ω1)-gap Hausdorff constructed in [Hau36] had the form (A,B) where

A = {aα | α < ℵ1}, B = {bα | α < ℵ1}, both A and B are well-ordered by ⊆∗,
and, additionally, the following condition is satisfied:

∀α < ℵ1 ∀k ∈ ω ({γ < α | aα ∩ bγ ⊆ k} is finite). (HC)

We refer to this as Hausdorff’s condition (HC).

Lemma 4.3.1 (Hausdorff). Any pre-gap (A,B) satisfying HC is a gap.

Proof. Towards contradiction, suppose c separates A from B. For each α < ℵ1,
let nα be such that aα \ c ⊆ nα and bα ∩ c ⊆ nα. The values nα must be constant
on some uncountable set X ⊆ ω1, i.e., there is n such that nα = n for all α ∈ X.
Pick any α ∈ X such that there are infinitely many γ below α in X. For all of
these γ, we have aα ∩ bγ ⊆ (aα \ c) ∪ (bγ ∩ c) ⊆ n, contradicting HC.

The point of Hausdorff’s condition is that it provides an absolute way to prove
that (A,B) cannot be separated. In general, the notion of a gap is not absolute,
i.e., a gap existing in some model could become a non-gap if a real c separating
A from B is generically added to the model. However, if the original gap satisfies
Hausdorff’s condition, then this cannot happen as long as ℵ1 is preserved.

Lemma 4.3.2. Let (A,B) be a pre-gap in V , satisfying HC. Let W be a larger
model with ℵW1 = ℵV1 . Then in W , (A,B) is still a gap.

Proof. Apply the same argument as before.

In particular, if (A,B) is a pre-gap in L[r] and ℵL[r]
1 = ℵ1, then (A,B) is still

a gap in V . Therefore our goal is to construct a pre-gap (A,B) in L[r] satisfying
HC, with both A and B being Π1

1, and in such a way that the same Π1
1 definition

can work in V , too.
For starters, let us see how to construct a (Σ1

2,Σ
1
2)-gap satisfying HC in L.

The Π1
1 construction will then be a subtle modification of it using a method

developed by Arnold Miller in [Mil89]. Hausdorff constructed his gap by induction
on α < ℵ1, using the following instrumental Lemma at each induction step.

Lemma 4.3.3 (Hausdorff). Let α be some countable ordinal, and let ({aγ | γ <
α}, {bγ | γ < α}) be a pre-gap well-ordered by ⊆∗ and satisfying HC. Then there
exist sets c, d such that ({aγ | γ < α} ∪ {c}, {bγ | γ < α} ∪ {d}) is still a pre-gap,
is well-ordered by ⊆∗, and satisfies HC.
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Proof. See [Hau36] or [Sch93, Theorem 10].

An (ω1, ω1)-gap satisfying HC can now inductively be constructed using this
lemma. And just as we have already seen many times (cf. Fact 1.2.11, Fact
1.3.8, Theorem 3.2.1 etc.), in L this construction can be modified to produce a
Σ1

2 definable gap. So, at step α, instead of just picking an arbitrary pair (c, d)
given by Lemma 4.3.3, pick the <L-least such. Let A = {aα | α < ℵ1} and
B = {aα | α < ℵ1} be the resulting sets. Now, as before, we may write a ∈ A iff
∃Lδ (a ∈ Lδ ∧ Lδ |= a ∈ A), or equivalently: there is E ⊆ ω × ω such that

1. E is well-founded,

2. (ω,E) |= Θ,

3. ∃n (a = πE(n) and (ω,E) |= n ∈ π−1
E [A]).

This statement is Σ1
2. Clearly, the same can be done for the setB. Notice also that

the Σ1
2 definitions of A and B define the same sets in any larger model, i.e., even

when V 6= L, the set of all a satisfying the sentence ∃Lδ (a ∈ Lδ ∧ Lδ |= a ∈ A)
defines the same subset of L, and the same holds for B. It is also clear that
we can replace L with an arbitrary L[r] in this argument. We have now already
proved the following:

Proposition 4.3.4. If there is no (Σ1
2,Σ

1
2)-Hausdorff gap, then ∀r (ℵL[r]

1 < ℵ1).

Proof. Assume r is such that ℵL[r]
1 = ℵ1. In L[r], construct a (Σ1

2(r),Σ1
2(r))-

Hausdorff gap, satisfying HC, as described above. By Lemma 4.3.2, it is still a
gap in V .

