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ADAPTIVE WAVELET SCHEMES FOR PARABOLIC PROBLEMS:
SPARSE MATRICES AND NUMERICAL RESULTS∗

NABI CHEGINI† AND ROB STEVENSON‡

Abstract. A simultaneous space-time variational formulation of a parabolic evolution problem
is solved with an adaptive wavelet method. This method is shown to converge with the best possible
rate in linear complexity. Thanks to the use of tensor product bases, there is no penalty in complexity
due to the additional time dimension. Special wavelets are designed such that the bi-infinite system
matrix is sparse. This sparsity largely simplifies the implementation and improves the quantitative
properties of the adaptive wavelet method. Numerical results for an ODE and the heat equation are
presented.
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1. Introduction. This paper is concerned with the numerical solution of linear
parabolic evolution equations. In general, even for a smooth source term and initial
condition, the solution of such a problem has a reduced smoothness near the bot-
tom and walls of the space-time cylinder. As a consequence, standard discretization
methods based on uniform meshes will converge at reduced rates.

A general approach to retrieve the best possible rate allowed by the order of
the discretization is to apply adaptive methods. Standard methods for solving time
evolution problems first discretize in space and then in time (method of lines), or
first in time and then in space (Rothe’s method). As a consequence, with these time
marching methods it seems hard to be able to arrive at an optimal distribution of the
“mesh-points” or degrees of freedom simultaneously over space and time.

In this paper, we consider a simultaneous space-time variational formulation of
the parabolic problem. This formulation is well posed in the sense that it defines a
boundedly invertible operator between a Hilbert space and the dual of another Hilbert
space. We equip both Hilbert spaces—being Bochner spaces or intersections thereof—
by Riesz bases that are tensor products of temporal and spatial wavelet bases. In this
way, we arrive at an equivalent, well-posed bi-infinite matrix vector problem. We
solve this problem with an adaptive wavelet method applied to the normal equations.

The advantages of our approach are two-fold: First, thanks to the tensor-product
construction of the basis, there is a nearly neglectable penalty in asymptotic com-
putational complexity due to the additional time dimension, an effect that is well
known for so-called sparse-grid or hyperbolic cross approximation methods. Second,
the adaptive wavelet method is proven to converge at the best possible rate, in linear
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complexity.
Our approach was investigated earlier in [SS09], and on a more heuristical level in

[GO07]. Compared to the first work, here we use an alternative variational formulation
in which the initial condition is incorporated more naturally. Furthermore, we design
a new wavelet basis with respect to which any parabolic differential operator of second
order with constant coefficient gives rise to a bi-infinite system matrix that is truly
sparse. Having such a matrix largely simplifies the implementation and improves the
quantitative properties of the adaptive wavelet method. We present numerical results
for an ordinary differential equation and for the heat equation.

This paper is organized as follows: In section 2, a space-time variational formu-
lation of the parabolic problem is derived, and mapping properties of the resulting
operator are given. By equipping the occurring Hilbert spaces with tensor products of
temporal and spatial wavelet bases, in section 3 an equivalent bi-infinite matrix-vector
problem is derived. In section 4, the best possible approximation rates from the tensor
product bases are investigated in various situations. The adaptive wavelet method for
solving the bi-infinite matrix-vector problem is described in section 5. Spatial wavelets
that give rise to a sparse representation of the elliptic part of the operator were de-
signed in [DS10b, CS10]. In section 6, temporal test and trial wavelets are constructed
such that the parabolic problem with respect to the tensor product wavelets is sparse.
Numerical results for an ODE obtained with these temporal wavelets are presented
in section 7. Finally, in section 8 numerical results are given that are obtained by the
overall scheme applied to the heat equation.

In this paper, by C � D we will mean that C can be bounded by a multiple of
D, independently of parameters on which C and D may depend. Obviously, C � D
is defined as D � C, and C � D as C � D and C � D.

2. Parabolic problem in variational form. Let V,H be separable Hilbert
spaces, for convenience over R, such that V ↪→ H with dense embedding. Identifying
H with its dual, we obtain the Gelfand triple V ↪→ H ↪→ V ′. We use the notation
〈·, ·〉H both to denote the scalar product on H × H and its unique extension by
continuity to the duality pairing on V ′ × V .

Let 0 < T < ∞ and, for almost every (a.e.) t ∈ I := (0, T ), let a(t; ·, ·) denote a
bilinear form on V × V such that for any η, ζ ∈ V , t �→ a(t; η, ζ) is measurable on I,
and such that for some constant λ0 ∈ R and for a.e. t ∈ I,

|a(t; η, ζ)| � ‖η‖V ‖ζ‖V (η, ζ ∈ V ) (boundedness),(2.1)

a(t; η, η) + λ0‖η‖2H � ‖η‖2V (η ∈ V ) (G̊arding inequality).(2.2)

For a.e. t ∈ I, let A(t) ∈ L(V, V ′) be defined by

〈A(t)η, ζ〉H = a(t; η, ζ).

Given g ∈ L2(I;V
′) and u0 ∈ H , we are interested in solving the parabolic problem

of finding, for a.e. t ∈ I, u(t) ∈ V such that

(2.3) u̇(t) +A(t)u(t) = g(t) in V ′, u(0) = u0 in H.

Remark 2.1. In particular, we have in mind A(t) being a linear, scalar differential
or integrodifferential operator of order 2m ≥ 0 on a bounded domain Ω ⊂ Rn in
variational form (systems of equations will not impose any difficulties apart from
more involved notation). Then, H = L2(Ω) and V = Hm(Ω) or a closed subspace
incorporating homogeneous Dirichlet boundary conditions.
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By multiplying (2.3) by smooth test functions v of time and space that vanish at
t = T , integrating both sides over time and space, and, excluding [SS09], by applying
integration by parts to the first term, we end up with the variational problem of
finding u such that for all such v

(2.4) b(u, v) = f(v),

where

b(w, v) :=

∫
I

−〈w(t), v̇(t)〉H + a(t;w(t), v(t))dt,

f(v) :=

∫
I

〈g(t), v(t)〉Hdt+ 〈u0, v(0)〉H .

For symmetric a, specifically for a(t; η, ζ) =
∫
Ω
∇η · ∇ζ, this variational formulation

was also studied in [BJ89].
Theorem 2.2. With X := L2(I;V ) and Y := L2(I;V ) ∩H1

0,{T}(I;V
′), the oper-

ator B ∈ L(X ,Y ′) defined by (Bw)(v) = b(w, v) is boundedly invertible.
Here H1

0,{T}(I) denotes the closure in H1(I) of the space of smooth functions on

I that vanish at t = T , and Y, being the intersection of the Hilbert spaces L2(I;V )
and H1

0,{T}(I;V
′), is a Hilbert space with squared norm ‖ · ‖2L2(I;V ) + ‖ · ‖2H1

0,{T}(I;V
′).

Remark 2.3. Since for v ∈ Y, one has v(0) ∈ H with ‖v(0)‖H � ‖v‖Y (see [SS09,
section 5] and the references cited therein), for u0 ∈ H and, say, g ∈ L2(I;V

′), it holds
that f ∈ Y ′ with ‖f‖Y′ � ‖g‖L2(I;V ′) + ‖u0‖H .

Theorem 2.2 is proved by checking the following three conditions:

sup
0�=w∈X ,0�=v∈Y

|b(w, v)|
‖w‖X ‖v‖Y <∞ (continuity),(2.5)

inf
0�=v∈Y

sup
0�=w∈X

|b(w, v)|
‖w‖X ‖v‖Y > 0 (inf sup-condition),(2.6)

∀0 �= w ∈ X , sup
0�=v∈Y

|b(w, v)| > 0 (nondegeneracy).(2.7)

This can be done similarly to [SS09, Appendix A]. In [SS09], a different bilinear
form b and spaces X and Y were applied, because a variational formulation was
derived there without performing integration by parts. With the current approach,
the condition u(0) = u0 is incorporated in the variational formulation as a natural
boundary condition instead of an essential one.

Under some additional conditions, a result similar to Theorem 2.2 is also valid
after making a shift of the smoothness indices in space.

Theorem 2.4. Let W ↪→ V with dense embedding, for every t ∈ I, A(·)′ ∈
C([0, T ],L(W,H)), and for λ0 as in (2.2), let A(t)′ + λ0I : W → H be boundedly
invertible. Then with X := L2(I;H) and Y := L2(I;W ) ∩H1

0,{T}(I;H), B ∈ L(X ,Y ′)
is boundedly invertible.

Indeed, by making the standard transformation u(t) = û(t)eλ0t, w.l.o.g. we may
assume that λ0 = 0. Membership of B ∈ L(X ,Y ′) is equivalent to B′ ∈ L(Y,X ′). In
view of (B′v)(w) = b(w, v), the latter is easily verified.
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To infer that (B′)−1 ∈ L(X ′,Y), equivalent to B−1 ∈ L(Y ′,X ), note that, for
h ∈ L2(I;V

′), the adjoint variational problem of finding z ∈ L2(I;V ) ∩H1
0,{T}(I;V

′)
with

(B′z)(w) = b(w, z) =

∫
I

〈w(t),−ż(t) +A′(t)z(t)〉Hdt = h(w) (w ∈ L2(I;V ))

is the weak formulation of the problem of finding, for a.e. t ∈ I, z(t) ∈ V such that

−ż(t) +A(t)′z(t) = h(t) in V ′, z(T ) = 0,

or, with z(·) := z(T − ·), A(·) := A(T − ·)′, and h(·) := h(T − ·),
(2.8) ż(t) +A(t)z(t) = h(t) in V ′, z(0) = 0.

For any fixed s ∈ [0, T ], the bounded invertibility of A(s) : W → H and its
coercivity show that −A(s) generates an analytic semigroup in H , and that for any
h̃ ∈ X , the solution w(t) of, for a.e. t ∈ I,

ẇ(t) +A(s)w(t) = h̃(t) in V ′, w(0) = 0

is in Y [dS64]; cf. also [Woo07]. As is shown in [PS01, Theorem 2.5], the latter results
together with the assumption that A(·) ∈ C([0, T ],L(W,H)) show that the solution
of (2.8) is in Y with ‖z‖Y � ‖h‖X , which was left to show.

Remark 2.5. In the situation of Remark 2.1, and with A(t) being a linear, scalar
differential operator of order 2m ≥ 0, withW := H2m(Ω)∩V the additional conditions
of Theorem 2.4 are fulfilled when both the coefficients of the differential operator and
the boundary of Ω are sufficiently smooth. For m = 1 and Ω being convex, sufficient
smoothness of ∂Ω reduces to Lipschitz continuity.

3. Equivalent bi-infinite matrix vector equations. Let ΨX = {ψX } and
ΨY = {ψY} be Riesz bases for X and Y, respectively, where we have in mind wavelet
bases, and where the pair (X ,Y) is as in either Theorem 2.2 or Theorem 2.4. Then
(2.4) can be equivalently formulated as

(3.1) Bu = f ,

where u is the vector of coefficients of u with respect to ΨX , f := [f(ψY)]ψY∈ΨY

and B := b(ΨX ,ΨY) := [b(ψX , ψY)]ψY∈ΨY ,ψX∈ΨX . Thanks to either Theorem 2.2 or
Theorem 2.4, the vector f is in �2 and both B and its inverse are bounded mappings
on �2 (cf. [Ste09, section 2.1]). In particular, it holds that
(3.2)
‖B‖ ≤ ‖B‖X→Y′ΛX (ΨX )ΛY(ΨY), ‖B−1‖ ≤ ‖B−1‖Y′→XλX (ΨX )−1λY(ΨY)−1.

Here, for a Riesz basis Π for a Hilbert space U , we define the Riesz constants

ΛU (Π) :=
√‖〈Π,Π〉U‖ and λU (Π) :=√‖〈Π,Π〉−1

U ‖−1. With the expressions ΛU (|Π|)
and λU (|Π|), we will mean the Riesz constants of Π normalized in U .

Another equivalent formulation is given by the normal equations

(3.3) B�Bu = B�f .

