
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus
and Human Metapneumovirus

Gaunt, E.R.; Jansen, R.R.; Poovorawan, Y.; Templeton, K.E.; Toms, G.L.; Simmonds, P.
DOI
10.1371/journal.pone.0017427
Publication date
2011
Document Version
Final published version
Published in
PLoS ONE

Link to publication

Citation for published version (APA):
Gaunt, E. R., Jansen, R. R., Poovorawan, Y., Templeton, K. E., Toms, G. L., & Simmonds, P.
(2011). Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and
Human Metapneumovirus. PLoS ONE, 6(3), [e17427].
https://doi.org/10.1371/journal.pone.0017427

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1371/journal.pone.0017427
https://dare.uva.nl/personal/pure/en/publications/molecular-epidemiology-and-evolution-of-human-respiratory-syncytial-virus-and-human-metapneumovirus(61c6c4c3-f289-4055-9b96-702f68ce2a1c).html
https://doi.org/10.1371/journal.pone.0017427


Molecular Epidemiology and Evolution of Human
Respiratory Syncytial Virus and Human
Metapneumovirus
Eleanor R. Gaunt1*, Rogier R. Jansen2, Yong Poovorawan3, Kate E. Templeton5, Geoffrey L. Toms4, Peter

Simmonds1

1 Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom, 2 Department Medical Microbiology, Academic Medical Centre, Amsterdam,

Netherlands, 3 Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand, 4 Institute of Cellular Medicine, Newcastle University, Newcastle

upon Tyne, United Kingdom, 5 Specialist Virology Centre, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom

Abstract

Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the
Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly
conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic
groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently
observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV
and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of
both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions.
The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were
determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for
decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise
through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of
pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively
selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously
identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple
sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups.
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Introduction

Human respiratory syncytial virus (HRSV) and human

metapneumovirus (HMPV) are globally ubiquitous respiratory

pathogens of the Pneumovirinae subfamily of the Paramyxoviridae.

Both viruses comprise two genetic groups, A and B, distinguishable

genetically and serologically [1–3] which co-circulate with

fluctuating frequencies. The two HRSV genetic groups are

referred to as subgroups; these comprise genotypes distinguished

on the basis of antibody cross reactivity [4] or phylogeny [5]. Each

of the two HMPV genetic groups are referred to somewhat

paradoxically as genotypes, and each genotype comprises two sub-

genotypes (A1, A2, B1 and B2). HMPV genotypes are distin-

guishable serologically and sub-genotypes are discerned phyloge-

netically [3].

Fluctuating circulation frequencies of HRSV subtypes and

HMPV genotypes give rise to the observation of switching of the

predominantly circulating subtype (HRSV) or genotype (HMPV)

between respiratory seasons [6–13]. HMPV was discovered in

2001 and so longitudinal epidemiologic studies are infrequent,

though for HRSV a theme of cyclicity whereby subtype A

predominates for a number of seasons then subtype B predom-

inates (usually for a shorter duration) are reported [14–19].

HRSV-A is considered the major subtype in terms of both

frequency [20] and associated morbidity [7]. Similarly, HMPV-A

strains are generally detected at a higher frequency than HMPV-B

strains [12,13,21] and clinical differences are reported between

HMPV genotypes [21,22]. Repeat HRSV infections occur

throughout life with decreasing morbidity, and increasingly

evidence suggests the same is also true for HMPV [3,23–27].

The HRSV and HMPV virions both express two highly

immunogenic surface proteins against which adaptive immune

responses are directed. The fusion (F) protein mediates fusion of

viral and cell membranes and is highly conserved. Anti-HRSV

antibody directed against F protein is cross-reactive for strains of

both subtypes [1,2,28,29], and studies on HMPV using human

sera and animal models have indicated similar antibody reactivity

patterns [30–33]. It is conceivable that the conformational changes

arising on activation of the fusion protein [34] serve to expose the

conserved functional (and immunogenic) regions (analogous to the
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gp41 fusion protein of HIV-1 [35]) which are otherwise, in the

native state, sheltered from immunologic recognition.