In [Mil89], Miller introduced a method by which many inductive constructions
in L, like the one above, could be rendered not only Σ1

2 definable, but Π1
1 defin-

able. The idea is to eliminate the existential quantifier in the sentence “∃Lδ . . . ”,
or “∃E ⊆ ω × ω . . . ”, by coding E directly into the real a constructed at each
stage. This would allow us to write “a ∈ A ⇐⇒ e(a) is well-founded, etc.”,
where e is a recursive “decoding” function recovering the relation E ⊆ ω×ω from
a. Quoting Miller:

“The general principle is that if a transfinite construction can be done
so that at each stage an arbitrary real can be encoded into the real con-
structed at that stage then the set being constructed will be Π1

1. The
reason is basically that then each element of the set can encode the
entire construction up to that point at which it itself is constructed.”

[Mil89, p. 194]
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H 0

H 1

H 2

H 3

G0

G1

G2

G3

X

Coding area for A Coding area for B

Hausdorff's construction

.

.

.
.
.
.

Figure 4.1: Partition of ω.

Miller himself applied this principle to show that in L there is a Π1
1 subset of

R2 meeting every line in exactly two points, a Π1
1 mad family, and a Π1

1 Hamel
basis for R over Q. In [KSZ08, Theorem 3.1] the authors used the same method
to show that in L there is a Π1

1 ω-mad family. Other applications exist in the
literature, for instance the recent [FT10] showing that in L there is a Π1

1 maximal
set of orthogonal measures on Cantor space.

To apply Miller’s method, we need to prove a Coding Lemma: a stronger
version of Lemma 4.3.3 stating that the c and d constructed at each induction
step can encode an arbitrary relation E ⊆ ω × ω. First, we recursively partition
ω into three infinite sets: H, X and G. Further, we recursively partition H
into infinitely many infinite sets Hn, and G into infinitely many infinite sets Gn.
All the essential properties of Hausdorff’s construction will take place within X,
while the areas H and G will be used for coding purposes only. The plan is to
encode an arbitrary real z ∈ 2ω into a set a ∈ [ω]ω by making sure that |Hn∩a| is
even if z(n) = 1 and odd if z(n) = 0, and the same for b and the Gn. A relation
E ⊆ ω × ω can easily be encoded into a real z ∈ 2ω (using a recursive bijection
between ω and ω × ω).

Lemma 4.3.5 (Coding Lemma). Let α be some countable ordinal and let ({aγ |
γ < α}, {bγ | γ < α}) be a pre-gap with aγ ⊆ H ∪X and bγ ⊆ X ∪ G, which is
well-ordered by ⊆∗, satisfies HC, and also satisfies the following condition:

(∗) ∀n ∈ ω ∀γ < α (|aγ ∩Hn| < ω and |bγ ∩Gn| < ω).

Let E ⊆ ω × ω be an arbitrary relation. Then there exist infinite sets c, d, with
c ⊆ H ∪X, d ⊆ X ∪G, such that ({aγ | γ < α} ∪ {c}, {bγ | γ < α} ∪ {d}) is still
a pre-gap, well-ordered by ⊆∗, satisfies HC, satisfies condition (∗), and moreover
both c and d recursively encode E.
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Proof. First, we consider the restriction of the pre-gap to X: ({aγ ∩ X | γ <
α}, {bγ ∩ X | γ < α}). Note that this is also a pre-gap well-ordered by ⊆∗.
Moreover, since for all γ, γ′ we know that aγ is disjoint from bγ′ everywhere outside
of X, the restricted pre-gap must satisfy HC, too. Using a bijection between X
and ω we can apply Hausdorff’s original Lemma 4.3.3 to the restricted pre-gap,
and get new sets c′, d′ ⊆ X, such that ({aγ ∩ X | γ < α} ∪ {c′}, {bγ ∩ X | γ <
α} ∪ {d′}) is a pre-gap, is well-ordered by ⊆∗, and satisfies HC.

We now describe what happens inside H and G. Let {a′n | n < ω} and {b′n | n <
ω} be a re-enumeration of the countable sets {aγ | γ < α} and {bγ | γ < α}.
Let z ∈ 2ω be a real recursively coding the relation E. Now pick cn ⊆ Hn and
dn ⊆ Gn such that

1. cn and dn are finite,

2.
⋃
m≤n(a′m ∩Hn) ⊆ cn,

3.
⋃
m≤n(b′m ∩Gn) ⊆ dn, and

4. |cn| and |dn| are even if z(n) = 1, and odd if z(n) = 0.