The bi-infinite matrix B�B is boundedly invertible, symmetric, and positive definite,
and so the adaptive wavelet schemes proposed in [CDD01, CDD02] can be applied to
(3.3).
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The idea of [CDD02] is to apply some convergent iterative scheme to (3.3), or,
when such a scheme is available, directly to (3.1). The best possible rate in linear
complexity, i.e., quasi-optimality, is realized by a recurrent application of coarsening.

The approach from [CDD01] is to solve a sequence of Galerkin approximations
(B�B)|Λi×Λiu

(i) = (B�f)|Λi , where the expansion of Λi to Λi+1 is guided by the
a posteriori error estimator B�Bu(i) − B�f . As shown in [GHS07], with this ap-
proach quasi-optimality is realized without coarsening. We focus on the method from
[CDD01] since it turns out to be quantitatively better. We refer to this method as
the adaptive wavelet-Galerkin method (AWGM). For a recent overview of adaptive
wavelet methods, we refer to [Ste09]. More details about the AWGM will be given
in section 5.

Since the spaces X = L2(I;H) and Y = L2(I;W ) ∩ H1
0,{T}(I;H) from Theo-

rem 2.4 are (intersections of) tensor products of spaces in time and space, a natural
construction of Riesz bases for these spaces is as follows: Let ΘX , ΘY and ΣX , ΣY be
collections of temporal or spatial functions such that, normalized in the corresponding
norms,

ΘX is a Riesz basis forL2(I),
ΘY is a Riesz basis forL2(I) and for H1

0,{T}(I),
ΣX is a Riesz basis forH ,
ΣY is a Riesz basis forW and for H .

Then, normalized in the corresponding norms,
ΘX ⊗ ΣX is a Riesz basis forX ,
ΘY ⊗ ΣY is a Riesz basis forL2(I;W ),H1

0,{T}(I;H), and so for Y;
cf. [GO95] for the last statement. In particular, as shown in [GO95],

(3.4)
ΛY(|ΘY ⊗ ΣY |)≤max

(
ΛL2(I;W )(|ΘY ⊗ ΣY |),ΛH1

0,{T}(I;H)(|ΘY ⊗ ΣY |)),
λY(|ΘY ⊗ ΣY |)≥min

(
λL2(I;W )(|ΘY ⊗ ΣY |), λH1

0,{T}(I;H)(|ΘY ⊗ ΣY |)),
and

(3.5)
ΛL2(I;W )(|ΘY ⊗ ΣY |) =ΛL2(I)(|ΘY |)ΛW (|ΣY |),
λL2(I;W )(|ΘY ⊗ ΣY |) =λL2(I)(|ΘY |)λW (|ΣY |),

and similarly for the Riesz constants of the other normalized tensor product bases for
tensor product spaces.

Similarly, for X = L2(I;V ) and Y = L2(I;V ) ∩H1
0,{T}(I;V

′) as in Theorem 2.2,

if ΘX and ΘY are as above, and if, when normalized in the corresponding norms, ΣX

is a Riesz basis for V , and ΣY is a Riesz basis for V ′ and V , then, when normalized
in the corresponding norms, ΘX ⊗ΣX is a Riesz basis for X , and ΘY ⊗ΣY is a Riesz
basis for L2(I;V ) and H1

0,{T}(I;V
′), and so for Y.

With, for Z ∈ {X ,Y}, DZ := diag{‖θZ ⊗ σZ‖Z : θZ ∈ ΘZ , σZ ∈ ΣZ}, for either
choice of the pair (X ,Y) it holds that f = D−1

Y [f(θY ⊗ σY)]θY∈ΘY ,σY∈ΣY and

(3.6) B = D−1
Y
[− 〈ΘX , Θ̇Y〉L2(I)⊗ 〈ΣX ,ΣY〉H +

∫
I

a(t; ΘX ⊗ΣX ,ΘY ⊗ΣY)dt
]
D−1

X .

Furthermore, if the bilinear form a is of the form a(t; η, ζ) = a1(t)a2(η, ζ), then

(3.7)

∫
I

a(t; ΘX ⊗ ΣX ,ΘY ⊗ ΣY)dt = 〈a1(·)ΘX ,ΘY〉L2(I) ⊗ a2(ΣX ,ΣY).

The diagonal matrix D−1
Y , however, is not of tensor product type.
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4. Best possible rates. Suppose that for some s > 0, for any N , the solution u
of (2.4) can be approximated in X from the span of N (adaptively chosen) elements
from ΘX ⊗ΣX within tolerance O(N−s). Recall that X = L2(I;Z) with either Z = H
(Thm. 2.4) or Z = V (Thm. 2.2). Then the aim of the adaptive wavelet schemes is
to produce an approximation to u from spanΘX ⊗ ΣX within a given tolerance ε in
L2(I;Z) taking not more than O(ε−1/s) operations.

In this section, for Z ∈ {H,V } we investigate what is the best possible rate

smax = smax(Θ
X ⊗ ΣX , L2(I;Z))

that can be expected, where we consider u that are sufficiently smooth. Then, in
order to do so, it is sufficient to consider linear approximation, i.e., the choice of the
aforementioned (sequence of) N elements will not depend on u. We will write Θ and
Σ for ΘX and ΣX .

Remark 4.1. For any s ∈ (0, smax], the class of functions that can be approxi-
mated at rate s with nonlinear approximation is much larger than the corresponding
class of functions that can be approximated with that rate with linear approximation,
being the reason to consider adaptive algorithms in the first place. A characteri-
zation of the nonlinear approximation classes for tensor product approximation in
Sobolev spaces in terms of certain tensor products of Besov spaces can be found in
[Nit06, SU09]. For elliptic problems, in particular for the Poisson problem, corre-
sponding regularity theory has been developed in [DS10a]. For parabolic problems, it
seems that such a regularity theory still has to be investigated.

Let the best possible approximation rate from Σ in Z be smax = smax(Σ, Z). This
means that there exists a sequence Σ1 ⊂ Σ2 ⊂ · · · with ∪iΣi = Σ and #Σi � ρ(Σ)i for
some constant ρ(Σ) > 1, such that for some densely embedded subspace Ẑ of Z, and
with the (biorthogonal) projector QΣi : Z → spanΣi : u =

∑
σ∈Σ uσσ �→

∑
σ∈Σi

uσσ,

it holds that ‖I−QΣi‖Ẑ→Z � (#Σi)
−smax , where smax cannot be improved by another

selection of such a Ẑ or (Σi)i.
Example 4.2. If Ω is a domain in Rn, H = L2(Ω), V = Hm(Ω) or V =

Hm
0 (Ω), and Σ is a standard (isotropic) wavelet basis for Z ∈ {H,V } of order d,

i.e., of degree d− 1, then, as with finite element approximation, smax(Σ;H) = d
n and

smax(Σ;V ) = d−m
n . In both cases, Ẑ can be taken to be Hd(Ω) ∩ V . The fact that

smax decreases with n, in particular that it is proportional to 1
n , is known as the

“curse of dimensionality.”
If, additionally, m ∈ N0, and Ω is a product domain, say Ω = (0, 1)n, then the

space Z itself is an (intersection of) n-fold tensor products of spaces of univariate
functions, and the curse of dimensionality can be avoided. Indeed, with Σ(1) being a
Riesz basis for L2(0, 1) of order d, the collection Σ defined as the n-fold tensor product
of Σ(1) is a Riesz basis for L2((0, 1)

n). If, additionally, when normalized in Hm(0, 1),
Σ(1) is a Riesz basis for Hm(0, 1) or Hm

0 (0, 1), then, when normalized in Hm((0, 1)n),
Σ is a Riesz basis for Hm((0, 1)n) or Hm

0 ((0, 1)n) (cf. [DS10a]).
For this tensor product basis Σ, it holds that smax(Σ, V ) = d−m, assumingm > 0,

and smax(Σ, H) = d up to some “log-factors.” More precisely, with a suitable trial
space of dimension N , the error in H in the corresponding biorthogonal projection is
of order

(4.1) N−d(logN)(n−1)( 1
2+d)

(cf. discussion below). The sequence of (spans of) subsets of Σ used for demonstrating
these linear approximation rates are known as (optimized) sparse grid spaces (cf.
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[GK00, Dij09]), and Ẑ can be taken to be (the intersection of V with) the n-fold
tensor product of Hd(0, 1) (actually a “slightly” larger space can be used).

For avoiding the curse of dimensionality on nonproduct domains, the use of piece-
wise tensor approximations is currently under investigation.

For the moment, assuming an exact geometric convergence rate from Σ in Z,
i.e., excluding the situation (4.1), similar to smax(Σ, Z), let smax(Θ, L2(I)) denote the
best possible approximation rate from Θ in L2(I). In view of the one-dimensional
domain and the L2(I)-norm, the latter rate is equal to the order of the wavelets. Let
(Θp)p≥1 be the corresponding nested sequence of subsets of Θ with #Θp � ρ(Θ)p for

some constant ρ(Θ) > 1, and let L̂2(I) denote the corresponding densely embedded
subspace of L2(I).

Let us first consider the case that smax(Θ, L2(I)) < smax(Σ, Z). Then, with
Σ0 := Θ0 := ∅, using that Θ⊗Σ is a Riesz basis for L2(I;Z) � L2(I)⊗Z, one verifies
that (e.g., cf. [BG04, Dij09])∥∥∥∥I − ∑

p+αq≤i
(QΘp −QΘp−1)⊗ (QΣq −QΣq−1 )

∥∥∥∥
L̂2(I)⊗Ẑ→L2(I)⊗Z

�
√ ∑
p+αq>i

‖QΘp −QΘp−1‖2
L̂2(I)→L2(I)

‖QΣq −QΣq−1‖2
Ẑ→Z

� (#Θi)
−smax(Θ,L2(I))

(4.2)

if α ∈ (0, smax(Σ,Z)
smax(Θ,L2(I))

log(ρ(Σ))
log(ρ(Θ)) ). The map

∑
p+αq≤i(Q

Θp −QΘp−1)⊗ (QΣq −QΣq−1) is

the biorthogonal projector onto the span of ∪p+αq≤i(Θp\Θp−1)⊗(Σq\Σq−1) ⊂ Θ⊗Σ.

Taking α > log(ρ(Σ))
log(ρ(Θ)) , the cardinality of this collection is � #Θi, and we conclude that

smax(Θ⊗ Σ, L2(I;Z)) = smax(Θ, L2(I)).
Second, if smax(Θ, L2(I)) > smax(Σ, Z), then smax(Θ⊗Σ, L2(I;Z)) = smax(Σ, Z).

Third, when smax(Θ, L2(I)) = smax(Σ, Z), by taking α = log(ρ(Σ))
log(ρ(Θ)) , the right-hand

side of (4.2) reads as (log#Θi)
1
2 (#Θi)

−smax(Θ,L2(I)), whereas in this case we have
# ∪p+αq≤i (Θp\Θp−1) ⊗ (Σq\Σq−1) � (log#Θi)#Θi. That is, with a trial space of
dimension N , the error in L2(I;Z) in the corresponding biorthogonal projection is
bounded by a multiple of

(4.3) N−smax(Θ,L2(I))(logN)
1
2+smax(Θ,L2(I)).

Finally, we discuss the situation from Example 4.2 where Σ is the n-fold tensor
product of a univariate wavelet collection Σ(1) of order d, Z = H so that (4.1) applies,
and smax(Θ, L2(I)) = d, i.e., the order of the temporal wavelets being equal to that
of the univariate spatial wavelets. Then an easy generalization of the analysis that
led to (4.3) shows that with a trial space of dimension N , the error in L2(I;H) in the
corresponding biorthogonal projection is bounded by a multiple of

(4.4) N−smax(Θ,L2(I))(logN)n(
1
2+smax(Θ,L2(I))).

As in all previous cases, this result is generally the best possible.
Summarizing, since in all cases, smax(Θ ⊗ Σ, L2(I;Z)) is essentially equal to

min(smax(Θ, L2(I)), smax(Σ, Z)), we can say that when smax(Θ, L2(I)) ≥ smax(Σ, Z),
thanks to the use of a tensor product basis of temporal and spatial wavelets, the so-
lution of the parabolic problem can be approximated with essentially the same rate as
the solution of the corresponding stationary elliptic problem in any case when these
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solutions are sufficiently smooth. With the use of the adaptive wavelet schemes, the
same holds true for the complexity of solving both problems.