The attachment (G) glycoprotein of pneumoviruses conversely

portrays several immune evasive traits. Specificity of antibody

raised against the G protein extends to, and possibly beyond, the

genotype level (HRSV) or sub-genotype level (HMPV)

[4,29,30,36–38]. In both viruses the G protein is extensively

glycosylated with both N- and O-linked sugars and a high

proportion of proline residues [39,40] thought to reduce ordered

secondary structure of the protein [41].

The highly variable G protein of HRSV comprises 298 [42] or

318 [43] residues. Two mucin-like hypervariable regions (HVRs)

at the C terminus under significant positive selection form

hydrophilic stalk like protrusions from the surface of the virion

separated by an exposed [44] but conserved and non-glycosylated

region comprising residues 151–190 [45]. A heparin binding

domain (HBD) identified between residues 184–198 (subgroup A)

or 183–197 (subgroup B) binds heparin-like glycosaminoglycans

(GAG) on the host cell surface [46]. A fourteen residue region

incorporating four universally encoded cysteine residues at

positions 173, 176, 182 and 186 believed to form disulphide

bridges is common to human and bovine RSVs [47], and the G

protein has been shown to bind host cell receptor CX3CR1 via the

CX3C chemokine domain accommodating cysteine residues at

positions 182 and 186 [48]. Interestingly, subtype specific

seroconversion directed against this antigenic region is detectable

in only 40% of individuals [49].

The HMPV G protein, which comprises 217 to 236 residues

[50,51] has not been resolved in such detail. Nevertheless, great

variability in the C terminal ectodomain is seen; conversely to

HRSV, no conserved cysteine pairs or chemokine domains are

detectable. HMPV does not encode a conserved methionine or

alternative initiation codon in or adjacent to the transmembrane

region which would permit production of a secreted form of the G

protein, unlike HRSV [52].

It is hypothesized that switching of the predominant circulating

subtype of HRSV is brought about by short-lived subtype-specific

herd immunity in a population generated over one or two seasons,

which favours dissemination of the alternate subtype in a

subsequent season [43,53,54]. This suggestion has been borrowed

to explain HMPV genotype switching also [12].

Evolutionary modelling of several respiratory viruses has been

undertaken. A well conducted analysis which identified positively

selected sites and the evolutionary characteristics of HRSV was

bipartite, corresponding with the two subtypes A and B [10,11].

Sequence data spanning 47 and 45 years (for subtypes A and B

respectively) were used to identify positively selected sites within the

attachment (G) protein, to distinguish residues which had a

significant likelihood of being O-glycosylated (a mechanism used

to shelter residues from immunologic recognition [55]), and to

determine the time since the most recent common ancestor (tMRCA)

of the HRSV species – which was estimated to have existed 350

years ago.

The evolutionary dynamics of the closely related HMPV have

also been explored [56–58]. The tMRCA of the HMPV sub-genotypes

were estimated at 12–28 years, and the two genotypes were found to

have mean tMRCAs of 26–51 years [56–58]. The tMRCA across the

species in one study was 119–133 years [56], whereas another study

using sequence data collected over a greater number of years

determined a more recent species level tMRCA of 97 years [58],

though both analyses were conducted using similar sequence data

and the same software package (BEAST [59]).

Many human infecting viruses, both in the field of respiratory

medicine and more widely, undergo a turnover and replacement

of predominant lineages with emergent strains. For example,

clades of echoviruses 9, 11 and 30 are frequently replaced by novel

recombinant forms with striking periodicity [60], dengue virus

serotypes are comprised of clades undergoing replacement [61],

and measles virus clade replacement is described, the latter of

which is likely due to selective advantages brought about by the

vaccine era [62]. HRSV and HMPV have not previously been

discussed in such terms, and so it was decided to investigate

whether similar evolutionary mechanisms are evident for HRSV

and HMPV.

We report identification and evolutionary modelling of three

geographically dispersed contemporary clades of HRSV and five

of HMPV, which have circulated for decades. Switching of the

predominantly circulating genotype (HMPV)/subtype (HRSV)

therefore cannot be attributed to the emergence of novel virus

lineages. Identification of numerous sites under positive selection

in the G proteins of both viruses were frequently discordant with

those identified in previous studies, and little overlap in positively

selected sites was observed between HRSV subtypes or HMPV

genotypes. The interpretations of these findings are discussed.