That this can always be done follows from condition (∗) of the induction hypoth-
esis.

Now we set c := c′ ∪
⋃
n cn and d := d′ ∪

⋃
n dn, and claim that the new pair of

sequences ({aγ | γ < α} ∪ {c}, {bγ | γ < α} ∪ {d}) satisfies all the requirements
of the lemma. It is obvious that it is a pre-gap and satisfies HC. Condition (∗) is
also clear, since c ∩Hn = cn and d ∩ Gn = dn and we defined these to be finite.
To show that it is well-ordered by ⊆∗, pick any aγ. We must show that aγ ⊆∗ c,
and for that, we need to show that aγ ∩ X ⊆∗ c ∩ X, and aγ ∩ H ⊆∗ c ∩ H.
The former is clear, because on X we have applied Lemma 4.3.3. For the latter,
suppose aγ = a′n in the re-enumeration used. For k ≥ n, the definition implies
that a′n ∩ Hk ⊆ ck. Moreover,

⋃
k<n(a′n ∩ Hk) is finite by property (∗) of the

induction hypothesis. This shows that indeed a′n ∩ H ⊆∗
⋃
k ck as had to be

shown. Analogously, we can show bγ ⊆∗ d.

Finally, it is clear that c and d recursively encode the relation E.

Now define the two decoding functions e0, e1 : [ω]ω → 2ω by

e0(a)(n) :=

{
1 if |Hn ∩ a| is even
0 if |Hn ∩ a| is odd

e1(b)(n) :=

{
1 if |Gn ∩ b| is even
0 if |Gn ∩ b| is odd

and by identifying z with the relation E ⊆ ω × ω that it recursively codes, we
consider e0 and e1 as functions from [ω]ω to P(ω × ω).



94 Chapter 4. Hausdorff gaps

In order to use Miller’s method, some special properties of the constructible
hierarchy are needed, which we now present as black box results.

Definition 4.3.6 (Miller). For a countable limit ordinal α, an Lα is called point-
definable if there exists E ∈ Lα+ω such that (ω,E) ∼= (Lα,∈).

Fact 4.3.7 (Miller).

1. There are unboundedly many α < ℵ1 such that Lα is point-definable.

2. Suppose Lα is point-definable. For any β ≤ α, if Lβ is point-definable then
Lα+ω |=“Lβ is point-definable”.

3. If Lα is point-definable and E is such that (ω,E) ∼= (Lα,∈), then there
is a recursive function mapping E to another relation, E+ω, such that
(ω,E+ω) ∼= (Lα+ω,∈).

Proof. The point-definable Lα’s are those levels of the constructible hierarchy
whose closure under the definable Skolem functions of L is isomorphic to itself.
For a detailed proof, see [KSZ08], specifically Lemmas 3.4, 3.5 and 3.6, and the
relevant comments regarding absoluteness of the definitions.

Fix an enumeration {ξα | α < ℵ1} of those countable limit ordinals for which
Lξα is point-definable. We may assume without loss of generality that ξα + ω <
ξα+1 for all α. By induction on α < ℵ1, we can now build our sets {aα | α < ℵ1}
and {bα | α < ℵ1}, with an induction hypothesis guaranteeing that aα and bα are
members of Lξα+ω.

Suppose {aγ | γ < α} and {bγ | γ < α} has been constructed and satisfies
all the relevant conditions, i.e., is a pre-gap, is well-ordered by ⊆∗, satisfies HC,
and satisfies condition (∗) from the Coding Lemma (Lemma 4.3.5). Also, assume
aγ, bγ ∈ Lξγ+ω for each γ < α. Then in fact aγ, bγ ∈ Lξγ+1 ⊆ Lξα , therefore the sets
{aγ | γ < α} and {bγ | γ < α} are in Lξα+1. Moreover, since Lξα+ω contains an E
satisfying (ω,E) ∼= (Lξα ,∈), it follows that Lξα+ω |= α is countable. In particular,
the two initial segments of the Hausdorff gap are countable in Lξα+ω, so we can
apply the Coding Lemma inside Lξα+ω to get two sets c, d in Lξα+ω which both
recursively encode E. We choose aα and bα to be the <L-least (or <Lξα+ω

-least)
such c and d. The Coding Lemma guarantees that all the requirements to proceed
with the induction are satisfied by the extended initial segments {aγ | γ ≤ α}
and {bγ | γ ≤ α}.