5. A sparse stiffness matrix and the adaptive wavelet-Galerkin method.
The application of an adaptive wavelet scheme to (3.3) requires a recurrent application
of B�B to finitely supported vectors. Generally, each row and column of B has
infinitely many nonzero entries, meaning that the application of B�B has to be
approximated. Let us assume that the wavelets from the collections ΘX , ΣX , ΘY ,
and ΣY are sufficiently smooth, have sufficiently many vanishing moments, and let the
bilinear form a(t; ·, ·) stem from a partial differential operator with sufficiently smooth
coefficients, where, in all cases, “sufficient” has to be related to the best possible rate
that can be expected. It has been verified (cf. [Ste09] and the references cited therein)
that then the sizes of the entries of B decay sufficiently fast away from the diagonal,
so that an adaptive routine can be designed that approximates the application of
B�B to a finitely supported vector within a prescribed tolerance, with which the
overall adaptive wavelet scheme is quasi-optimal.

Although qualitatively satisfactory, numerical experiments showed that quanti-
tatively the application of this approximate matrix-vector routine, commonly called
the apply-routine, is quite demanding, where, moreover, this routine is not easy to
implement.

Therefore, continuing earlier investigations for elliptic problems in [DS10b], we
will design wavelet bases such that for

parabolic problems of second order with constant coefficients and with spatial
domains of product type, the matrix B and thus B� are (truly) sparse,

and thus can be applied exactly to any finitely supported vector in linear complexity.
Remark 5.1. For parabolic PDEs with smooth, nonconstant coefficients, the

additional nonzero entries outside the sparsity pattern of a constant coefficient oper-
ator will be much smaller, depending on the levels of the wavelets involved. For the
residual computation inside the adaptive wavelet scheme, which is quantitatively the
most demanding part, it can be envisaged that in each column additional nonzero
entries corresponding to wavelets on higher levels can be ignored.

Next, we briefly describe the AWGM for solving B�Bu = B�f . We denote
the index set of the Riesz basis ΨX = ΘX ⊗ ΣX as ∇, so that B�B is a boundedly
invertible mapping on �2(∇), and B�f ∈ �2(∇).

To relate to the results derived in the previous section, we make the obvious
observation that, since ΨX is a Riesz basis for X , for any Λ ⊂ ∇,

inf
v∈span{ψX

λ :λ∈Λ}
‖u− v‖X � inf

{v∈�2(∇):suppv⊂Λ}
‖u− v‖ = ‖u− u|Λ‖,

where ‖ · ‖ := ‖ · ‖�2(∇). As a consequence, a quasi-best choice for an approximation

to u as a linear combination of N elements from ΨX is to take u�
NΨX , where uN

is a best N -term approximation for u, i.e., a vector with support length less than or
equal to N that coincides to u on those positions where the latter has its N largest
coefficients in modulus.

In the “idealized” AWGM, a sequence (Λi)i ⊂ ∇ and a sequence of approxima-
tions (u(i))i to u with suppu(i) ⊂ Λi are created in the following way: Λ0 := ∅, and
u(0) := 0; for some constant μ ∈ (0, 1], for i ≥ 0, Λi+1 ⊃ Λi is the smallest set such
that, with PΛ denoting the restriction of a vector in �2(∇) to the indices in Λ ⊂ ∇,

‖PΛi+1B
�(f −Bu(i))‖�2(Λi+1) ≥ μ‖B�(f −Bu(i))‖�2(∇);
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u(i+1) is determined as the solution of

(B�B)|Λi+1×Λi+1u
(i+1) = (B�f)|Λi+1 .

It is known ([Ste09, section 4.1]) that this (u(i))i converges linearly to u, and

that, for μ < κ(B�B)−
1
2 , if, for whatever s > 0,

u ∈ As :=
{
v ∈ �2(∇) : |v|As := sup

N∈N0

Ns‖v − vN‖ <∞
}
,

then #suppu(i+1) � ‖u− u(i)‖−1/s|u|1/sAs .
The above “idealized” method cannot be implemented since generally f has infi-

nite support (although usually also each column of B� and B has infinite support, in
the situation of this work, B� and B can be applied exactly to any finitely supported
vector at linear cost). Moreover, the aim is to have a method of optimal computational
complexity. Therefore, in the practical AWGM given below, residuals B�(f −Bu(i))
are computed only inexactly up to some sufficiently small relative tolerance (parame-
ter δ); Λi+1 is determined such that #(Λi+1\Λi) is only minimal up to some absolute
multiple; the Galerkin systems are solved only inexactly up to some sufficiently small
relative tolerance (parameter γ).

We will assume availability of the following routine RHS. In our examples this
assumption is verified easily.

RHS[ε]→ fε :
% Input: ε > 0. Output: a finitely supported fε with

‖f − fε‖ ≤ ε and #supp fε � min{N : ‖f − fN‖ ≤ ε},
% taking a number of operations that is bounded by some absolute multiple of
% #supp fε + 1.

Since a call of RHS yields an approximation to f within some absolute tolerance,
whereas inside the adaptive wavelet-Galerkinmethod an approximation of the residual
is needed within some sufficiently small relative tolerance, the AWGM contains an
inner loop in which an absolute tolerance for f is determined that yields the desired
relative tolerance for the residual. With a suitably chosen initial absolute tolerance
(determined by parameter θ), it usually terminates after one or two iterations.

The AWGM reads as follows:
AWGM[ε, ε−1]→ uε :

% Input: ε, ε−1 > 0, with ε being the required upper bound for ‖B�(f −Buε)‖,
% and ε−1 an estimate for the initial residual ‖B�f‖.
% Parameters: μ, δ, γ, θ such that δ ∈ (0, μ), μ+δ1−δ < κ(B�B)−

1
2 , θ > 0, and

% γ ∈ (0, (1−δ)(μ−δ)1+δ κ(B�B)−1
)
.

i := 0, u(i) := 0, Λi := ∅
do ζ := θεi−1

do ζ := ζ/2, r(i) := B�(RHS[ζ]−Bu(i))

if εi := ‖r(i)‖+ ζ‖B‖ ≤ ε then uε := u(i) stop endif

until ζ‖B‖ ≤ δ‖r(i)‖
Λi+1 := EXPAND[Λi, r

(i), μ‖r(i)‖]
u(i+1) := GALERKIN[Λi+1,u

(i), (B�RHS[γεi/‖B‖])|Λi+1 , (1 + γ)εi, γεi]
i := i+ 1

enddo
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By a call of GALERKIN, the Galerkin system corresponding to the current
active wavelet index set is solved within some prescribed tolerance. The previous
approximate Galerkin solution is used as a starting value for an iterative solver.

GALERKIN[Λ,w,g, δ, ε]→ w̄ :
% Input: ε, δ > 0, Λ ⊂ ∇, w,g ∈ �2(Λ) with ‖g− (B�B)|Λ×Λw‖ ≤ δ.
% Output: w̄ ∈ �2(Λ) with ‖g− (B�B)|Λ×Λw̄‖ ≤ ε in O(log(δ/ε)#Λ) operations.
Using that (B�B)|Λ×Λ is well conditioned, uniformly in Λ, this routine can be imple-
mented as a conjugate residual iteration with starting vector w.

By a call of EXPAND, the current active wavelet index set is expanded with
those indices where the current residual has its largest values.

EXPAND[Λ,g, σ]→ Λ̄ :
% Input: Λ ⊂ ∇, a finitely supported g ∈ �2(∇), and a scalar σ ∈ [0, ‖g‖�2(∇)].
% Output: Λ ⊂ Λ̄ ⊂ ∇ with ‖PΛ̄g‖ ≥ σ and such that, up to some absolute multiple,
% #(Λ̄ \ Λ) is minimal over all such Λ̄, and the cost of the call is O(#Λ ∪ suppg).
Noting that ‖PΛ̄g‖ ≥ σ is equivalent to ‖PΛ̄\Λg‖2 ≥ σ2−‖PΛg‖2, a set Λ̄ with truly

minimal #(Λ̄ \ Λ) is found by ordering {gλ : λ ∈ Λ̄ \ Λ} by nonincreasing modulus,
and then by selecting elements from the head to the tail of this ordered sequence
until the criterion is met. The loglinear complexity of such an implementation can be
reduced to a linear complexity by performing an approximate sorting, at the expense
of obtaining a Λ̄ for which #(Λ̄ \ Λ) is minimal up to some absolute factor.

The following result states that the AWGM is quasi-optimal.
Theorem 5.2 (see [Ste09, Thm. 4.1]). For uε := AWGM[ε, ε−1], it holds that

‖B�(f −Buε)‖ ≤ ε. If for some s > 0, u ∈ As, then both #suppuε and, assuming
ε � ε−1 � ‖B�f‖, the number of operations used by the call are bounded by absolute

multiples of ε−1/s|u|1/sAs .
Remark 5.3. In Theorem 5.2, it is assumed that the best N -term approximations

to u converge exactly algebraically. In view of (4.4), we note that if for some increas-
ing function G : [0,∞) → [0,∞) with, for ρ ∈ (0, 1),

∑∞
k=0G

−1(ρkδ−1) � G−1(δ−1),
|u|A(G) := supN∈N0

G(N)‖u − uN‖ < ∞ (uniformly in δ > 0), then a direct gen-
eralization of Theorem 5.2 shows that both #suppuε and the number of operations
needed are bounded by absolute multiples of G−1(ε−1|u|A(G)).

For constructing sparse B and thus B�, recall (3.6) and (3.7), and consider
a1(·) = 1. For Ω = (0, 1)n, H = L2(Ω), V = H1

0 (Ω), W = H1
0 (Ω) ∩ H2(Ω), and

a2(w, v) =
∫
Ω

∑
|α|,|β|≤1 aα,β∂

αw∂βv with constant coefficients aα,β , in [DS10b] a

univariate wavelet collection Σ(1) of order 4 has been constructed, consisting of cubic
Hermite splines, such that its n-fold tensor product Σ = ΣX = ΣY , normalized in the
corresponding norms, is a Riesz basis for H and for W , and such that a2(Σ,Σ) and
〈Σ,Σ〉L2(Ω) are sparse.

In [CS10], along similar lines we construct such a collection Σ(1) of order 5, con-
sisting of quartic Hermite splines, which has better quantitative properties than that
of [DS10b], as well as locally supported duals.

The dual wavelets corresponding to Σ(1) from both [DS10b] and [CS10] are dis-
continuous, and so the resulting Σ does not generate a basis for V = H−1(Ω). So to
transform the parabolic problem with these wavelets into an equivalent, well-posed
bi-infinite matrix-vector problem, we cannot apply Theorem 2.2, and therefore, we
apply Theorem 2.4 instead. So in the remainder of this paper, we take

X = L2(I;H) and Y = L2(I;W ) ∩H1
0,{T}(I;H).
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In the next section, we will construct collections ΘX and ΘY such that ΘX is a
Riesz basis for L2(I), Θ

Y is Riesz basis for L2(I) and, renormalized, for H1
0,{T}(I), and

such that 〈ΘX , Θ̇Y〉L2(I) and 〈ΘX ,ΘY〉L2(I) are sparse. Combined with the sparsity of
a2(Σ,Σ) and 〈Σ,Σ〉L2(Ω), we conclude that with respect to the test and trial wavelet
collections ΘX ⊗ ΣX and ΘY ⊗ ΣY , the system matrix B, and so also its transpose,
is sparse.

Remark 5.4. Even when T = 1, it is not possible simply to take ΘX = ΘY =
Σ(1) because of the homogeneous boundary conditions incorporated in Σ(1) at both
boundary points. Indeed, since ΘY has to be a basis for H1

0,{T}(I), not all of its
elements can vanish at 0.

In view of the order of the aforementioned spatial wavelets from [CS10], and the
considerations about the best possible rates in X from the previous section, we will
construct ΘX of order 5.