Results

Circulating clades of HRSV and phylogenetic
reconstructions

To investigate the geographical and temporal distribution of

individual clades of each virus, phylogenetic analyses were

performed on 243 HRSV and 310 HMPV F gene sequences

with isolation dates spanning 44 and 26 years respectively (Fig. 1).

Three clades of HRSV with sufficient sequences available were

identified (labelled 1–3; Fig. 1A), of which two were subtype A,

and one was subtype B.

HRSV subtype B sequences largely grouped into the one clade,

and all but three subtype B sequences falling outside this clade

were collected before 2002. HRSV subtype A sequences mostly

fell into one of two clades, with all but one of the sequences not

belonging to one of the identified clades having a collection date

prior to 2002. There was little evidence of geographical clustering

of HRSV sequences, with strains from Newcastle, the Netherlands

and Bangkok phylogenetically interspersed among the Edinburgh

strains in all three clades (Fig. 1A). HRSV clade 1 was comprised

entirely of sequences generated during this study, whereas clades 2

and 3 incorporated sequences downloaded from Genbank of Asian

origin.

Phylogenetic analyses comparing the same 58 HRSV isolates

sequenced in the F and G gene regions (Fig. 2) reveals congruence

between the two datasets with sequence clusters supported by a

70% bootstrap threshold consistent over the two genome regions.

(Greater bootstrap support was evident in the G gene, reflective of

the greater diversity seen in this region.) Closer inspection of the

HRSV-A F and G gene phylogenies revealed two monophyletic

lineages (Fig. 2). Directional evolution of the two HRSV-A

lineages is evident visually.

Identification of positively selected sites in the HRSV
genes encoding surface proteins

To further understand the evolutionary pressures acting on

HRSV and HMPV, analyses to detect codons under positive

selection in the F and G genes of both viruses were undertaken. No

positively selected codons were identified in the F gene of HRSV

clades, findings that contrasted markedly with the 32 positively

selected sites detected within the HRSV-A G gene and 5 in the

HRSV-B G gene (Table 3). The codon encoding residue 258 was

the only residue identified as positively selected for both subtypes.

Epidemiology and Evolution of the Pneumovirinae

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e17427



Epidemiology and Evolution of the Pneumovirinae

PLoS ONE | www.plosone.org 3 March 2011 | Volume 6 | Issue 3 | e17427



Circulating clades of HMPV
HMPV phylogenetic reconstructions revealed 5 main mono-

phyletic groups corresponding with five major clades, one within

sub-genotype B1, and two each within sub-genotypes A2 and B2

(labelled 1–5; Fig. 1B). The availability of geographically diverse

HMPV-F sequences in Genbank allowed identification of strains

from at least two, and up to four continents within clades 2, 3, 4

and 5. Clade 1 was the exception, comprised entirely of strains

from Edinburgh and the Netherlands. Older HMPV strains

clustered to the internal nodes of the tree. HMPV G protein

sequence data available in Genbank spanning 11 years between

1997 and 2008 was analysed phylogenetically (Fig. 3). This also

revealed geographically disparate strains interspersed phylogenet-

ically, and that several identified lineages circulated concurrently,

confirming the observations drawn from the F gene phylogenetic

analysis, and comparable with HRSV. Together with the strong

evidence of directional evolution, this is indicative of epidemiologic

and evolutionary traits shared by the two members of the

Pneumovirinae.

HMPV strains from Bangkok were exclusively of genotype A,

though previously determined strains of Japanese origin grouped

in genotype B (clades 2 and 3). One unusual HMPV genotype A

sequence from the Netherlands (NL20850160/08.042) did not

group into either sub-genotype A1 or A2. Despite sampling from

three globally distributed referral centres collected over two years,

we were unable to identify any sequences belonging to the HMPV

A1 sub-genotype.

Positive selection in the HMPV surface proteins
Analysis of the F gene of HMPV-B sub-genotypes yielded only

two positively selected codons in the B2 group at residues 391

(p = 0.870)) and 400 (p = 0.664). Within the G gene of HMPV-A,

fourteen codons were positively selected, six were positively

selected within HMPV-B1 and 17 sites were identified as under

positive selection within HMPV-B2 (Table 3). For HMPV-A,

HMPV-B1 and HMPV–B2, sites identified as under positive

selection were usually different between groups, except residue 110

which was identified in all three groups.