Let A := {aα | α < ℵ1} and B := {bα | α < ℵ1} be the sets thus constructed.
It is clear that (A,B) is a Hausdorff gap satisfying HC. Now recall the decoding
functions e0 and e1. By Fact 4.3.7 (3), there are also recursive functions e+ω

0 and
e+ω

1 such that if (ω, ei(a)) ∼= (Lξα ,∈) for some ξα, then (ω, e+ω
i (a)) ∼= (Lξα+ω,∈).

Now it only remains to prove the following:
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Claim 4.3.8.

1. For all a ∈ [ω]ω, a ∈ A ⇐⇒

(a) e0(a) is well-founded,

(b) (ω, e0(a)) |= Θ,

(c) ∃n ∈ ω (a = πe+ω0 (a)(n) and (ω, e+ω
0 (a)) |= n ∈ π−1

e+ω0 (a)
[A]).

2. For all b ∈ [ω]ω, b ∈ B ⇐⇒

(a) e1(b) is well-founded,

(b) (ω, e1(b)) |= Θ,

(c) ∃n ∈ ω (b = πe+ω1 (b)(n) and (ω, e+ω
1 (b)) |= n ∈ π−1

e+ω1 (b)
[B]).

Proof. The two parts are obviously analogous so let us check the first one. If
a ∈ A, then a = aα for some α. Let E := e0(a). Then by construction (ω,E) ∼=
(Lξα ,∈), so points (a) and (b) are satisfied. Moreover, note that the way we
picked aα in Lξα+ω using Lemma 4.3.5 was absolute between Lξα+ω and L because
the relevant initial segment of the construction was in Lξα+ω and we picked the
<L-least such aα. Therefore Lξα+ω |= a ∈ A, so point (c) is satisfied.

Conversely, suppose a satisfies points (a), (b) and (c). Let E := e0(a). Then
(ω,E) ∼= (Lδ,∈) for some countable limit ordinal δ, a ∈ Lδ+ω and Lδ+ω |= a ∈
A. Then Lδ+ω |= (ω, e0(a)) ∼= (Lξα ,∈) for some ξα < δ + ω. But since this
isomorphism must be absolute, in fact ξα = δ, so Lξα+ω |= a ∈ A. Then the
absoluteness of the definition of A implies that a ∈ A holds in L, too (in fact
a = aα).

The claim gives us a Π1
1 definition of both A and B, since part (a) is a Π1

1

statement and the others are arithmetical. As before, it is also clear that in any
larger model V , the sets A and B defined as in the claim are still exactly the
same subsets of L. Also, L can be replaced by an arbitrary L[r] in all the above
arguments. As a result, we have shown the following:

Theorem 4.3.9. If there is no (Π1
1,Π

1
1)-Hausdorff gap, then ∀r (ℵL[r]

1 < ℵ1).

Combining this result with what we proved in the last section, we get, as
promised, the following corollary:

Corollary 4.3.10. The following are equivalent:

1. there is no (Σ1
2, ·)-Hausdorff gap,

2. there is no (Σ1
2,Σ

1
2)-Hausdorff gap,

3. there is no (Π1
1, ·)-Hausdorff gap,
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4. there is no (Π1
1,Π

1
1)-Hausdorff gap,

5. ∀r (ℵL[r]
1 < ℵ1).

Proof. The direction (5)⇒ (1) is Corollary 4.2.4 and (4)⇒ (5) is Theorem 4.3.9.
The other implications are obvious.

4.4 Solovay model

We now turn our attention to the Solovay model, and the question whether Haus-
dorff gaps have to exist at all, not assuming AC.

Theorem 4.4.1. Let V be a model with an inaccessible cardinal κ and V [G] the
Lévy collapse of κ. In V [G], let (A,B) be a pre-gap with A and B definable from
a countable sequence of ordinals. Then

1. either A and B are σ-separated, or

2. there exists an (A,B)-tree.