6. Construction of the temporal trial and test wavelets.

6.1. Necessary conditions on the trial wavelets. We will search collections
of univariate wavelets ΘZ = {θZλ : λ ∈ ∇Z} (Z ∈ {X ,Y}) such that, with |λ| ∈ N0

denoting the level of θZλ or that of λ,
(1Z) diam supp θZλ � 2−|λ|,
(2Z) supj,k∈N0

#{|λ| = j : [k2−j, (k + 1)2−j ] ∩ supp θZλ �= ∅} <∞,

(3Z) ΘZ is Riesz basis for L2(I),
(4) {θYλ /‖θ̇Yλ ‖L2(I) : λ ∈ ∇Y} is a Riesz basis for H1

0,{T}(I),

(5)
∫
I
θXμ θ̇

Y
λ = 0 when ||λ| − |μ|| > M ,

(6)
∫
I
θXμ θ

Y
λ = 0 when ||λ| − |μ|| > M ,

where M ∈ N0 is some constant, that later will be chosen to be 1. As a consequence,
with respect to a level-wise partition of the wavelets, 〈ΘX , Θ̇Y〉L2(I) and 〈ΘX ,ΘY〉L2(I)

will be block tridiagonal with, because of (1Z) and (2Z) (Z ∈ {X ,Y}), sparse nonzero
blocks. Note that under the assumptions (1Z) and (2Z) (Z ∈ {X ,Y}), 〈ΘX , Θ̇Y〉L2(I)

and 〈ΘX ,ΘY〉L2(I) are sparse if and only if (5) and (6), respectively, are valid. We
will refer to the combined properties (1Z) and (2Z) by saying that the wavelets {θZλ :
λ ∈ ∇Z} are (uniformly) local.

The next proposition shows that essentially the above conditions can be fulfilled
only for a collection ΘX of functions that are continuous and vanish at zero. The
proof is similar to that of [DS10b, Prop. 1].

Proposition 6.1. If, in addition to (1Y), (2Y), (3Y), (4), and (5), each wavelet
θXμ is piecewise smooth with a bounded piecewise derivative, then necessarily ΘX ⊂
C(I) ∩H1

0,{0}(I).
In view of the fact that, for u0 �= 0, the solution of the parabolic problem does

not identically vanish at t = 0, the condition that all elements of ΘX vanish at zero
is a price that has to be paid for getting sparse matrices. We will construct ΘX such
that its corresponding dual collection is also uniformly local. Then as we will see in
section 6.7, the (strongly) reduced approximation order of ΘX locally at zero can be
compensated by adding wavelets on higher levels with supports near zero, so that the
overall approximation order is not negatively affected. The adaptive algorithm will
take care of this “automatically.”

6.2. Biorthogonal multiresolution analyses and wavelets. In order to con-
struct wavelet collections ΘX and ΘY that, properly scaled, generate Riesz bases
for a range of Sobolev spaces, we will use the following well-known theorem (cf.
[Dah96, DS99, Coh03]).
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Theorem 6.2 (biorthogonal space decompositions). For Z ∈ {X ,Y}, let
V Z
0 ⊂ V Z

1 ⊂ · · · ⊂ L2(I), Ṽ Z
0 ⊂ Ṽ Z

1 ⊂ · · · ⊂ L2(I)

be sequences of primal and dual spaces such that

(6.1) dimV Z
j = dim Ṽ Z

j <∞ and inf
j∈N0

inf
0�=ṽj∈Ṽ Z

j

sup
0�=vj∈V Z

j

|〈ṽj , vj〉L2(I)|
‖ṽj‖L2(I)‖vj‖L2(I)

> 0.

In addition, for some 0 < γZ < dZ , let

inf
vj∈V Z

j

‖v − vj‖L2(I) � 2−jdZ‖v‖HdZ
Z (I)

(v ∈ HdZZ (I)) (Jackson estimate) and

‖vj‖Hs
Z(I) � 2js‖vj‖L2(I) (vj ∈ V Z

j , s ∈ [0, γZ)) (Bernstein estimate),

where for a Hilbert space HdZZ (I) ↪→ L2(I), HsZ(I) := [L2(I),HdZZ (I)]s/dZ (s ∈ [0, dZ ]),
and let similar estimates be valid at the dual side with ((V Z

j )j , dZ , γZ ,HsZ(I)) reading
as ((Ṽ Z

j )j , d̃Z , γ̃Z , H̃sZ(I)).
Then, with ΦZ

0 = {φZ0,k : k ∈ IZ0 } being a basis for V Z
0 (scaling functions) and

ΘZ
j = {θZj,k : k ∈ JZ

j } being L2(I)-Riesz bases for WZ
j := V Z

j ∩ (Ṽ Z
j−1)

⊥L2(I) uni-
formly in j ∈ N (wavelets), for s ∈ (−γ̃Z , γZ) the collection of properly scaled primal
biorthogonal wavelets

ΦZ
0 ∪ ∪j∈N2

−sjΘZ
j

is a Riesz basis for HsZ(I), where HsZ(I) := (H̃−s
Z (I))′ for s < 0.

In view of the notations introduced earlier, we denote (j, k) also as λ, where
|λ| = j, φZ0,k as θZ0,k, and I

Z
0 ∪ ∪j∈NJ

Z
j as ∇Z .

The existence of the Riesz basis

ΘZ := ΦZ
0 ∪ ∪j∈NΘ

Z
j

for L2(I) as in Theorem 2.2 is equivalent to the existence of another, dual Riesz basis
Θ̃Z for L2(I). Writing this basis correspondingly as Φ̃Z

0 ∪ ∪j∈NΘ̃
Z
j , Φ̃

Z
0 is a basis for

Ṽ Z
0 , and Θ̃Z

j for Ṽ Z
j ∩ (V Z

j−1)
⊥L2(I) . For s ∈ (−γ, γ̃), the collection

Φ̃Z
0 ∪ ∪j∈N2

−sjΘ̃Z
j

is a Riesz basis for H̃sZ(I).
We will construct V Z

j and Ṽ Z
j such that they can be equipped with biorthogonal,

uniformly local, uniform L2(I)-Riesz bases. As shown in the next proposition, this will
mean that the property (6.1) is satisfied, and moreover, that under a mild additional
condition, uniformly local primal and dual wavelets become available. For a proof we
refer to [CDP96, Ste03].

Proposition 6.3. Let (V Z
j )j , (Ṽ

Z
j )j ⊂ L2(I) be nested sequences of finite dimen-

sional spaces, and let ΦZ
j and Φ̃Z

j be biorthogonal, uniform L2(I)-Riesz bases for V Z
j

and Ṽ Z
j , respectively.

(a) Property (6.1) is satisfied.
(b) Let ΞZ

j+1 ⊂ V Z
j+1 (initial stable completion) be such that ΦZ

j ∪ΞZ
j+1 is a uniform

L2(I)-Riesz basis for V Z
j+1; then

ΘZ
j+1 := ΞZ

j+1 − 〈ΞZ
j+1, Φ̃

Z
j 〉L2(I)Φ

Z
j
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is a uniform L2(I)-Riesz basis for V Z
j+1 ∩ (Ṽ Z

j )⊥L2(I) . (Here, as elsewhere, we view a

collection of functions formally as a column vector, and for pair (Σ(1),Σ(2)) of such
collections, 〈Σ(1),Σ(2)〉 denotes the matrix [〈σ(1), σ(2)〉]σ(1)∈Σ(1), σ(2)∈Σ(2) .)

(c) Writing
[
(ΦZ

j )
� (ΞZ

j+1)
�] = (ΦZ

j+1)
�M̌j, M̌

−1
j =

[
Gj,0

Gj,1

]
, i.e., (ΦZ

j+1)
� =

(ΦZ
j )

�Gj,0 + (ΞZ
j+1)

�Gj,1, then Θ̃Z
j+1 = Gj,1Φ̃

Z
j+1.

(d) If ΦZ
j , Φ̃Z

j , and ΞZ
j+1 are uniformly local, then ΘZ

j+1 is uniformly local. If

Φ̃Z
j+1 is uniformly local and Gj,1 is uniformly local, by which we mean that in the

expansion of φZj+1,k in terms of ΦZ
j ∪ ΞZ

j+1 the coefficient in front of ξZj+1,� vanishes

whenever dist(suppφZj+1,k, supp ξ
Z
j+1,�) � 2−j, then Θ̃Z

j+1 is uniformly local.

6.3. Biorthogonal multiresolution analyses that lead to sparse 〈ΘX , Θ̇Y〉
and 〈ΘX ,ΘY〉. For Z ∈ {X ,Y}, we will select biorthogonal multiresolution analyses
((V Z

j )j , (Ṽ
Z
j )j) and corresponding uniformly local primal biorthogonal wavelets ΘZ

as in Theorem 6.2 (with (γZ , dZ ,HdZZ , γ̃Z , d̃Z , H̃d̃ZZ ) that will be specified in (6.9) and
(6.10)), with, additionally,

(V X
j )j ⊂ H1

0,{0}(I), (V Y
j )j ⊂ H1

0,{T}(I),(6.2)

V Y
j + V̇ Y

j ⊂ Ṽ X
j+1,(6.3)

V X
j + V̇ X

j ⊂ Ṽ Y
j+1,(6.4)

where a “dot” on top of a linear space of functions denotes the linear space of derivative
functions. Then, thanks to (6.3) and (6.4), for |μ| > |λ|+ 1 we have that

0 = 〈θXμ , θYλ 〉L2(I) and 0 = 〈θXμ , θ̇Yλ 〉L2(I),(6.5)

and for |λ| > |μ|+ 1 that

0 = 〈θXμ , θYλ 〉L2(I) and 0 = 〈θ̇Xμ , θYλ 〉L2(I) = −〈θXμ , θ̇Yλ 〉L2(I),(6.6)

respectively, where the last inequality follows from (6.2). Together, (6.5) and (6.6)
are equivalent to (5) and (6) with M = 1.

6.4. A realization. We select the primal spaces as the continuous piecewise
quartics with respect to dyadically refined partitions satisfying the appropriate bound-
ary conditions, i.e.,

V Z
j =

2j+1−1∑
k=0

P4(k2
−(j+1)T, (k + 1)2−(j+1)T ) ∩C0(I) ∩

{
H1

0,{0}(I) when Z = X ,
H1

0,{T}(I) when Z = Y.

For Z ∈ {X ,Y}, we have

(6.7) V Z
j + V̇ Z

j ⊂
2j+1−1∑
k=0

P4(k2
−(j+1)T, (k + 1)2−(j+1)T )

(actually even equality holds), the latter space being of dimension 5 · 2j+1. We will
select Ṽ Z

j+1 as an extension of this space to a space of dimension 8 · 2j+1, being the

dimension of V Z
j+1. Care has to be taken that the dual spaces are nested.
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We start with a construction on the “reference macro element” (−1, 1). Let
V := P4(−1, 0)× P4(0, 1) ∩ C(−1, 1), Ṽ1 := P4(−1, 1).

We performed the following steps:
• Determine V1 as the orthogonal projection of Ṽ1 onto V ∩H1

0 (−1, 1).
• Determine V2 ⊥ Ṽ1 such that V = V1 ⊕ V2.
• With Ṽ := Ṽ1 + V2, determine Ṽ2 ⊥ V1 such that Ṽ = Ṽ1 ⊕ Ṽ2.
• Equip both pairs (V1, Ṽ1) and (V2, Ṽ2) with biorthogonal bases.

Now the union of the bases for V1 and V2 and that for Ṽ1 and Ṽ2 are biorthogonal
bases for V and Ṽ . Writing them as {φ0, . . . , φ8} and {φ̃0, . . . , φ̃8}, respectively, by a
suitable numbering we have V1 = span{φ2, . . . , φ6} and Ṽ1 = span{φ̃2, . . . , φ̃6}. The
bases can be organized such that for k = 0, . . . , 8,

φ8−k(x) = φk(−x), φ̃8−k(x) = φ̃k(−x),
and such that φ0 is the only primal basis function that does not vanish at −1 (and
thus that φ8 is the only primal basis function that does not vanish at 1).

It holds that Ṽ = V , but whereas P4(−1, 1) = span{φ̃2, . . . , φ̃6}, at the primal
side P4(−1, 1) �⊂ span{φ1, . . . , φ7} since the latter space is in H1

0 (−1, 1).
The biorthogonal basis functions {φ0, . . . , φ4} and {φ̃0, . . . , φ̃4} are illustrated in

Figure 6.1, and their values at 1
4Z∩[−1, 1] are given in Tables 6.1 and 6.2, respectively.