HRSV-F and HMPV-F clade turnover
Evolutionary analyses of three HRSV-F and five HMPV-F

clades was undertaken to determine the minimum length of time

monophyletic lineages of both viruses have been circulating

(Table 4). Strict molecular clock models were always used under

the assumption that the evolutionary rate within a clade did not

vary. Analysis of the HRSV-B clade (clade 1, Fig. 1A) was

unable to yield an ESS.200, likely due to the low diversity

encompassing most F gene sequences within the subtype and so

was excluded from analyses. Indeed, in this clade, visual

evidence of directional evolution was not evident from

phylogenetic analysis. The tMRCA of HRSV-A clades was 17

and 14 years and of HMPV clades was between 11 and 27

years. Genetic diversity across HRSV and HMPV clades was

around 2–3% (Table 4). Congruent tMRCA, diversity and

substitution rates of clades of both viruses (Table 4) support

the existence of evolutionary mechanisms common to both virus

species.

Discussion

HRSV and HMPV sequence data generated from isolates

collected over 44 years and 26 years respectively were analysed

using a variety of techniques, including phylogenetic reconstruc-

tion, evolutionary modelling and identification of positively

selected sites to gain insight into the epidemiology and evolution

of these closely related viruses. Identification of contemporary

HRSV and HMPV clades was undertaken for evolutionary

modelling, to further understanding of the circulation trends of

predominant virus lineages. Evolutionary analyses of the

Pneumovirinae have not previously been approached in this way.

The evolutionary rates of F gene sequences for HMPV clades in

the range of 1.0–1.761023 substitutions/site/year (Table 4) are

slightly higher, albeit within the 95% highest posterior density

(HPD) intervals, than the rates calculated in previous studies

sampling across the species of 0.961023 [56] and 0.71261023

substitutions/site/year [57]. It has previously been noted that

external branches of the HMPV-F phylogenetic reconstruction

have higher dN/dS ratios than internal branches [56]. Taken

together, these observations suggest that substitutions are more

frequently selected for in the contemporary virus population than

previously. This might be explained by an increasing virus

population size – random sampling of a larger virus population

increases the likelihood of detection of nucleotide changes, and

increasing population size increases the probability that residue

changes will be selected for.

Previous calculation of the evolutionary rate of HRSV has

been undertaken by analysing G gene sequence data, with rates

of 1.8361023 and 1.9561023 substitutions/site/year determined

for subtypes A and B respectively [10,11]. These rates are slightly

higher than those calculated here for the F protein (1.3–

1.561023 substitutions/site/year). A higher evolutionary rate in

the G protein than the F protein has similarly been observed for

HMPV [56]. The G protein is under evolutionary pressure due to

the host population adaptive immune response to this immuno-

genic region [45,63–66]. Nucleotide substitutions, most com-

monly those which are non-synonymous, are frequently selected

for, and as nucleotide changes become fixed in the population

they are more likely to be captured by the evolutionary analyses,

which might explain why the model yields higher rates in this

region. Conversely, the extremely low dN/dS ratio and lack of

positively selected sites in the F protein [67] provides evidence

that changes in the F protein are deleterious, probably due to

functional constraints.

For both HMPV and HRSV, we have identified an abundance

of sites under positive selection within the G gene, but few within

the F gene. In HRSV-A, we identified 32 sites under positive

selection. Previous analysis to detect positively selected sites

within HRSV-A [10] identified twelve positively selected sites

using sequence data spanning a similar time frame, with 48

sequences analysed compared with 139 here; 9 residues were

identified by both analyses (111, 117, 215, 226, 262, 274, 276,

290, 297). The previous study used the same program and

threshold for significance, and similar models and sampling frame

in terms of the number of representative strains and date range

analysed. An explanation of this incongruence might be in the

differences between the predominantly circulating lineages of the

Figure 1. Phylogenetic analysis of HRSV (A) and HMPV (B) partial F gene sequences. Phyogenetic reconstruction was by neighbour joining
of MCL-corrected pair-wise distances. Clades identified as described in the methods are indicated by grey shaded boxes. Sequence symbols are
colour coded by year of isolation. Symbol shape denotes geographic origins sequences. Bootstrap values .70% are indicated. (A) Phylogenies rooted
with bovine RSV (not shown). Subgroups A and B are indicated by the blue and yellow boxes respectively. (B) rooted with avian metapneumovirus
species C (not shown). Genotypes A and B are indicated by the blue and yellow boxes respectively. NA, None analysed.
doi:10.1371/journal.pone.0017427.g001
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UK and Belgium; these may differentially evolve and/or be