Proof. In V [G], let s ∈ Ordω be such that A is definable by ϕ(s, x) and B is
definable by ψ(s, x). By standard properties of the Lévy collapse (Lemma 1.2.20),
there are formulas ϕ̃ and ψ̃ such that for all x, V [G] |= ϕ(s, x) iff V [s][x] |= ϕ̃(s, x),
and V [G] |= ψ(s, x) iff V [s][x] |= ψ̃(s, x).

Assume that A and B are not σ-separated. Since κ is inaccessible in V [s], there
are countably many reals in V [s], so A and B are not V [s]-separated (in the sense
of Definition 4.2.1 (1)). Hence, there exists an a ∈ A such that for all c ∈ V [s], if
a ⊆∗ c then c 6⊥B. Let x ∈ ω↑ω be the increasing enumeration of a. The sentence

Φ(x) ≡ ∀c ∈ V [s] (ran(x) ⊆∗ c → ∃b (V [s][b] |= ψ̃(s, b) ∧ |c ∩ b| = ℵ0))

is true in V [G]. By another standard property of the Lévy collapse, there is a
generic H such that V [s][H] = V [G], and moreover there is a partial suborder
Q of the Lévy collapse (depending on x), such that Q ∈ V [s], |Q| < κ and
x ∈ V [s][Q∩H]. Then in V [s] there is a name ẋ and a condition p ∈ Q such that

p  Φ(ẋ) ∧ V [s][ẋ] |= ϕ̃(s, ẋ).

Let {Di | i ∈ ω} enumerate all the Q-dense sets in V [s] (there are only countably
many because κ is inaccessible in V [s]).

Now we inductively construct a tree S ⊆ ω<↑ω, and for every t ∈ S a condition
pt ≤ p and an infinite set ct ∈ V [s], such that the following conditions are satisfied:

1. s ⊆ t ⇐⇒ pt ≤ ps,
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2. for every t, pt ∈ D|t|,

3. for every t, pt  ran(t) ⊆ ran(ẋ), and

4. for every t, pt  ran(ẋ) ⊆∗ čt.

Let p∅ ≤ p be any condition in D0. Clearly conditions (2) and (3) are satisfied.

Assume pt is already defined for t ∈ S, and satisfies condition (3). Let

ct := {i | i > max(t) and ∃q ≤ pt (q  i ∈ ran(ẋ))}.

Then ct is in V [s] and condition (4) is satisfied (at stage t). For every i ∈ ct, let
t_ 〈i〉 also be an element of the tree S, and let pt_〈i〉 ≤ p be a condition such
that pt_〈i〉  i ∈ ran(ẋ) and pt_〈i〉 ∈ D|t|+1. Now each such pt_〈i〉 also satisfies
condition (3) (at stage t_ 〈i〉), completing the induction step.

Thus we have constructed the tree S, and now we claim that it is an (A,B)-tree.
For every t ∈ S, ct is the set of immediate successors of t in S. By condition
(4), pt  ran(ẋ) ⊆∗ čt, and since pt  Φ(ẋ) and obviously pt  čt ∈ V [s],
it follows that some q ≤ pt forces the consequent of Φ(ẋ), i.e., the statement
“∃b (V [s][b] |= ψ̃(s, b) ∧ |b ∩ ct| = ℵ0)”. Then for some H ′ Q-generic over
V [s] containing q, this statement holds in V [s][H ′], and therefore there exists
a b such that V [s][b] |= ψ̃(s, b) and |b ∩ ct| = ℵ0, i.e., there exists b ∈ B such
that |b ∩ ct| = ℵ0. Since this holds for every ct, one part of the definition of an
(A,B)-tree is fulfilled.

It remains to prove that every branch through S is contained in an element of
A. Let z ∈ [S], and let Hz be the filter over Q generated by {pt | t ⊆ z}.
By construction, Hz is Q-generic over V [S]. Since all pt force the statement
“V [s][ẋ] |= ϕ̃(s, ẋ)”, we get that V [s][ẋHz ] |= ϕ̃(s, ẋHz), and therefore ẋHz ∈ A
(here we have identified ẋHz with its range, but it should be clear that this is fine).
Moreover, since by condition (3) we have, for every t ⊆ z, that pt  ran(t) ⊆
ran(ẋ), it follows that ran(t) ⊆ ran(ẋHz) holds for every t ⊆ z, and therefore
ran(z) ⊆ ran(ẋHz) ∈ A. This is what we wanted to show.