Φ0

Φ1

Φ2

Φ3

Φ4

�1.0 �0.5 0.5 1.0

�1

1

2

3

4

Φ
�

0

Φ
�

1
Φ
�

2

Φ
�

3

Φ
�

4

�1.0 �0.5 0.5 1.0

�6

�4

�2

2

4

6

Fig. 6.1. Biorthogonal basis functions {φ0, . . . , φ4} and {φ̃0, . . . , φ̃4} on the reference macro
element.
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Table 6.1

Values of {φ0, . . . , φ4} at 1
4
Z ∩ [−1, 1).

−1 − 3
4

− 1
2

− 1
4

0 1
4

1
2

3
4

φ0 4 − 48237
32768

7489
6144

5155
32768

55
128

− 15197
32768

2561
6144

3347
32768

φ1 0 8379
8192

− 621
512

− 693
8192

− 9
32

3915
8192

− 237
512

− 837
8192

φ2 0 294405
1048576

56525
65536

384885
1048576

705
4096

− 171915
1048576

3405
65536

37125
1048576

φ3 0 − 2697
32768

− 177
2048

17991
32768

75
128

17991
32768

− 177
2048

− 2697
32768

φ4 0 5705
49152

91
1024

− 8365
16384

245
192

− 3885
16384

− 175
3072

3017
49152

Table 6.2

Values of {φ̃0, . . . , φ̃4} at 1
4
Z ∩ [−1, 1].

−1 − 3
4

− 1
2

− 1
4

0 1
4

1
2

3
4

1

φ̃0
49
8

− 953
1024

27
64

− 73
1024

5
8

− 97
1024

3
64

− 17
1024

1
8

φ̃1 5 175
128

0 − 25
128

0 15
128

0 − 25
128

0

φ̃2 0 105
32

3 45
32

0 − 15
32

0 21
32

0

φ̃3 0 − 175
128

0 225
128

5
2

225
128

0 − 175
128

0

φ̃4
1551
784

9651
12544

7179
3136

− 4029
784

3225
784

17307
6272

− 6639
3136

− 4461
12544

− 801
784

From the bases on the reference macro element, we construct global biorthogonal
bases in the way known from finite elements. We start at the X -side. With

φ8,0(x) :=
1
2

√
2 ×

{
φ8(x) when x ≤ 1,
φ0(x − 2) when x ≥ 1,

which has support [−1, 3], for j ∈ N0 we define

φ
(i,X )
j,k :=

√
2j

T ×

⎧⎪⎨
⎪⎩

φi(
2j

T · −k) when i ∈ {1, . . . , 7}, k ∈ {0, . . . , 2j − 1},
φ8,0(

2j

T · −k) when i = 8, k ∈ {0, . . . , 2j − 2},
φ8(

2j

T · −k) when i = 8 and k = 2j − 1

and, by replacing φ by φ̃ on all places, similarly at the dual side.

It holds that V X
j = span

{
φ
(i,X )
j,k : i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j − 1}}, and we set

Ṽ X
j := span

{
φ̃
(i,X )
j,k : i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j − 1}}. Since none of φ̃2, . . . , φ̃6 is

“glued” over interfaces between “macro elements” or “dropped” at the (left) boundary,
from P4(−1, 1) = span{φ̃2, . . . , φ̃6} and Ṽ ⊂ P4(−1, 0)× P4(0, 1), we have

(6.8)

2j∏
k=0

P4(k2
−jT, (k + 1)2−jT ) ⊂ Ṽ X

j ⊂
2j+1∏
k=0

P4(k2
−(j+1)T, (k + 1)2−(j+1)T ),

and so Ṽ X
j ⊂ Ṽ X

j+1 (j ∈ N0).

The collections {φ(i,X )
j,k : i, k} and {φ̃(i,X )

j,k : i, k} are uniformly local, and uni-
form biorthogonal L2(I)-Riesz bases for their spans, and so Proposition 6.3(a) shows
that the “inf-inf-sup” condition (6.1) of Theorem 6.2 is satisfied. The Jackson and
Bernstein conditions are satisfied with

(6.9) (γX , dX ,HdXX , γ̃X , d̃X , H̃d̃XX ) =

(
3

2
, 5, H5(I) ∩H1

0,{0}(I),
1

2
, 5, H5(I)

)
.
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At the Y-side, setting φ(i,Y)
j,k (x) = φ

(i,X )
j,k (−x) and φ̃(i,Y)

j,k (x) = φ̃
(i,X )
j,k (−x), it holds

that V Y
j = span

{
φ
(i,Y)
j,k : i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j − 1}}, and we set Ṽ Y

j :=

span
{
φ̃
(i,Y)
j,k : i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j − 1}}. Then everything above is also valid

with X reading as Y, with

(6.10) (γY , dY ,HdYY , γ̃Y , d̃Y , H̃d̃YY ) =

(
3

2
, 5, H5(I) ∩H1

0,{T}(I),
1

2
, 5, H5(I)

)
.

We may conclude that, as required, the wavelet collections ΘX and ΘY that we are
going to construct in the next subsection will, properly scaled, be Riesz bases for, in
particular, L2(I) or L2(I) and H

1
0,{T}(I), respectively.

The conditions (6.2), (6.3), and (6.4) are satisfied by construction, in particular
by (6.7) and the left inclusion in (6.8) (which is also valid with X reading as Y).

Remark 6.4. Besides realizing nestedness of the spaces and Jackson and Bern-
stein estimates, as well as satisfying the conditions (6.2)–(6.4) for sparsity of 〈ΘX , Θ̇Y〉
and 〈ΘX ,ΘY〉, our construction of Ṽ , and so of (Ṽ Z

j )j (Z ∈ {X ,Y}), was motivated

by the aim of making the angle between V and Ṽ , and so between V Z
j and Ṽ Z

j , as
small as possible. A small angle allows for a construction of the wavelets spanning the
biorthogonal complements so that overall wavelet basis has a small condition number
(in any case in L2(I)).

6.5. Definition of the wavelets. In this subsection, we will define the basis

ΘX
j+1 =

{
θ
(i,X )
j+1,k : i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j − 1}}

for V X
j+1 ∩ (Ṽ X

j )⊥L2(I) . The basis ΘY
j+1 =

{
θ
(i,Y)
j+1,k : i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j − 1}}

for V Y
j+1 ∩ (Ṽ Y

j )⊥L2(I) can then be defined by

(6.11) θ
(i,Y)
j+1,k(x) = θ

(i,X )
j+1,2j−1−k(T − x).

In view of Proposition 6.3(b), in order to define these wavelets, it is sufficient to
construct ΞX

j+1 such that ΦX
j ∪ΞX

j+1 is a uniform L2(I)-Riesz basis for V
X
j+1. Moreover,

in view of Proposition 6.3(d), in order to obtain wavelets that are uniformly local
and have uniformly local duals, we shall select ΞX

j+1 in such a way that the basis

transformation between ΦX
j ∪ ΞX

j+1 and ΦX
j+1 and its inverse are uniformly local.

Since the basis transformations between the standard interpolatory basis of V X
� and

ΦX
� are uniformly local, the latter condition is equivalent to the uniform locality of

the basis transformations between the union of the interpolatory basis for V X
j and

ΞX
j+1 and the interpolatory basis for V X

j+1.

A natural choice for ΞX
j+1 is the subset of interpolatory basis functions for V X

j+1

that correspond to the new degrees of freedom. With this choice, the last mentioned
basis transformations are uniformly local. Indeed, with I� being the canonical inter-
polation operator onto V X

� , the argument is that for uj+1 ∈ V X
j+1 the computation of

the splitting uj+1 = Ijuj+1 + Ij+1(uj+1 − Ijuj+1) requires local quantities only.
In order to reduce the support size of most of the resulting wavelets, we do not

simply take ΞX
j+1 to be the above collection, but we construct it from that collection

by applying a uniformly local transformation with uniformly local inverse. Our aim is
to ensure that most functions in ΞX

j+1 are orthogonal to those dual scaling functions
on level j that correspond to primal scaling functions that have supports that extend
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to more than one macro element. The wavelets resulting from such functions in ΞX
j+1

will then have no components in the directions of these scaling functions, and therefore
will be supported inside one macro element.

We start with a construction on the “reference macro element” (−1, 1). Let

W :=

{
w ∈

1∏
k=−2

P4

(
k

2
,
k + 1

2

)
∩C(−1, 1) : w = 0 on 1

4Z

}
.

Note that
∏1
k=−2 P4(

k
2 ,

k+1
2 ) ∩ C(−1, 1) = P4(−1, 0)× P4(0, 1) ∩ C(−1, 1)⊕W . We

performed the following steps:
• Determine the orthogonal projection of span{φ0, φ8} onto W , and equip it
with a basis {ξ1, ξ8} that is biorthogonal to {φ0, φ8}.
• Determine W2 ⊥ span{φ0, φ8} such that W = span{ξ1, ξ8} ⊕W2, and equip
W2 with a basis {ξ2, . . . , ξ7}.

The basis {ξ1, . . . , ξ8} for W can be organized such that ξk(x) = ξ9−k(x).
Similar to the previous subsection, we lift these functions on the reference macro

element to the macro elements [k2−jT, (k + 1)2−jT ] that form a partition of I. Since
all ξi vanish at the boundary of the reference macro element, here there is no need

to “glue” functions over interfaces. We define ΞX
j+1 = {ξ(i,X )

j+1,k : i ∈ {1, . . . , 8}, k ∈
{0, . . . , 2j − 1}} by

ξ
(i,X )
j+1,k :=

√
2j

T ξi(
2j

T · −k).

With this definition, ΦX
j ∪ ΞX

j+1 is a uniform L2(I)-Riesz basis for V X
j+1 and, in view

of the above comments, the basis transformations between ΦX
j ∪ ΞX

j+1 and ΦX
j+1 are

uniformly local. As shown in Proposition 6.3, therefore

ΘX
j+1 := ΞX

j+1 − 〈ΞX
j+1, Φ̃

X
j 〉L2(I)Φ

X
j

is a uniformly local, uniform L2(I)-Riesz basis for V
X
j+1∩(Ṽ X

j )⊥L2(I) with a correspond-

ing uniform L2(I)-Riesz dual basis Θ̃X
j+1 for Ṽ X

j+1 ∩ (V X
j )⊥L2(I) that is also uniformly

local.
In order to improve its conditioning, next we apply some uniformly local basis

transformations to ΘX
j+1 with uniformly local inverses, so that both ΘX

j+1 and Θ̃X
j+1

remain uniformly local.
The wavelets from ΘX

j+1 can be subdivided into 3 categories:

• Wavelets with supports inside a macro element (kT 2−j, (k + 1)T 2−j) (k ∈
{0, . . . , 2j − 1}). Six for each macro element.

• Wavelets with supports inside the union of 2 macro elements that share an
interface. Two for each interface.
• One wavelet “associated to” the right boundary, nonzero at that boundary,
and one “associated to” the left boundary, zero at that boundary.

We orthogonalize each group of six “internal wavelets,” creating three symmetric
and three antisymmetric wavelets; we make each group of two “interface wavelets”
orthogonal to the “adjacent” internal wavelets, and after that, we make them mu-
tual orthogonal, creating a symmetric and an antisymmetric wavelet; we make both
boundary wavelets orthogonal to the “adjacent” internal wavelets.

Exploiting dilation and translation invariance, it suffices to specify the result-
ing left and right boundary wavelets θX ,L and θX ,R, the three symmetric and three



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE WAVELET SCHEMES FOR PARABOLIC PROBLEMS 199

antisymmetric interior wavelets θX ,S,1, θX ,S,2, θX ,S,3 and θX ,A,1, θX ,A,2, θX ,A,3, re-
spectively, all as functions on C([−1, 1])∩∏1

k=−2 P4(
k
2 ,

k+1
2 ), and the symmetric and

antisymmetric interface wavelets θX ,S and θX ,A, both as functions on C([−1, 3]) ∩∏5
k=−2 P4(

k
2 ,

k+1
2 ), i.e., with double support length. These “mother wavelets” are

illustrated in Figures 6.2 and 6.3.