under dissimilar structural or immunologic constraints. Alterna-

tively, we may have identified more positively selected sites due to

the larger dataset analysed. The HRSV residues identified as

under positive selection 142, 206, 274 and 286 have been

associated with substitutions in successful antibody escape

mutants [68–70]. The positively selected residues 215, 217 and

226 fall within a region thought to be immunogenic of

neutralising antibodies [71,72], and residue 297 has previously

been identified as a determinant of the integrity of multiple

overlapping strain-specific epitopes [73].

An inability of antibodies to select for mutations at sites

autonomous to their binding specificity has previously been used

to support the notion that HRSV-G epitopes are linear rather

than conformational [45]. The greatest distance between any two

residues identified as under positive selection within HRSV-A,

excluding the conserved region between residues 151–190 (in

which we identified one residue under positive selection at

position 161), was eight amino acids, which suggests that HRSV-

A might potentially generate variability in any epitope of the G

protein. The four residues identified as under positive selection in

the previous study which were not verified through this work

were nevertheless proximal to residues identified as positively

selected in this study, with the greatest distance between the two

being four amino acids. This supports the notion that within

epitopes, changes in any residue might be selected for immune

evasion.

For HRSV-B, only five residues were identified as under

positive selection, compared with twelve during a previous study.

Again, we analysed a greater number of sequences than previous

work, though both studies used sequences generated from samples

collected over a similar time frame [11]. Here, all the identified

sites under positive selection were in the second hyper-variable

region in the ectodomain, and only two of the five residues we

identified as positively selected were also identified as positively

selected previously. Two of the discordant sites we identified were

within or downstream of the previously identified [11,43] 60

nucleotide repeat insertion at the 39-proximal end of the G protein

gene, and so it is possible that these sites were not detected by

previous analyses due to limited availability of sequence data for

the insert region. Residue 224, the third amino acid not previously

identified as such, was determined as positively selected with a

probability of p = 0.501, and was not detected by the Naı̈ve

Empirical Bayes test (used in previous analyses), accounting for the

discordancy at this residue between studies.

Six-nucleotide in frame deletions at amino acid positions 159

and 160 reported previously [11] were observed in four of the

Newcastle HRSV isolates from 1985, 1986 and 2009. This

occurred in different bootstrap-supported lineages of the G

region phylogenetic tree, providing strong evidence that this

deletion has been independently selected for more than once.

Recent identification of two epitopes within the central

conserved region of the HRSV G protein ectodomain between

residues 151–163 and 164–176 [49] illustrates the immunoge-

nicity of these two peptide regions, while an investigation of the

properties of the central conserved domain of HRSV-G showed

that the region between amino acids 149–177 played no role in

virus infectivity [74]. A loss of these two residues may therefore

reduce virus immunogenicity while having no effect on virus

infectivity. These observations, together with previous reports of

premature stop codons and frame shifts within the subgroup B

G protein [71,73,75], suggest that HRSV-B may use quite

different mechanisms from HRSV-A to evade host immune

responses.

A number of residues were identified as positively selected

within the G protein of HMPV types A, B1 and B2 (14, 6 and 17)

which were differentially located between lineages, in keeping with

the observations made of HRSV. There is a predicted cytotoxic T

cell epitope between residues 32–41 [76], and within this region

one site was identified as positively selected within HMPV-A. The

residue identified as under positive selection in all three HMPV-G

analyses (residue 105) is not a predicted site of N- or O-

glycosylation [51].

Phylogenetic analyses of HRSV and HMPV yielded the

common observation that strains isolated from geographically

widespread referral centres frequently resolved within the same

lineage, reflecting the ability of these viruses to disseminate rapidly

on a global scale, and substantiating previous reports of the

worldwide distribution of lineages of both viruses [11,63,68,77].