Corollary 4.4.2. Let V be a model with an inaccessible cardinal κ and V [G] the
Lévy collapse. If (A,B) is a pre-gap in V [G] such that A and B are definable
from a countable sequence of ordinals, and moreover A and B are σ-directed, then
(A,B) is not a gap.

Proof. As before, if B is σ-directed then there cannot be an (A,B)-tree by Lemma
4.2.2, and if A is also σ-directed then alternative 1 from Theorem 4.4.1 implies
that A and B are separated.

Corollary 4.4.3. Con(ZFC+“there are no projective Hausdorff gaps”) and
Con(ZF + DC+“there are no Hausdorff gaps”).
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4.5 Axiom of real determinacy

The determinacy of infinite games is often used as a tool to prove regularity
properties. The strongest result we could hope to prove in this setting is that AD
implies that there are no Hausdorff gaps. We were not able to prove this, but,
as already discussed in Question 2.6.4 and Question 2.6.5, ADR may be a more
appropriate axiom in this case. So, we will take ZF+ADR as the ambient theory
in this section, and construct a game with real moves whose determinacy proves
the non-existence of Hausdorff gaps.

Definition 4.5.1. Let (A,B) be a pre-gap. The game GH(A,B) is played as
follows:

I : c0 (s1, c1) (s2, c2) . . .
II : i0 i1 i2 . . .

where sn ∈ ω<ω, cn ∈ [ω]ω and in ∈ ω. The conditions for player I are that

1. min(sn) > max(sn−1) for all n ≥ 1,

2. min(cn) > max(sn),

3. cn 6⊥B for all n, and

4. in ∈ ran(sn+1) for all n.

Conditions for player II are that

5. in ∈ cn for all n.

If all five conditions are satisfied, let s∗ := s1
_s2

_ . . . be an infinite increasing
sequence formed by the play of the game. Player I wins iff ran(s∗) ∈ A.

Theorem 4.5.2.

1. If player I has a winning strategy in GH(A,B) then there exists an (A,B)-
tree.

2. If player II has a winning strategy in GH(A,B) then A and B are σ-
separated.

Proof. 1. Let σ be a winning strategy for player I and let Tσ be the tree of
partial positions according to σ. If p ∈ Tσ is a position of the form p =
〈c0, i0, (s1, c1), i1, . . . , (sn, cn)〉, we use the notation p∗ := s1

_ . . ._sn.

Now we use Tσ to inductively construct the tree S. To each s ∈ S we associate a
ps ∈ Tσ (of odd length), such that

1. s ⊆ t iff ps ⊆ pt, and
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2. ran(s) ⊆ ran(p∗s).

First ∅ ∈ S and p∅ = ∅. Suppose s ∈ S and ps are already defined and
ran(s) ⊆ ran(p∗s) holds. Assume ps = 〈. . . , (sn, cn)〉. For every in ∈ cn, let
(sn+1, cn+1) be the response of the strategy σ to ps

_ 〈in〉. Let s_ 〈in〉 be in S and
associate to it ps_〈in〉 := ps

_ 〈in〉_ 〈(sn+1, cn+1)〉. Since for each in ∈ cn we know
that in ∈ ran(sn+1), it follows that ran(s_ 〈in〉) ⊆ ran(p∗s_〈in〉), completing the
induction step.

Now it is clear that the tree S has exactly the cn’s as the branching-points, which
all have infinite intersection with some b ∈ B by assumption. Moreover, if x is
a branch through S, then by construction z :=

⋃
{ps | s ⊆ x} forms a branch

through Tσ satisfying ran(x) ⊆ ran(z∗). Since z is an infinite play of the game
according to the winning strategy σ, it follows that ran(z∗) ∈ A, so S is an
(A,B)-tree.