ΘΧ, RΘΧ, L

�1.0 �0.5 0.0 0.5 1.0
�

ΘΧ, S

ΘΧ, A

�1 0 1 2 3

Fig. 6.2. Boundary wavelets θX ,L, θX ,R (left picture) and interface wavelets θX ,S , θX ,A(right
picture).

ΘΧ, S,1

ΘΧ, S,2 ΘΧ, S,3

�1.0 �0.5 0.0 0.5 1.0
�

ΘΧ, A,1 ΘΧ, A,2

ΘΧ, A,3

�1.0 �0.5 0.0 0.5 1.0

Fig. 6.3. Symmetric interior wavelets θX ,S,1, θX ,S,2, θX ,S,3 (left picture) and antisymmetric
interior wavelets θX ,A,1, θX ,A,2, θX ,A,3 (right picture).

Values of these “mother wavelets” in 1
8Z∩(−1, 1] (boundary and interface wavelets)

or in 1
8Z ∩ (−1, 0] (interior wavelets) are given in Table 6.3. Values of the interface

wavelets at 1
8Z∩ [1, 3) or of the interior wavelets at 1

8Z∩ [0, 1) can be found using the
(anti-)symmetry of these functions.

When computing the corresponding collection of dual wavelets Θ̃X
j+1 =

{
θ̃
(i,X )
j+1,k :

i ∈ {1, . . . , 8}, k ∈ {0, . . . , 2j−1}}, it turns out that for each j, the seven dual wavelets

that have their supports nearest to the left boundary, i.e., θ̃
(1,X )
j+1,0, . . . , θ̃

(7,X )
j+1,0, have no

vanishing first moment (all dual wavelets have vanishing second to fifth moments).
The existence of such dual wavelets reflects the fact that, due to the fact that all
primal wavelets vanish at the left boundary, the primal collection has a locally strongly
reduced approximation order near this boundary. This was a price we had to pay for
obtaining sparse system matrices.

For i = 2, . . . , 7, and with βi :=
∫
I θ̃

(i,X )
j+1,0(x)dx/

∫
I θ̃

(1,X )
j+1,0(x)dx, which scalars are

independent of j, let us now redefine the left boundary primal wavelet θ
(1,X )
j+1,0, i.e., the
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Table 6.3

Values of the “mother wavelets at 1
8
Z.

θX ,L θX ,R θX ,S,1 θX ,S,2 θX ,S,3 θX ,A,1 θX ,A,2 θX ,A,3 θX ,S θX ,A

− 7
8

2698131
35651584

−2585
1671168

−3269185
619753472

−96479
2311808

21275
1265664

−5607303
127133312

10697
749568

−15019819
1400768512

−2585
1671168

−6434887
106954752

− 6
8

−1465853
2228224

−905
104448

−1868545
38734592

−6559
144488

5947
79104

−409435
7945832

959
15616

−7473487
87548032

−905
104448

112777
6684672

− 5
8

−1264957
35651584

4317
557056

16606575
619753472

428337
2311808

−40615
421888

25038585
127133312

−20925
249856

80992245
1400768512

4317
557056

4050883
35651584

− 4
8

23899
139264

19
6528

134975
2420912

−7510
18061

−1045
4944

−419094
993229

−613
2928

680411
5471752

19
6528

44753
417792

− 3
8

45595177
106954752

−3977
1671168

−33051825
619753472

138385
2311808

280555
1265664

7229001
127133312

54643
249856

−135830043
1400768512

−3977
1671168

893737
106954752

− 2
8

89785
6684672

−1817
104448

−5136465
38734592

−1391
144488

−3335
26368

−55731
7945832

−2441
15616

−13807799
87548032

−1817
104448

−891335
6684672

− 1
8

−10916749
35651584

11143
1671168

107443295
619753472

53569
2311808

−7237
1265664

1656681
127133312

6137
749568

237582629
1400768512

11143
1671168

−15206311
106954752

0 293
1536

1
12

−67875
151307

−1984
18061

−35
309

0 0 0 1
12

293
1536

1
8

−15206311
106954752

−154385
1671168

− − − − − − −154385
1671168

−10916749
35651584

2
8

−891335
6684672

−2705
104448

− − − − − − −2705
104448

89785
6684672

3
8

893737
106954752

195295
1671168

− − − − − − 195295
1671168

45595177
106954752

4
8

44753
417792

−869
6528

− − − − − − −869
6528

23899
139264

5
8

4050883
35651584

−19243
557056

− − − − − − −19243
557056

−1264957
35651584

6
8

112777
6684672

−10091
34816

− − − − − − −10091
34816

−1465853
2228224

7
8

−6434887
106954752

613327
1671168

− − − − − − 613327
1671168

2698131
35651584

1 0 −1 − − − − − − −1 0

wavelet resulting from the mother wavelet θX ,L, by

θ
(1,X )
j+1,0 ← θ

(1,X )
j+1,0 +

7∑
i=2

βiθ
(i,X )
j+1,0.

Clearly, this transformation does not change the span of the wavelets on level j + 1,
or the (qualitative) stability properties of the basis ΘX . Since the corresponding

transformation at the dual side is given by θ̃
(i,X )
j+1,0 ← θ̃

(i,X )
j+1,0 − βiθ̃(1,X )

j+1,0, (i = 2, . . . , 7),
we conclude, however, that after this transformation, on each level there remains only
one dual wavelet without vanishing moment. This allows for a quantitatively more
efficient representation of a function that is nonzero at 0 in the wavelet basis ΘX , and
so improves the quantitative properties of the resulting adaptive wavelet scheme. For
i = 2, . . . , 7, βi = − 1

32 ,− 173
10608 ,

20659
376064 ,

8001065
87548032 ,

12452429
69354240 ,

162901153
762799872 .

Finally, in order to improve its conditioning in Sobolev norms other than the
L2(I)-norm, in the definition of ΘX we replace the single scale basis ΦX

0 on the lowest
level by an orthogonal four-scale basis. Recalling that V X

0 = P4(0, T/2)×P4(T/2, T )∩
C(I) ∩H1

0,{0}(I), we set V X−1 = P4(I) ∩H1
0,{0}(I), V

X−2 = P2(I) ∩H1
0,{0}(I), and V

X−3 =

P1(I)∩H1
0,{0}(I), and replace the single-scale basis for V X

0 by a basis that is the union

of orthogonal bases for V X−3, V
X−2∩(V X−3)

⊥L2(I) , V X−1∩(V X−2)
⊥L2(I) , and V X

0 ∩(V X−1)
⊥L2(I) .

6.6. Condition numbers. As shown by Theorem 6.2, the collection ΘX , renor-
malized in the corresponding norm, is a Riesz basis for range of Sobolev spaces, in
particular for L2(I) and H1

0,{0}(I). In various estimates, the values of (the quotients

of) the corresponding Riesz constants play a role. To provide an estimate for these
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Fig. 6.4. Condition number of MX
J (left) and AX

J (right).

values, in Figure 6.4, we present numerically computed condition numbers of

MX
J :=

[
〈θXμ , θXλ 〉L2(I)

‖θXμ ‖L2(I)‖θXλ ‖L2(I)

]
|λ|,|μ|≤J

and AX
J :=

[
〈θ̇Xμ , θ̇Xλ 〉L2(I)

‖θ̇Xμ ‖L2(I)‖θ̇Xλ ‖L2(I)

]
|λ|,|μ|≤J

.

For J → ∞, these condition numbers converge to (ΛL2(I)(|ΘX |)/λL2(I)(|ΘX |))2 and
(ΛH1

0,{0}(I)
(|ΘX |)/λH1

0,{0}(I)
(|ΘX |))2, respectively, where H1

0,{0}(I) is equipped with

| · |H1(I). The computed condition numbers compare very favorably to other wavelet
constructions of order 5.

6.7. Approximation order. We have constructed a Riesz basis ΘX for L2(I)
consisting of continuous wavelets that all vanish at 0. This basis is going to be used
for the (adaptive) approximation in L2(I) of a function that not necessarily vanishes
at 0. In this subsection, we investigate whether there is a reduction in approximation
order due to a possible mismatch of boundary conditions.

With, for u ∈ L2(I), uλ := 〈u, θ̃Xλ 〉L2(I), we have u =
∑
λ∈∇X uλθ

X
λ and ‖u‖2L2(I)

�∑
λ∈∇X |uλ|2, and so ‖u−∑λ∈Λ uλθ

X
λ ‖2L2(I)

�
∑
λ∈∇X \Λ |uλ|2 for any Λ ⊂ ∇X .

We subdivide the dual wavelets in those that have dX = 5 vanishing moments,
and those that have fewer vanishing moments, which in the current situation actually
means that they have no vanishing moments. On each level there is a uniformly
bounded number—being one—of dual wavelets without vanishing moments, viz., the
dual wavelet that has its support closest to the left boundary. We call indices λ that
correspond to the latter dual wavelets left boundary indices, and the other regular
indices.

For the regular indices, we have

|uλ| � 2−dX |λ||u|HdX (supp θ̃X
λ
),

and for the left boundary ones,

|uλ| � ‖u‖L2(supp θ̃Xλ ) � 2−
1
2 |λ|‖u‖L∞(I) � 2−

1
2 |λ|‖u‖HdX (I).

By defining Λ as the union of all regular indices up to some level J together with
all left boundary indices up to level 2dXJ , we have #Λ � 2J + 2dXJ � 2J , and by
estimating

∑
λ∈∇X \Λ |uλ|2, we conclude that ‖u −∑λ∈Λ uλθ

X
λ ‖L2(I) � 2−dXJ . So

despite of the fact that all primal wavelets vanish at 0, the order is dX .
The above result deals with linear approximation, and requires a sufficiently

smooth u. The smoothness conditions can be relaxed largely by considering non-
linear approximation. For s ∈ [0, dX ), 1

τ = 1
2 + s, and u ∈ Bsτ,τ (I), it is known (see,
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e.g., [DeV98, Coh03]) that

( ∑
{λ∈∇X :λ is regular }

|uλ|τ
)1/τ

� ‖u‖Bs
τ,τ(I)

.

Making a nonincreasing arrangement of the coefficients corresponding to all regular
indices, i.e., |uλ1 | ≥ |uλ2 | ≥ . . . , we have

n|uλn |τ ≤
n∑
k=1

|uλk
|τ � ‖u‖τBs

τ,τ (I)
,

and so
√∑

n>N |uλn |2 � N−s‖u‖Bs
τ,τ(I)

.

To estimate the coefficients corresponding to the left boundary indices, let us
additionally assume that u ∈ Bsτ ′,τ ′(I) for some τ ′ > τ . Taking, w.l.o.g., 1

τ ′ ≥ 1
τ − 1

2 ,

and with 1
p := 1

2 +
1
τ ′ − 1

τ , Hölder’s inequality and Sobolev’s embedding theorem show
that

|uλ| � ‖u‖L2(supp θ̃Xλ ) � 2(
1
τ′ − 1

τ )|λ|‖u‖Lp(supp θ̃Xλ ) � 2(
1
τ′ − 1

τ )|λ|‖u‖Bs
τ′,τ′(I).

By taking J = � s log2 N
1/τ−1/τ ′ �, and defining Λ as the union of {λ1, . . . , λN} and all left

boundary indices with levels ≤ J , we conclude that #Λ � N + log2N � N and
‖u − ∑λ∈Λ uλθ

X
λ ‖L2(I) � N−s‖u‖Bs

τ′,τ′ (I). So under an only marginally stronger

smoothness requirement, we obtain the same qualitative result concerning best N -
term approximation as for a common wavelet basis of order dX , i.e., one without the
condition that all primal wavelets vanish at zero.