Switching of the predominantly circulating genotype (HMPV)/

subtype (HRSV) in a population is widely discussed, but poorly

understood in terms of what drives these events or the

mechanisms by which they occur. The MRCA estimates for

contemporary circulating clades were for HRSV and HMPV 14–

17 and 11–28 years respectively, providing conclusive evidence

that switching of the predominantly circulating genetic group of

both viruses arises independently of novel lineage emergence

events. The differences in evolutionary rates between older and

more recent HMPV isolates, interpreted here as evidence of an

increasing population size, contradicts a previous analysis which

showed that one HMPV lineage was increasing in size whereas

another was decreasing [57]. Taken together, this information

lends to the hypothesis that HMPV (and HRSV) lineages

circulate in a cyclic trend of multiple eclipse phases preceding

periodic population expansions. Proliferation occurs when the

lineage is of minimal susceptibility to the adaptive immune

responses of the host population, and a regression in circulating

frequency occurs as the host population is increasingly exposed.

During the eclipse phase, the virus evolves immune evasive

characteristics, which when accumulated sufficiently permit a

new phase of widespread circulation.

In summary, we have analysed the molecular epidemiology and

evolution of HRSV and HMPV in parallel using the novel

approach of clade identification for evolutionary analysis. This

work has revealed a number of shared trends, including evidence

of both locally and globally circulating lineages of both viruses,

significant positive selection acting in the G but not the F genes

and a lack of evidence for positive selection being restricted to

specific codons. Switching of the predominantly circulating

subtype (HRSV) or genotype (HMPV) may be a result of

fluctuating circulating frequencies of contemporary clades, which

cycle through proliferative and eclipse phases, and is not due to

novel lineage emergence events. We suggest that HRSV has the

ability to select for residue substitutions at multiple sites within

Figure 2. Phylogenetic analysis of 58 HRSV sequences in the F and G genes. Phylogenetic reconstruction was by neighbour joining of MCL-
corrected pair-wise distances. F gene sequences rooted with bovine RSV; G gene sequences unrooted. Sequence symbols are colour coded by
geography to emphasize the congruence between the phylogenies of the two genome regions. Monophyletic groupings which contain sequences
from the 07/08 respiratory season for which sequence data was available from all four referral centres are indicated in shaded boxes. Bootstrap values
.70% are indicated.
doi:10.1371/journal.pone.0017427.g002
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epitopes, contributing to the successful recirculation to high

incidence of lineages of this virus.

Methods

Sample collection
HRSV and HMPV positive respiratory samples archived

between March 2006 and December 2008 at the Specialist

Virology Centre (SVC), Royal Infirmary of Edinburgh, UK were

identified as described previously [13]. 26 HRSV isolates were

collected between 1965 and 2009 from Newcastle, UK [6].

Additionally, nine HRSV and eight HMPV positive samples from

Bangkok, Thailand (2006–07 respiratory season) detected as

described previously were included in analyses [78] along with

16 HRSV and 16 HMPV variants from the Academic Medical

Centre, Amsterdam, Netherlands from the 2007–8 season.

Figure 3. Phylogenetic analysis of HMPV partial G gene sequences (unrooted). Phylogenetic reconstruction was by neighbour joining of
MCL-corrected pair-wise distances. Genotypes (A and B) and sub-genotypes (A1, A2, B1 and B2) are indicated. Sequence symbols are colour coded by
year of isolation and symbol shape is designated depending on geographic origin of sequence. Bootstrap values .70% are indicated.
doi:10.1371/journal.pone.0017427.g003
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HRSV and HMPV nucleotide amplification and
sequencing in the F and G genes

All HRSV (n = 183) and HMPV (n = 177) positive respiratory

samples were amplified nd sequenced in the 39 F gene region as

previously described [13] (589 and 438 nucleotides respectively).

For HRSV, all 26 isolates from Newcastle, seven from Bangkok,

16 from the Netherlands and eight from the UK were amplified in

the 39 G gene region that included both HVRs (780 nucleotides).

Combined, the HRSV variants analysed were globally distributed

and spanned 44 years. These were analysed alongside available

HMPV G gene sequences in Genbank, which encompassed a

temporal diversity of 12 years.