2. Now let τ be a winning strategy for player II, and let Tτ be the tree of partial
plays according to τ . Our method will be similar to the proof of the standard
Banach-Mazur theorem, but the problem is that the tree Tτ has uncountable
branching. Therefore we first thin it out to another tree T̃τ , as follows: for every
node of even length p = 〈. . . , (sn, cn), in〉 ∈ Tτ , fix s and i and consider the
collection SuccTτ (p, s, i) := {(s, c) | p_ 〈(s, c)〉_ 〈i〉 ∈ Tτ}. In other words, this
is the collection of all valid moves by player I following position p, such that the
first component of the move is s, and such that II’s next move according to τ
is i. If this collection is non-empty, throw away all members of SuccTτ (p, s, i),
and their generated subtrees, except for one, so that SuccTτ (p, s, i) becomes a
singleton. Notice that this construction is justified because, since we are working
under ADR, we have to our disposal the fragment of the Axiom of Choice allowing
us to choose from collections indexed by real numbers. Therefore, we can perform
this “pruning” operation for every s ∈ ω<ω and every i ∈ ω, and inductively form
the new tree T̃τ—this is also going to be a tree of positions according to τ , but
it will be a countably branching tree. Now we can use a Banach-Mazur-style
argument on T̃τ .

For every p ∈ T̃τ and x ∈ ω↑ω, where p = 〈. . . (sn, cn), in〉, we say that p is
compatible with x if p∗ ⊆ x and in ∈ ran(x). We say that p rejects x if it is
compatible with x and maximally so with respect to T̃τ , i.e., if for every (s, c)
such that p_ 〈(s, c)〉 ∈ T̃τ and p∗_s ⊆ x, i := τ(p_ 〈(s, c)〉) /∈ ran(x).

It is clear that for every x with ran(x) ∈ A there is a p ∈ T̃τ which rejects x—
otherwise we could inductively find an infinite branch z through T̃τ such that
z∗ = x, implying that ran(x) /∈ A since z is a play according to a strategy that
was winning for player II. For each p ∈ T̃τ let Kp := {x | p rejects x}. Also, write
K∗p := {ran(x) | p rejects x}. Since A ⊆

⋃
p∈T̃τ K

∗
p and T̃τ is countable, the result

will follow if we can prove that each K∗p is σ-separated from B.
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For this, fix some p = 〈. . . (sn, cn), in〉, and for every s ∈ ω<ω such that in ∈ ran(s)
and min(s) > max(p∗), consider the set

as :=
⋃
{ran(x) | x ∈ Kp and p∗_s ⊆ x}.

We claim that the collection {as | in ∈ ran(s) and min(s) > max(p∗)} σ-separates
K∗p from B. First, clearly if x ∈ Kp then there exists some s, satisfying the
conditions, such that p∗_s ⊆ x, so that ran(x) ⊆ as. Secondly, suppose that
there is some s, with in ∈ ran(s) and min(s) > max(p∗), such that as has infinite
intersection with some b ∈ B. Let a′s := as \ max(s). According to the rules of
the game, player I is then allowed to play the move “(s, a′s)” after position p. The
only problem is that p_ 〈(s, a′s)〉 might not be in T̃τ . However, by construction
there is some c such that i := τ(p_ 〈(s, c)〉) = τ(p_ 〈(s, a′s)〉) and p_ 〈(s, c)〉 ∈ T̃τ .
But then we must have i ∈ a′s, so by definition there is some x ∈ Kp such that
p∗_s ⊆ x and i ∈ ran(x). But then p_ 〈(s, c)〉_ 〈i〉 is still compatible with x and
hence p does not reject x, contradicting x ∈ Kp.

So we must have as ⊥B for all s, and this completes the proof.

Corollary 4.5.3. ADR implies that every pre-gap (A,B) is either σ-separated or
there exists an (A,B)-tree.

Corollary 4.5.4. ADR implies that there are no Hausdorff gaps.

4.6 Other gaps

In the last section, we briefly consider non-Hausdorff gaps, i.e., gaps (A,B) in
which A and B are not necessarily σ-directed, and extend the second main theo-
rem of [Tod96], by combining its proof with results from [Fen93].

As we know, such gaps can be quite explicitly defined. Let us recall the
example we mentioned in the introduction: A := {ax | x ∈ 2ω} and B :=
{bx | x ∈ 2ω}, where ax := {x�n | x(n) = 0} and bx := {x�n | x(n) = 1} for
every x ∈ 2ω. In [Tod96, p 57], Todorčević isolated the main ingredient of this
construction and defined a concept that he called a perfect Luzin gap.