We can rephrase our finding by saying that for s ∈ [0, dX ), and 1
τ ′ <

1
2 + s,

Bsτ ′,τ ′(I) contains the nonlinear approximation class As∞(L2(I)) corresponding to ΘX .
Remark 6.5. For approximating the solution of the parabolic problem using

the tensor product wavelet basis ΘX ⊗ Σ(1) ⊗ · · · ⊗ Σ(1), a (near) characterization
of the corresponding approximation class As∞(L2(I;L2((0, 1)

n))) is relevant. By a
combination of results from [Nit06] and [Coh03, section 3.10] (the latter for dealing
with the boundary conditions incorporated in Σ(1)), one can deduce that without the
incorporation of the zero boundary condition in ΘX , for s ∈ [0, dX ) and 1

τ = 1
2 + s,

u ∈ As∞(L2(I;L2((0, 1)
n)))⇐= u ∈ Asτ (L2(I;L2((0, 1)

n)))

⇐⇒ u ∈ Bsτ,τ (I)⊗τ
◦
B
s

τ,τ (0, 1)⊗τ · · · ⊗τ
◦
B
s

τ,τ (0, 1),

where
◦
B
s

τ,τ (0, 1) is the closure in Bsτ,τ (0, 1) of the smooth functions on [0, 1] that
vanish at {0, 1}; whereas with the incorporation of the zero boundary condition in
ΘX , for s ∈ [0, dX ) and 1

τ ′ >
1
τ = 1

2 + s,

u ∈ As∞(L2(I;L2((0, 1)
n)))⇐= u ∈ Bsτ ′,τ ′(I)⊗τ

◦
B
s

τ,τ (0, 1)⊗τ · · · ⊗τ
◦
B
s

τ,τ (0, 1).

Again, the required smoothness condition is only marginally stronger.

7. First test on an ODE. As a first test of our temporal wavelets ΘX and ΘY

and of the adaptive wavelet-Galerkin scheme, we consider the linear ODE

(7.1)

{
u̇(t) + νu(t) = g(t), (t ∈ I),

u(0) = u0,
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where ν ≥ 0. The corresponding variational formulation reads as

(7.2) b(u, v) = f(v),

where

b(w, v) :=

∫
I

−w(t)v̇(t) + νw(t)v(t)dt, f(v) :=

∫
I

g(t)v(t)dt + u0v(0).

As a special case of Theorem 2.2 (or 2.4) we have the following result. For the purpose
of illustrating the technique, we included the proof for this elementary case.

Theorem 7.1. With X := L2(I) and Y(ν) := H1
0,{T}(I), equipped with ‖·‖Y(ν) :=√

ν2‖ · ‖2L2(I)
+ | · |2H1(I), the operator B ∈ L(X ,Y(ν)′) defined by (Bw)(v) = b(w, v)

is boundedly invertible, with ‖B‖ ≤ √2, ‖B−1‖ ≤ √2.
For say g ∈ L2(I), ‖f‖Y(ν)′ � 1

max(1,ν)(‖g‖L2(I) + |u0|).
Proof. We verify the sufficient (and necessary) continuity, inf-sup, and nondegen-

eracy conditions (2.5), (2.6), and (2.7).
The continuity follows from

(7.3) |b(w, v)| ≤ ‖w‖L2(I)(‖v̇‖L2(I) + ν‖v‖L2(I)) ≤ ‖w‖X
√
2 ‖v‖Y(ν).

To show the inf-sup condition, given v ∈ Y(ν), define w = −v̇ + νv. Then

(7.4) b(w, v) =

∫
I

v̇(t)2 − 2νv(t)v̇(t) + ν2 v(t)2dt ≥ ‖v‖2Y(ν) ≥
1

2

√
2 ‖v‖Y(ν)‖w‖X ,

where we used that
∫
I−2v(t)v̇(t)dt = −

∫
I
d
dtv(t)

2dt = −v(T )2 + v(0)2 = v(0)2 ≥ 0

and ‖w‖X ≤
√
2 ‖v‖Y(ν).

For given w ∈ X , define v by{ −v̇(t) + νv(t) =w, (t ∈ I),
v(T ) = 0.

From ∫
I

w(t)v(t)dt =

∫ T

0

−v̇(t)v(t) + νv(t)2dt =
1

2
v(0)2 + ν

∫
I

v(t)2dt,

and the application of the Cauchy–Schwarz inequality to the left-hand side, we have
ν‖v‖L2(I) ≤ ‖w‖L2(I) and so ‖v̇‖L2(I) = ‖w − νv‖L2(I) ≤ 2‖w‖L2(I) or ‖v‖Y(ν) ≤√
5 ‖w‖X , in particular meaning that v ∈ Y(ν). From

b(w, v) =

∫
I

−w(t)v̇(t) + νw(t)v(t)dt =

∫
I

w(t)2dt

we conclude (2.7).
The estimates (7.3) and (7.4) also give the bounds on the norms of B and B−1.
The last statement follows from |v(0)|2 � ν‖v‖2L2(I)

+ 1
ν |v|2H1(I) onH

1(I), uniformly

in ν > 0, and for ν ∈ [0, 1], from ‖ · ‖L2(I) � | · |H1(I) on H
1
0,{T}(I).

Let ΘX and ΘY be the wavelet collections constructed in section 6 normalized in
L2(I). By equipping X = L2(I) by ΘX and Y(ν) = H1

0,{T}(I) by ΘY , an equivalent

matrix vector formulation of (7.2) reads as Bu = f , where

(7.5) B = D−1
Y
[− 〈ΘX , Θ̇Y〉L2(I) + ν〈ΘX ,ΘY〉L2(I)

]
,
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f = D−1
Y

[ ∫
I

g(t)θY(t)dt+ u0θ
Y(0)

]
θY∈∇Y

,DY = diag

{√
ν2 + ‖θ̇Y‖2L2(I)

: θY ∈ ∇Y
}
.

In our numerical experiments, we took ν = 1 and T = 1. First we computed
κ((B�B)J ) for levels J ≤ 8, where (B�B)J := [(B�B)λ,μ]|λ|,|μ|≤J . The results are

given in Table 7.1. For comparison, we also included condition numbers of B�
JBJ ,

where BJ = [Bλ,μ]|λ|,|μ|≤J is the Galerkin matrix. Our results show that here the
Galerkin approach, i.e., without forming the normal equations, is not applicable.

Table 7.1

Condition numbers of (B�B)J and B�
J BJ with B from (7.5).

J 1 2 3 4 5 6 7 8

κ((B�B)J ) 8.8 10.0 11.6 12.8 13.3 13.6 13.9 14.0

κ(B�
J BJ ) 47 175 688 2719 10955 43807 175109 730250

Remark 7.2. In any case in the nonadaptive setting, a valid alternative is to
solve an overdetermined least squares problem argminv∈�2(ΛX ) ‖(f − Bv)|ΛY ‖�2(ΛY )

for some suitably chosen ΛY ⊂ ∇Y with #ΛY > #ΛX (see [BJ89, And10]). This
approach generalizes to the parabolic problem.

To obtain a solution that is not smooth, or piecewise smooth with respect to a
dyadic refinement of I = (0, 1), we took

(7.6) g(t) =

{
1 when t ∈ (0, 13 ),
2 when t ∈ (13 , 1),

together with either u0 = 0 or u0 = 1.
With this choice, fλ �= 0 only if 1

3 ∈ supp θYλ or θYλ (0) �= 0, and, given an ε > 0, in
the routine RHS we collect an, up to an absolute multiple, minimal number of such
λ such that ‖f − fε‖ ≤ ε.

We applied the adaptive wavelet-Galerkin method AWGM with parameters
μ = 0.6, γ = 0.05 , θ = 0.5, δ = 0.25. These values do not respect the theoretical
bounds we have derived, but turn out to be close to the optimal values for practical
computations.

In Figure 7.1, for both choices u0 = 0 and u0 = 1, we illustrate the relative
energy-norm errors ‖Buε − f‖/‖f‖ as a function of the support length #suppuε of
the computed approximate solution uε. One may verify that

‖u− u�
ε Θ

X ‖L2(I)

‖u‖L2(I)

/‖Buε − f‖
‖f‖ ∈ [α−1, α], where α = ‖B‖‖B−1‖ΛY(1)(|ΘY |)

λY(1)(|ΘY |)

and where α can be further estimated similarly to (3.4). The results illustrate that for
both initial values, the practical convergence rates approach the theoretical asymptotic
rate −5 indicated by the slope of the hypotenuse of the triangle.

In Figure 7.2, for the case of u0 = 1 and #uε = 202, the location as well as the
modulus of the nonzero wavelet coefficients are indicated.

Finally in this section, using the result of Theorem 7.1, for time-independent,
symmetric, and coercive spatial operators, we show that the results of Theorems 2.2
and 2.4 about boundedly invertibility of the parabolic problem can be supplemented
with quantitative bounds. A similar analysis was carried out in [BJ89].
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Fig. 7.1. The AWGM applied to the ODE from (7.1) with right-hand side g from (7.6).
‖Buε − f‖/‖f‖ vs. #suppuε for u0 = 1 (solid lines) and u0 = 0 (dashed lines).
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Fig. 7.2. The nonzero coefficients of uε for u0 = 1 and #uε = 202. Nonzero coefficients
corresponding to the left boundary wavelet run to level 51, far outside the scale of this picture.

Theorem 7.3. In the setting of section 2, let a(t; η, ζ) = a(η, ζ) = a(ζ, η),
λ0 = 0, and let V ↪→ H be compact. Then with either

X = L2(I;V ), Y = L2(I;V ) ∩H1
0,{T}(I;V

′),

where V is equipped with norm
√
a(·, ·) and H1

0,{T}(I) with | · |H1(I), or

X = L2(I;H), Y = L2(I;D(A)) ∩H1
0,{T}(I;H),

where D(A) = {w ∈ H : Aw ∈ H} is equipped with ‖A · ‖H and, again, H1
0,{T}(I) with

| · |H1(I), B : X → Y ′ is boundedly invertible with ‖B‖ ≤ √2 and ‖B−1‖ ≤ √2.
Proof. Let {ϕ} be an orthonormal basis for H of eigenfunctions of A with eigen-

values λϕ (e.g., see [DL90, Ch. VIII, section 2.6, Th. 7]). Then { ϕ√
λϕ
} and { ϕλϕ

} are
orthonormal bases for V and D(A) equipped with

√
a(·, ·) and ‖A · ‖, respectively.
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Writing u =
∑

ϕ uϕ(t) ⊗ ϕ, f =
∑

ϕ fϕ(t) ⊗ ϕ, v =
∑

ϕ vϕ(t) ⊗ ϕ, finding u ∈ X
such that for f ∈ Y ′,

b(u, v) = f(v) (v ∈ Y),
is equivalent to∫

I

−uϕv̇ϕ + λuϕvϕ dt =

∫
I

fϕvϕ dt (ϕ ∈ {ϕ}, vϕ ∈ L2(I)).

We have ‖u‖2L2(I;H)=
∑
ϕ‖uϕ‖2L2(I)

, ‖u‖2L2(I;V )=
∑

ϕλϕ‖uϕ‖2L2(I)
, ‖u‖2L2(I;D(A))=∑

ϕ λ
2
ϕ‖uϕ‖2L2(I)

,

‖v‖2L2(I;D(A))∩H1
0,{T}(I;H) =

∑
ϕ

λ2ϕ‖vϕ‖2L2(I)
+ |vϕ|2H1(I) =

∑
ϕ

‖vϕ‖2Y(λϕ),

where Y(ν) is as in Theorem 7.1,

‖v‖2L2(I;V )∩H1
0,{T}(I;V

′) =
∑
ϕ

λϕ‖vϕ‖2L2(I)
+ λ−1

ϕ |vϕ|2H1(I) =
∑
ϕ

λ−1
ϕ ‖vϕ‖2Y(λϕ),

and so

‖f‖(L2(I;V )∩H1
0,{T}(I;V

′))′ =
∑
ϕ

λϕ‖fϕ‖2(Y(λϕ))′ ,

‖f‖(L2(I;D(A))∩H1
0,{T}(I;H))′ =

∑
ϕ

‖fϕ‖2(Y(λϕ))′ .

Theorem 7.1 shows that 1
2

√
2‖fϕ‖(Y(λϕ))′ ≤ ‖uϕ‖L2(I) ≤

√
2‖fϕ‖(Y(λϕ))′ . By

summing these inequalities over ϕ, the proof is completed.

8. Numerical results for the heat equation. With Ω := (0, 1)n, we consider
the heat equation

∂
∂tu−Δxu = g on I× Ω, u = 0 on I× ∂Ω, u(0, ·) = u0.