HRSV and HMPV RNA was extracted using Qiagen QIAamp

viral RNA mini kit and reverse transcribed using Qiagen A3500

reverse transcription system, with extended elongation of 55 min-

utes and use of random primers. HRSV and HMPV cDNAs were

amplified by nested PCR. Reaction mixtures contained 4 ml

MgCl2, (25 mM), 0.2 ml dNTP (3 mM), 1 ml each outer primer

(10 mM) and 0.08 ml TaqPolymerase. Primers for HRSV-F gene

PCR were (outer sense) 916- TAT GGW GTD ATA GAY ACM

CCY TGY TGG, (inner sense) 1018- GG RTG GTA YTG TGA

YAA TGC AGG, (inner antisense) 1663-CT TAR TGT RAC

TGG TGT GYT TYT GGC and (outer antisense) 1682- TWC

CAC TYA GTT GRT CYT TRC TTA RTG. HRSV-G gene

was amplified by primers (outer sense) 47- CCT GGG AYA CTC

TYA ATC AT, (inner sense) 137-TGG CAA TGA TAA TCT

CAA C (inner antisense) 117- CCT YTG CTA ACT GCA CT

and (outer antisense) 147-GTA TAC CAA CCW GTT CTT A;

antisense primers align in the downstream fusion gene. Primers for

HMPV F gene amplification were as described previously [13].

2 ml cDNA was used in the first round and 1 ml first round product

was used in the second round reaction. The same cycling

conditions were used throughout; 30 cycles at 94uC for 18 s,

50uC for 90 s and 72uC for 30 s, and a terminal 72uC elongation

step for 300 s.

Sequences obtained in the course of this study have been

submitted to GenBank and assigned accession numbers

GU386461–GU386756 (HMPV and HRSV F gene) and

HQ731687–HQ731784 (HRSV G gene).

Phylogenetic analysis
A summary of the computational techniques undertaken for this

work and the sequence datasets analysed is tabulated (Table 1).

Partial F gene sequences were aligned and genetic distances were

calculated using Simmonics v1.9 sequence editor package (www.

virus-evolution.org). Phylogenetic trees were constructed from

1000 samplings of maximum composite likelihood (MCL)

distances by neighbour-joining method with pair-wise deletions

for missing nucleotides in MEGA v4.0. For HRSV, 58 isolates

were available for sequencing in both F and G gene regions, and

these subsets were phylogenetically analysed separately for

comparison using the same methods. HMPV-G sequences

downloaded from Genbank were analysed altogether (unrooted).

The dataset parameters used for phylogenetic reconstructions are

summarized (Table 2).

Identification of HRSV-F and HMPV-F clades
No systematic method is currently used for identification of

distinct HRSV and HMPV lineages. HRSV and HMPV clades

(defined as described herein) were identified for the purpose of

evolutionary modelling. Phylogenetic analyses of F gene nucleotide

sequences of contemporary HRSV and HMPV strains (generated

from samples collected since 2007) were constructed as described

above for identification of bootstrap-supported monophyletic

lineages (values $70%) using MEGA v4.0. Subsequent phyloge-

netic analyses incorporated older monophyletic sequences within

the contemporary clades, with visually appropriate limitations of

1.5–3% variation across clades at the nucleotide level and no

individual sequence varying from all others within the clade by

more than 0.5% at the nucleotide level.

Table 1. Summary of the evolutionary analyses undertaken by taxomonic group.

Taxonomic group Gene Analyses undertaken (software used)

Nucleotide sequencing
(Simmonics)

Phylogenetic
(MEGA)

Positive selection
(PAML) Evolutionary (BEAST)

HRSV spp F 6 6

HRSV spp G 6 6

HRSV-A F 6 6

HRSV-B F 6 6

HRSV-A G 6 6

HRSV-B G 6 6

HRSV clades F 6 6

HMPV spp F 6 6

HMPV spp G 6

HMPV-A2 F 6 6

HMPV-B1 F 6 6

HMPV-B2 F 6 6

HMPV-A G 6

HMPV-B1 G 6

HMPV-B2 G 6

HMPV clades F 6 6

doi:10.1371/journal.pone.0017427.t001
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Identification of positively selected sites in the F protein

of HMPV and HRSV clades and the G protein of

genotypes/subtypes
Prior to evolutionary analyses, positively selected sites were