Definition 4.6.1. (A,B) is called a perfect Luzin gap if A can be written as
{ax | x ∈ 2ω} and B can be written as {bx | x ∈ 2ω}, such that the functions
x 7→ ax and x 7→ bx are continuous, and so that the following condition (Luzin’s
condition) is satisfied: there exists some n ∈ ω such that

1. for every x ∈ 2ω, ax ∩ bx ⊆ n, and

2. for every x 6= y, either ax ∩ by * n or ay ∩ bx * n.
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Any pre-gap (A,B) satisfying Luzin’s condition can be shown to be a gap
(see, e.g., [Sch93] for details), and moreover, A and B are perfect subsets of [ω]ω.
The second main result of Todorčević [Tod96, Theorem 2] shows that a perfect
Luzin gap is essentially the only type of analytic gap. First we need a weaker
notion of separation.

Definition 4.6.2. A pre-gap (A,B) is weakly σ-separated if there is a countable
set C such that for every a ∈ A and b ∈ B, there is a c ∈ C such that a ⊆∗ c and
c ∩ b is finite.

If (A,B) are σ-separated then they are also weakly σ-separated, though the
converse need not be true. Of course, in the case of a Hausdorff gap, the two
notions are the same, and are equivalent to (A,B) being separated, but in general
we should be more careful.

Definition 4.6.3. We say that a pre-gap (A,B) satisfies the perfect Luzin di-
chotomy if either

1. (A,B) is weakly σ-separated, or

2. there is a perfect Luzin sub-gap (A′, B′) of (A,B) (i.e., A′ ⊆ A and B′ ⊆ B).

Theorem 4.6.4 (Todorčević). Every (Σ1
1,Σ

1
1)-pre-gap satisfies the perfect Luzin

dichotomy.

Proof. See [Tod96, Theorem 2]

Can we extend this theorem, and prove results similar to the ones we proved
about Hausdorff gaps? We will show that this is indeed the case, and, in fact,
it follows by putting together several existing results. First, we note that the
main ingredient of the proof of [Tod96, Theorem 2] is a perfect set version of the
Open Colouring Axiom studied by Qi Feng in [Fen93], itself being a variant of
the original Open Colouring Axiom (OCA) introduced by Todorčević in [Tod89].

Definition 4.6.5 (Feng). A set A satisfies OCAP if for every partition [A]2 =
K0 ∪ K1, where K0 is open in the relative topology of A, one of the following
holds:

1. there exists a perfect set P ⊆ A such that [P ]2 ⊆ K0, or

2. A =
⋃
nAn, for some An satisfying [An]2 ⊆ K1.

We write Γ(OCAP ) to mean that every set in Γ satisfies OCAP .

Theorem 4.6.6 (Feng).

1. Σ1
1(OCAP ),
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2. the following are equivalent:

(a) Σ1
2(OCAP ),

(b) Π1
1(OCAP ),

(c) ∀r (ℵL[r]
1 < ℵ1).

3. in the Solovay model, all sets satisfy OCAP , and

4. AD =⇒ OCAP .

Proof. See Theorem 1.1, Corollary 2.2, Theorem 4.1 and Theorem 3.3 of [Fen93],
respectively.

The proof of [Tod96, Theorem 2] in fact shows the following stronger result:

Theorem 4.6.7 (Todorčević). For any pointclass Γ, if Γ(OCAP ) holds then every
(Γ,Γ)-pre-gap satisfies the perfect Luzin dichotomy.

Combining this with Theorem 4.6.6, we immediately get:

Corollary 4.6.8.

1. The following are equivalent:

(a) Every (Σ1
2,Σ

1
2)-pre-gap satisfies the perfect Luzin dichotomy,

(b) Every (Π1
1,Π

1
1)-pre-gap satisfies the perfect Luzin dichotomy,

(c) ∀r (ℵL[r]
1 < ℵ1).

2. in the Solovay model, all pre-gaps satisfy the perfect Luzin dichotomy, and

3. AD implies that all pre-gaps satisfy the perfect Luzin dichotomy.

Proof. The only non-trivial direction is (b)⇒ (c) from part (1). For this, simply
use the construction from Section 4.3, i.e., the (Π1

1,Π
1
1)-Hausdorff gap satisfying

HC in L. Clearly, it is not weakly σ-separated. On the other hand, if it would
contain a perfect Luzin sub-gap (A′, B′), then (A′, B′) would be a Hausdorff gap
with a perfect set A′, contradicting Theorem 4.1.3.

Note that here we have an implication from AD rather than just ADR. Whether
the same could be done for Corollary 4.5.4 is still open.

Question 4.6.9. Does AD imply that there are no Hausdorff gaps?