Since Ω is convex with Lipschitz continuous boundary, it is well known that −Δx :
H2(Ω)∩H1

0 (Ω) = D(−Δx)→ L2(Ω) is boundedly invertible. As exposed in section 2,
in particular in Theorem 2.4, a well-posed space-time variational formulation of this
equation is to find u ∈ X = L2(I;L2(Ω)) such that

(Bu)(v) = b(u, v) = f(v), (v ∈ Y = L2(I;H
2(Ω) ∩H1

0 (Ω)) ∩H1
0,{T}(I;L2(Ω))),

where

b(w, v) =

∫
I

∫
Ω

−w(x, t)∂v∂t (t, x) +∇xw(x, t) · ∇xv(x, t)dxdt,

f(v) =

∫
I

∫
Ω

g(t, x)v(t, x)dxdt +

∫
Ω

u0(x)v(0, x)dx,

assuming that f ∈ Y ′.
Concerning the latter, since [L2(Ω), H

2(Ω) ∩ H1
0 (Ω)]1/2 = H1

0 (Ω), for v ∈ Y,
v(0) ∈ H1

0 (Ω) with ‖v(0)‖H1(Ω) � ‖v‖Y . So similarly to Remark 2.3, if u0 ∈ H−1(Ω),
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and, say, g ∈ L2(I; (H
2(Ω) ∩ H1

0 (Ω))
′), then f ∈ Y ′ with ‖f‖Y′ � ‖u0‖H−1(Ω) +

‖g‖L2(I;(H2(Ω)∩H1
0 (Ω))′).

By Theorem 7.3, for H2(Ω)∩H1
0 (Ω) being equipped with ‖−Δx · ‖L2(Ω), it holds

that ‖B‖X→Y′ ≤ √2 and ‖B−1‖Y′→X ≤
√
2. Below, we will equip H2(Ω) ∩ H1

0 (Ω)

with norm (
∑n

i=1 ‖∂2i · ‖2L2(Ω))
1
2 , being the norm on the intersection space

(H2 ∩H1
0 )⊗ L2 ⊗ · · · ⊗ L2 ∩ · · · ∩ L2 ⊗ · · · ⊗ L2 ⊗ (H2 ∩H1

0 ),

where L2 = L2(0, 1) and H
2∩H1

0 = H2(0, 1)∩H1
0 (0, 1) equipped with |·|H2(0,1). Using

the eigenvector basis of ∂i, a straightforward calculation shows that
∑n
i=1 ‖∂2i ·‖2L2(Ω) ≤

‖−Δx · ‖2L2(Ω) ≤ n
∑n
i=1 ‖∂2i · ‖2L2(Ω) on H

2(Ω) ∩H1
0 (Ω), so that with the new norm,

(8.1) ‖B‖X→Y′ ≤
√
2n and ‖B−1‖Y′→X ≤

√
2.

Let Σ(1) be the collection of quartic Hermite wavelets from [CS10]. Normalized
in the corresponding norms, it is a Riesz basis for [L2(0, 1), H

5(0, 1) ∩ H1
0 (0, 1)]s/5

(s ∈ [0, 52 )), and for H−s(0, 1)′ (s ∈ (− 1
2 , 0]), and so, in particular, for L2(0, 1) and

H2(0, 1) ∩ H1
0 (0, 1). This collection was designed such that the bi-infinite matrices

〈Σ(1),Σ(1)〉L2(0,1), 〈Σ̇(1), Σ̇(1)〉L2(0,1), 〈Σ̇(1),Σ(1)〉L2(0,1), and 〈Σ(1), Σ̇(1)〉L2(0,1) are all
truly sparse.

With this collection Σ(1), and ΘX , ΘY from section 6, all L2-normalized, we equip
X = L2(I;L2(Ω)) with Riesz basis ΘX ⊗ Σ(1) ⊗ · · · ⊗ Σ(1), and Y = L2(I;H

2(Ω) ∩
H1

0 (Ω))∩H1
0,{T}(I;L2(Ω)) with ΘY ⊗Σ(1)⊗· · ·⊗Σ(1) being, normalized in Y, a Riesz

basis for that space.
By combining (3.2), (8.1), and estimates analogous to (3.4), (3.5), one may verify

that

‖B‖ ≤
√
2nΛL2(I)(Θ

X )[ΛL2(0,1)(Σ
(1))]2n−1

×max
(
ΛL2(I)(Θ

Y)ΛH2(0,1)∩H1
0(0,1)

(|Σ(1)|),ΛH1
0,{T}(I)

(|ΘY |)ΛL2(0,1)(Σ
(1))
)
,

‖B−1‖−1 ≥ 1
2

√
2λL2(I)(Θ

X )[λL2(0,1)(Σ
(1))]2n−1

×min
(
λL2(I)(Θ

Y)λH2(0,1)∩H1
0 (0,1)

(|Σ(1)|), λH1
0,{T}(I)

(|ΘY |)λL2(0,1)(Σ
(1))
)
.

In view of these estimates, it is very favorable to use L2(0, 1)-orthonormal wavelets.
In the present paper, however, we did not follow this approach because we preferred
to have truly sparse stiffness matrices.

With u denoting the coefficient vector of u with respect to ΘX ⊗Σ(1)⊗· · ·⊗Σ(1),
the matrix-vector representation of the variational problem reads as Bu = f , where

B = D−1
Y
[
− 〈ΘX , Θ̇Y〉L2(I) ⊗ 〈Σ(1),Σ(1)〉L2(0,1) ⊗ · · · ⊗ 〈Σ(1),Σ(1)〉L2(0,1)

+ 〈ΘX ,ΘY〉L2(I) ⊗
{
〈Σ̇(1), Σ̇(1)〉L2(0,1) ⊗ 〈Σ(1),Σ(1)〉L2(0,1) ⊗· · ·⊗ 〈Σ(1),Σ(1)〉L2(0,1)

...

+ 〈Σ(1),Σ(1)〉L2(0,1) ⊗ · · · ⊗ 〈Σ(1),Σ(1)〉L2(0,1) ⊗ 〈Σ̇(1), Σ̇(1)〉L2(0,1)

}]
,

f = D−1
Y

[ ∫
I

∫
Ω

g(t, x)θY (t)σ(1)
1 (x1) · · ·σ(1)

n (xn)dtdx
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+

∫
Ω

u0(x)θ
Y (0)σ(1)

1 (x1) · · ·σ(1)
n (xn)dx

]
θY∈ΘY ,σ(1)

1 ,...,σ
(1)
n ∈Σ(1)

,

DY = diag

⎧⎨
⎩
√√√√ n∑

i=1

‖σ̈(1)
i ‖2L2(0,1)

+ ‖θ̇Y‖2L2(I)
: σ

(1)
1 , . . . , σ(1)

n ∈ Σ(1), θY ∈ ΘY

⎫⎬
⎭ .

In Figure 8.1, we give the numerical results obtained with the AWGM for n = 1,
g = 1, and u0 = 0. As parameters for the heat equation in one and two spatial
dimensions, we took μ = 1

2 , γ = 1
64 , θ = 1

2 , δ = 1
4 . For comparison, we included

corresponding results obtained with the nonadaptive full and sparse-grids methods,
i.e., Galerkin approximations to B�Bu = B�f from the span of sets of the form

{θXλ σ(1)

μ(1) · · ·σ(1)

μ(n) : |λ|, |μ(1)|, . . . , |μ(n)| ≤ J} or {θXλ σ(1)

μ(1) · · ·σ(1)

μ(n) : |λ| + |μ(1)|+ · · ·+
|μ(n)| ≤ J}, respectively. The results show that the adaptive method converges

with the best possible rate N−5(logN)5
1
2 (cf. (4.3)) and that it outperforms the

nonadaptive methods with orders of magnitude.
In Figure 8.2, we give the numerical results obtained with the AWGM for n = 1,

g = 1, and u0 = 1. Due to the fact that the primal temporal wavelets all vanish at 0,
a very strong local refinement near t = 0 is necessary. For this reason, in this case we
did not make a comparison with the nonadaptive methods.

Figure 8.3 illustrates which tensor product wavelets were selected by theAWGM.
Note the strong refinement near t = 0, in particular near the corners of the space-time
cylinder.

In Figure 8.4, we give the numerical results obtained with the AWGM for n = 2,
g = 1, and u0 = 0. Although here the AWGM also outperforms the sparse-grid
and full-grid methods (the final computed error is approximately a factor 300 or 2500
smaller), we do not observe the maximal possible rate N−5(logN)11; cf. (4.3). This
could mean either that for this problem, this rate does not hold because the solution
has not enough smoothness in the scale of relevant tensor product Besov spaces (see
[Nit06, SU09]) or that this rate shows up only with larger support sizes that, with our
current implementation, cannot be reached on a PC. Indeed, it is generally observed
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Fig. 8.1. Heat equation in n = 1 spatial dimension, right-hand side g = 1 and initial condition
u0 = 0. ‖Buε − f‖/‖f‖ vs. N = #suppuε for the AWGM (solid), full-grid (dashed), and sparse-

grid method (dashed-dotted). The dotted line is a multiple of N−5(logN)5
1
2 .
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Fig. 8.2. AWGM applied to heat equation in n = 1 spatial dimension, right-hand side g = 1
and initial condition u0 = 1. ‖Buε − f‖/‖f‖ vs. #suppuε. The dotted line is a multiple of

N−5(logN)5
1
2 .
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Fig. 8.3. Heat equation in n = 1 spatial dimension and right-hand side g = 1. Centers of the
supports of the wavelets selected by the AWGM. Left u0 = 0 and #uε = 13420. Right u0 = 1 and
#uε = 13917. A zoom in near t = 0 is given at the bottom row.

that for adaptive (wavelet) approximations of higher order, as with our approxima-
tions of order 5, the asymptotic rate shows up later than with lower order approxi-
mations. For a solution that has singularities, often initially the errors are even worse
than with lower order approximations. A possible explanation is that with higher
order approximations, the dual wavelets have larger supports. Furthermore, although
(adaptive) tensor product approximations are shown to converge with dimension in-
dependent asymptotic rates, with an increasing dimension it takes longer before these
rates become visible. Likely, the combination of both effects is the reason that in our
results in two spatial dimensions, the maximal possible rate is yet not visible.

Finally, we tested the AWGM on the heat equation in n = 2 spatial dimensions
with right-hand side g(t,x) = t4x1(x1 − 1)(x21 − x1 − 1)x2(x2 − 1)(x22 − x2 − 1).
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Fig. 8.4. Heat equation in n = 2 spatial dimensions, right-hand side g = 1 and initial condition
u0 = 0. ‖Buε − f‖/‖f‖ vs. N = #suppuε for the AWGM (solid), full-grid (dashed), and sparse-
grid method (dashed-dotted). The dotted line is a multiple of N−5(logN)11.
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Fig. 8.5. Heat equation in n = 2 spatial dimensions, right-hand side g(t,x) = t4x1(x1−1)(x2
1−

x1 − 1)x2(x2 − 1)(x2
2 − x2 − 1) and initial condition u0 = 0. ‖Buε − f‖/‖f‖ vs. N = #suppuε for

the AWGM (solid), full-grid (dashed), and sparse-grid method (dashed-dotted). The dotted lines
are multiples of N−5(logN)11 and N−5/3, respectively.

Using that g satisfies homogeneous boundary conditions of order 5 at t = 0, both
∂5t g(0, ·) and Δx∂

5
t g(0, ·) are in H1

0 (Ω)∩H2(Ω), and that g is symmetric in x = y and
y = 1 − x, one can verify that the solution u ∈ H5(0, 1)⊗H5(0, 1)⊗H5(0, 1). As a
consequence, the error in the sparse-grid approximation and thus also in the adaptive
wavelet approximation of length N is of the best possible order N−5(logN)11, and
that in the full-grid approximation of length N is of the best possible order N−5/3. As
shown in Figure 8.5, these asymptotic results are confirmed by the numerical results.
The oscillations in the curve for the AWGM and the fact that initially it lies above
the one for the sparse-grid method can be cured by solving the Galerkin systems more
accurately.
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