removed from nucleotide alignments. This was considered

necessary as positively selected sites undergo convergent evolu-

tion whereas other sites are subject to neutral or nearly neutral

drift, and different evolutionary mechanisms inevitably violate

assumptions of the SRD06 evolutionary model [59]. Nucleotide

alignments of HRSV and HMPV subtypes/sub-genotypes were

analysed for positive selection using PAML v4.4. In the

attachment protein of HRSV, species level analyses detected all

sites in the ectodomain as positively selected due to the high

diversity in this region, and similar results were produced for the

HMPV species level analyses. This was likely also affected by the

large amount of sequence data available. To conserve the

maximum diversity in the sequence dataset analysed, analyses for

positive selection were undertaken in decreasing increments of

taxonomic diversity until satisfactory results were attained. This

was found to be the subtype level for HRSV and the sub-

genotype level for HMPV. The recommended combination of

models 0, 1a and 2a [79] were run and Bayes empirical Bayes

results only were considered as recommended. The genome

regions analysed for the different virus subgroups are summarized

(Table 2). Nucleotide alignments with positively selected sites

removed were reanalysed in PAML to confirm no positive

selection was detected.

Clade turnover
Identical sequences (by geography, date and nucleotide sequence)

within clades were removed, and evolutionary analyses were

restricted to clades with a minimum of 15 non-identical sequences.

Three HRSV and five HMPV clades were identified (indicated on

Fig. 1). Evolutionary analyses of HRSV and HMPV clades were

undertaken using BEAST to calculate evolutionary rates and time

since the most recent common ancestor (tMRCA) of genetic groups.

The F gene region was selected as it was more phylogenetically

informative, not subject to positive selection and sequences from a

wider geographical and temporal range were available. Clade

sequence datasets were run in BEAST using a strict SRD06 model,

which allows the third position in a codon to have a different

substitution rate to the first and second, until all ESS (expected

sample size) values exceeded 200 (recommended). The strict model,

as opposed to a relaxed model, assumes that all lineages

incorporated within the sequence dataset evolve at the same rate.

As the sequence datasets described here were by definition

monophyletic groups, the assumption of a nonvariable evolutionary

rate within each group was justified. Analyses were run in duplicate

to ensure convergence of the posterior distribution, demonstrating

repeatability of the result. The coefficient of variation histogram was

used to confirm validity of the strict model.

Table 2. Sequence datasets for phylogenetic and for positive selection analyses.

Virus group Gene Region analysed Reference strain
Root for phylogenetic
reconstruction

HRSV-A G Residue 13 to C terminus Long HRSV-B

HRSV-B G Residue 35 to C terminus WV/B1/85 HRSV-A

HRSV F Residues 358–554 Long Bovine RSV

HMPV-A1 G Residue 1 to C terminus Analysed for positive selection only

HMPV-B G Residue 35 to C terminus Analysed for positive selection only

HMPV G Residue 35 to C terminus CAN97-83 Unrooted

HMPV F Residues 385–531 CAN97-83 AMPV-C

doi:10.1371/journal.pone.0017427.t002

Table 3. Positively selected sites detected in the attachment (G) protein of HRSV and HMPV.

Group
Reference
strain Positively selected sites

Frequency of positively selected sites identified in probability
range

0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0

HRSV-A Long 101, 104, 106, 111, 115, 117, 121, 122,
123, 126, 127, 131, 142, 146, 161, 206,
215, 217, 226, 230, 233, 250, 258, 262,
274, 276, 280, 286, 289, 290, 291, 297

13 4 5 5 5

HRSV-B WV/B1/85 223, 224, 258, 267/2871, 297/317 1 2 1 1

HMPV-A CAN97-83 33, 81, 84, 93, 105, 106, 110, 145, 146,
157, 165, 172, 177, 190

3 2 3 5 1

HMPV-B1 CAN97-83 70, 100, 105, 116, 162, 201 2 3 1

HMPV-B2 CAN97-83 53, 55, 85, 89, 93, 105, 109, 111, 121,
126, 137, 141, 180, 202, 207, 217, 222

4 8 3 1 1

1Refers to strains without/with the 60 nt repeated region.
doi:10.1371/journal.pone.0017427.t003
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